Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Large scale visualization on the Powerwall.
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

Visualization

Visualization, sometimes referred to as visual data analysis, uses the graphical representation of data as a means of gaining understanding and insight into the data. Visualization research at SCI has focused on applications spanning computational fluid dynamics, medical imaging and analysis, biomedical data analysis, healthcare data analysis, weather data analysis, poetry, network and graph analysis, financial data analysis, etc.

Research involves novel algorithm and technique development to building tools and systems that assist in the comprehension of massive amounts of (scientific) data. We also research the process of creating successful visualizations.

We strongly believe in the role of interactivity in visual data analysis. Therefore, much of our research is concerned with creating visualizations that are intuitive to interact with and also render at interactive rates.

Visualization at SCI includes the academic subfields of Scientific Visualization, Information Visualization and Visual Analytics.


chuck

Charles Hansen

Volume Rendering
Ray Tracing
Graphics
pascucci

Valerio Pascucci

Topological Methods
Data Streaming
Big Data
chris

Chris Johnson

Scalar, Vector, and
Tensor Field Visualization,
Uncertainty Visualization
mike

Mike Kirby

Uncertainty Visualization
ross

Ross Whitaker

Topological Methods
Uncertainty Visualization
miriah

Miriah Meyer

Information Visualization
yarden

Yarden Livnat

Information Visualization
alex lex

Alex Lex

Information Visualization
bei

Bei Wang

Information Visualization
Scientific Visualization
Topological Data Analysis
 

Visualization Project Sites:


Associated Labs:


Publications in Visualization:


A statistical framework for quantification and visualisation of positional uncertainty in deep brain stimulation electrodes,
T. M. Athawale, K. A. Johnson, C. R. Butson, C. R. Johnson. In Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Vol. 7, No. 4, Taylor & Francis, pp. 438-449. 2019.
DOI: 10.1080/21681163.2018.1523750

Deep brain stimulation (DBS) is an established therapy for treating patients with movement disorders such as Parkinson’s disease. Patient-specific computational modelling and visualisation have been shown to play a key role in surgical and therapeutic decisions for DBS. The computational models use brain imaging, such as magnetic resonance (MR) and computed tomography (CT), to determine the DBS electrode positions within the patient’s head. The finite resolution of brain imaging, however, introduces uncertainty in electrode positions. The DBS stimulation settings for optimal patient response are sensitive to the relative positioning of DBS electrodes to a specific neural substrate (white/grey matter). In our contribution, we study positional uncertainty in the DBS electrodes for imaging with finite resolution. In a three-step approach, we first derive a closed-form mathematical model characterising the geometry of the DBS electrodes. Second, we devise a statistical framework for quantifying the uncertainty in the positional attributes of the DBS electrodes, namely the direction of longitudinal axis and the contact-centre positions at subvoxel levels. The statistical framework leverages the analytical model derived in step one and a Bayesian probabilistic model for uncertainty quantification. Finally, the uncertainty in contact-centre positions is interactively visualised through volume rendering and isosurfacing techniques. We demonstrate the efficacy of our contribution through experiments on synthetic and real datasets. We show that the spatial variations in true electrode positions are significant for finite resolution imaging, and interactive visualisation can be instrumental in exploring probabilistic positional variations in the DBS lead.



Scalable Ray Tracing Using the Distributed FrameBuffer
W. Usher, I. Wald, J. Amstutz, J. Gunther, C. Brownlee, V. Pascucci. In Eurographics Conference on Visualization (EuroVis) 2019, Vol. 38, No. 3, 2019.

Image- and data-parallel rendering across multiple nodes on high-performance computing systems is widely used in visualization to provide higher frame rates, support large data sets, and render data in situ. Specifically for in situ visualization, reducing bottlenecks incurred by the visualization and compositing is of key concern to reduce the overall simulation runtime. Moreover, prior algorithms have been designed to support either image- or data-parallel rendering and impose restrictions on the data distribution, requiring different implementations for each configuration. In this paper, we introduce the Distributed FrameBuffer, an asynchronous image-processing framework for multi-node rendering. We demonstrate that our approach achieves performance superior to the state of the art for common use cases, while providing the flexibility to support a wide range of parallel rendering algorithms and data distributions. By building on this framework, we extend the open-source ray tracing library OSPRay with a data-distributed API, enabling its use in data-distributed and in situ visualization applications.



Ray Tracing Generalized Tube Primitives: Method and Applications
M. Han, I. Wald, W. Usher, Q. Wu, F. Wang, V. Pascicci, C. D. Hansen, C. R. Johnson. In Computer Graphics Forum, Vol. 38, No. 3, John Wiley & Sons Ltd., 2019.

We present a general high-performance technique for ray tracing generalized tube primitives. Our technique efficiently supports tube primitives with fixed and varying radii, general acyclic graph structures with bifurcations, and correct transparency with interior surface removal. Such tube primitives are widely used in scientific visualization to represent diffusion tensor imaging tractographies, neuron morphologies, and scalar or vector fields of 3D flow. We implement our approach within the OSPRay ray tracing framework, and evaluate it on a range of interactive visualization use cases of fixed- and varying-radius streamlines, pathlines, complex neuron morphologies, and brain tractographies. Our proposed approach provides interactive, high-quality rendering, with low memory overhead.



A High-Resolution Head and Brain Computer Model for Forward and Inverse EEG Simulation
A. Warner, J. Tate, B. Burton,, C.R. Johnson. In bioRxiv, Cold Spring Harbor Laboratory, Feb, 2019.
DOI: 10.1101/552190

To conduct computational forward and inverse EEG studies of brain electrical activity, researchers must construct realistic head and brain computer models, which is both challenging and time consuming. The availability of realistic head models and corresponding imaging data is limited in terms of imaging modalities and patient diversity. In this paper, we describe a detailed head modeling pipeline and provide a high-resolution, multimodal, open-source, female head and brain model. The modeling pipeline specifically outlines image acquisition, preprocessing, registration, and segmentation; three-dimensional tetrahedral mesh generation; finite element EEG simulations; and visualization of the model and simulation results. The dataset includes both functional and structural images and EEG recordings from two high-resolution electrode configurations. The intermediate results and software components are also included in the dataset to facilitate modifications to the pipeline. This project will contribute to neuroscience research by providing a high-quality dataset that can be used for a variety of applications and a computational pipeline that may help researchers construct new head models more efficiently.



A Study of the Trade-off Between Reducing Precision and Reducing Resolution for Data Analysis and Visualization
D. Hoang, P. Klacansky, H. Bhatia, P.-T. Bremer, P. Lindstrom, V. Pascucci. In IEEE Transactions on Visualization and Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1193--1203. Jan, 2019.
DOI: 10.1109/tvcg.2018.2864853

There currently exist two dominant strategies to reduce data sizes in analysis and visualization: reducing the precision of the data, e.g., through quantization, or reducing its resolution, e.g., by subsampling. Both have advantages and disadvantages and both face fundamental limits at which the reduced information ceases to be useful. The paper explores the additional gains that could be achieved by combining both strategies. In particular, we present a common framework that allows us to study the trade-off in reducing precision and/or resolution in a principled manner. We represent data reduction schemes as progressive streams of bits and study how various bit orderings such as by resolution, by precision, etc., impact the resulting approximation error across a variety of data sets as well as analysis tasks. Furthermore, we compute streams that are optimized for different tasks to serve as lower bounds on the achievable error. Scientific data management systems can use the results presented in this paper as guidance on how to store and stream data to make efficient use of the limited storage and bandwidth in practice.



Shared-Memory Parallel Computation of Morse-Smale Complexes with Improved Accuracy
A. Gyulassy, P.-T. Bremer, V. Pascucci. In IEEE Transactions on Visualization and Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1183--1192. Jan, 2019.
DOI: 10.1109/tvcg.2018.2864848

Topological techniques have proven to be a powerful tool in the analysis and visualization of large-scale scientific data. In particular, the Morse-Smale complex and its various components provide a rich framework for robust feature definition and computation. Consequently, there now exist a number of approaches to compute Morse-Smale complexes for large-scale data in parallel. However, existing techniques are based on discrete concepts which produce the correct topological structure but are known to introduce grid artifacts in the resulting geometry. Here, we present a new approach that combines parallel streamline computation with combinatorial methods to construct a high-quality discrete Morse-Smale complex. In addition to being invariant to the orientation of the underlying grid, this algorithm allows users to selectively build a subset of features using high-quality geometry. In particular, a user may specifically select which ascending/descending manifolds are reconstructed with improved accuracy, focusing computational effort where it matters for subsequent analysis. This approach computes Morse-Smale complexes for larger data than previously feasible with significant speedups. We demonstrate and validate our approach using several examples from a variety of different scientific domains, and evaluate the performance of our method.



Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D Data
T. Athawale, C. R. Johnson. In IEEE Transactions on Visualization and Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1163-1172. Jan, 2019.
DOI: 10.1109/TVCG.2018.2864505

We present a framework for the analysis of uncertainty in isocontour extraction. The marching squares (MS) algorithm for isocontour reconstruction generates a linear topology that is consistent with hyperbolic curves of a piecewise bilinear interpolation. The saddle points of the bilinear interpolant cause topological ambiguity in isocontour extraction. The midpoint decider and the asymptotic decider are well-known mathematical techniques for resolving topological ambiguities. The latter technique investigates the data values at the cell saddle points for ambiguity resolution. The uncertainty in data, however, leads to uncertainty in underlying bilinear interpolation functions for the MS algorithm, and hence, their saddle points. In our work, we study the behavior of the asymptotic decider when data at grid vertices is uncertain. First, we derive closed-form distributions characterizing variations in the saddle point values for uncertain bilinear interpolants. The derivation assumes uniform and nonparametric noise models, and it exploits the concept of ratio distribution for analytic formulations. Next, the probabilistic asymptotic decider is devised for ambiguity resolution in uncertain data using distributions of the saddle point values derived in the first step. Finally, the confidence in probabilistic topological decisions is visualized using a colormapping technique. We demonstrate the higher accuracy and stability of the probabilistic asymptotic decider in uncertain data with regard to existing decision frameworks, such as deciders in the mean field and the probabilistic midpoint decider, through the isocontour visualization of synthetic and real datasets.



CPU Isosurface Ray Tracing of Adaptive Mesh Refinement Data
F. Wang, I. Wald, Q. Wu, W. Usher, C. R. Johnson. In IEEE Transactions on Visualization and Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1142-1151. Jan, 2019.
DOI: 10.1109/TVCG.2018.2864850

Adaptive mesh refinement (AMR) is a key technology for large-scale simulations that allows for adaptively changing the simulation mesh resolution, resulting in significant computational and storage savings. However, visualizing such AMR data poses a significant challenge due to the difficulties introduced by the hierarchical representation when reconstructing continuous field values. In this paper, we detail a comprehensive solution for interactive isosurface rendering of block-structured AMR data. We contribute a novel reconstruction strategy—the octant method—which is continuous, adaptive and simple to implement. Furthermore, we present a generally applicable hybrid implicit isosurface ray-tracing method, which provides better rendering quality and performance than the built-in sampling-based approach in OSPRay. Finally, we integrate our octant method and hybrid isosurface geometry into OSPRay as a module, providing the ability to create high-quality interactive visualizations combining volume and isosurface representations of BS-AMR data. We evaluate the rendering performance, memory consumption and quality of our method on two gigascale block-structured AMR datasets.



libIS: A Lightweight Library for Flexible In Transit Visualization
W. Usher, S. Rizzi, I. Wald, J. Amstutz, J. Insley, V. Vishwanath, N. Ferrier, M. E. Papka,, V. Pascucci. In Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, ACM Press, 2018.
DOI: 10.1145/3281464.3281466

As simulations grow in scale, the need for in situ analysis methods to handle the large data produced grows correspondingly. One desirable approach to in situ visualization is in transit visualization. By decoupling the simulation and visualization code, in transit approaches alleviate common difficulties with regard to the scalability of the analysis, ease of integration, usability, and impact on the simulation. We present libIS, a lightweight, flexible library which lowers the bar for using in transit visualization. Our library works on the concept of abstract regions of space containing data, which are transferred from the simulation to the visualization clients upon request, using a client-server model. We also provide a SENSEI analysis adaptor, which allows for transparent deployment of in transit visualization. We demonstrate the flexibility of our approach on batch analysis and interactive visualization use cases on different HPC resources.



A statistical framework for quantification and visualisation of positional uncertainty in deep brain stimulation electrodes,
T. M. Athawale, K. A. Johnson, C. R. Butson, C. R. Johnson. In Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Taylor & Francis, pp. 1-12. 2018.
DOI: doi:10.1080/21681163.2018.1523750

Deep brain stimulation (DBS) is an established therapy for treating patients with movement disorders such as Parkinson's disease. Patient-specific computational modelling and visualisation have been shown to play a key role in surgical and therapeutic decisions for DBS. The computational models use brain imaging, such as magnetic resonance (MR) and computed tomography (CT), to determine the DBS electrode positions within the patient's head. The finite resolution of brain imaging, however, introduces uncertainty in electrode positions. The DBS stimulation settings for optimal patient response are sensitive to the relative positioning of DBS electrodes to a specific neural substrate (white/grey matter). In our contribution, we study positional uncertainty in the DBS electrodes for imaging with finite resolution. In a three-step approach, we first derive a closed-form mathematical model characterising the geometry of the DBS electrodes. Second, we devise a statistical framework for quantifying the uncertainty in the positional attributes of the DBS electrodes, namely the direction of longitudinal axis and the contact-centre positions at subvoxel levels. The statistical framework leverages the analytical model derived in step one and a Bayesian probabilistic model for uncertainty quantification. Finally, the uncertainty in contact-centre positions is interactively visualised through volume rendering and isosurfacing techniques. We demonstrate the efficacy of our contribution through experiments on synthetic and real datasets. We show that the spatial variations in true electrode positions are significant for finite resolution imaging, and interactive visualisation can be instrumental in exploring probabilistic positional variations in the DBS lead.



Exploration of periodic flow fields
A. Sanderson, X. Tricoche. In 18th International Symposium on Flow Visualization, 2018.

One of the difficulties researchers face when exploring flow fields is understanding the respective strengths and limitations of the visualization and analysis techniques that can be applied to their particular problem. We consider in this paper the visualization of doubly periodic flow fields. Specifically, we compare and contrast two traditional visualization techniques, the Poincaré plot and the finite-time Lyapunov exponent (FTLE) plot with a technique recently proposed by the authors, which enhances the Poincaré plot with analytical results that reveal the topology. As is often the case, no single technique achieves a holistic visualization of the flow field that would address all the needs of the analysis. Instead, we show that additional insight can be gained from applying them in combination.



Association Rules-Based Multivariate Analysis and Visualization of Spatiotemporal Climate Data
F. Wang, W. Li, S. Wang, C.R. Johnson. In ISPRS International Journal of Geo-Information, Vol. 7, No. 7, MDPI AG, pp. 266. July, 2018.
DOI: 10.3390/ijgi7070266

Understanding atmospheric phenomena involves analysis of large-scale spatiotemporal multivariate data. The complexity and heterogeneity of such data pose a significant challenge in discovering and understanding the association between multiple climate variables. To tackle this challenge, we present an interactive heuristic visualization system that supports climate scientists and the public in their exploration and analysis of atmospheric phenomena of interest. Three techniques are introduced: (1) web-based spatiotemporal climate data visualization; (2) multiview and multivariate scientific data analysis; and (3) data mining-enabled visual analytics. The Arctic System Reanalysis (ASR) data are used to demonstrate and validate the effectiveness and usefulness of our method through a case study of "The Great Arctic Cyclone of 2012". The results show that different variables have strong associations near the polar cyclone area. This work also provides techniques for identifying multivariate correlation and for better understanding the driving factors of climate phenomena.



Juniper: A Tree+ Table Approach to Multivariate Graph Visualization
C. Nobre, M. Streit, A. Lex. In CoRR, 2018.

Analyzing large, multivariate graphs is an important problem in many domains, yet such graphs are challenging to visualize. In this paper, we introduce a novel, scalable, tree+table multivariate graph visualization technique, which makes many tasks related to multivariate graph analysis easier to achieve. The core principle we follow is to selectively query for nodes or subgraphs of interest and visualize these subgraphs as a spanning tree of the graph. The tree is laid out in a linear layout, which enables us to juxtapose the nodes with a table visualization where diverse attributes can be shown. We also use this table as an adjacency matrix, so that the resulting technique is a hybrid node-link/adjacency matrix technique. We implement this concept in Juniper, and complement it with a set of interaction techniques that enable analysts to dynamically grow, re-structure, and aggregate the tree, as well as change the layout or show paths between nodes. We demonstrate the utility of our tool in usage scenarios for different multivariate networks: a bipartite network of scholars, papers, and citation metrics, and a multitype network of story characters, places, books, etc.



Discrete Stratified Morse Theory: A User's Guide
K Knudson, B Wang. In CoRR, 2018.

Inspired by the works of Forman on discrete Morse theory, which is a combinatorial adaptation to cell complexes of classical Morse theory on manifolds, we introduce a discrete analogue of the stratified Morse theory of Goresky and MacPherson (1988). We describe the basics of this theory and prove fundamental theorems relating the topology of a general simplicial complex with the critical simplices of a discrete stratified Morse function on the complex. We also provide an algorithm that constructs a discrete stratified Morse function out of an arbitrary function defined on a finite simplicial complex; this is different from simply constructing a discrete Morse function on such a complex. We borrow Forman's idea of a "user's guide," where we give simple examples to convey the utility of our theory.



MOG: Mapper on Graphs for Relationship Preserving Clustering
M. Hajij, B. Wang, P. Rosen. In CoRR, 2018.

The interconnected nature of graphs often results in difficult to interpret clutter. Typically techniques focus on either decluttering by clustering nodes with similar properties or grouping edges with similar relationship. We propose using mapper, a powerful topological data analysis tool, to summarize the structure of a graph in a way that both clusters data with similar properties and preserves relationships. Typically, mapper operates on a given data by utilizing a scalar function defined on every point in the data and a cover for scalar function codomain. The output of mapper is a graph that summarize the shape of the space. In this paper, we outline how to use this mapper construction on an input graphs, outline three filter functions that capture important structures of the input graph, and provide an interface for interactively modifying the cover. To validate our approach, we conduct several case studies on synthetic and real world data sets and demonstrate how our method can give meaningful summaries for graphs with various complexities



Visual Exploration of Semantic Relationships in Neural Word Embeddings
S. Liu, P.T. Bremer, J.J. Thiagarajan, V. Srikumar, B. Wang, Y. Livnat, V. Pascucci. In IEEE Transactions on Visualization and Computer Graphics, Vol. 24, No. 1, IEEE, pp. 553--562. Jan, 2018.
DOI: 10.1109/tvcg.2017.2745141

Constructing distributed representations for words through neural language models and using the resulting vector spaces for analysis has become a crucial component of natural language processing (NLP). However, despite their widespread application, little is known about the structure and properties of these spaces. To gain insights into the relationship between words, the NLP community has begun to adapt high-dimensional visualization techniques. In particular, researchers commonly use t-distributed stochastic neighbor embeddings (t-SNE) and principal component analysis (PCA) to create two-dimensional embeddings for assessing the overall structure and exploring linear relationships (e.g., word analogies), respectively. Unfortunately, these techniques often produce mediocre or even misleading results and cannot address domain-specific visualization challenges that are crucial for understanding semantic relationships in word embeddings. Here, we introduce new embedding techniques for visualizing semantic and syntactic analogies, and the corresponding tests to determine whether the resulting views capture salient structures. Additionally, we introduce two novel views for a comprehensive study of analogy relationships. Finally, we augment t-SNE embeddings to convey uncertainty information in order to allow a reliable interpretation. Combined, the different views address a number of domain-specific tasks difficult to solve with existing tools.



A virtual reality visualization tool for neuron tracing
W Usher, P Klacansky, F Federer, PT Bremer, A Knoll, J. Yarch, A. Angelucci, V. Pascucci . In IEEE Transactions on Visualization and Computer Graphics, Vol. 24, No. 1, IEEE, pp. 994--1003. Jan, 2018.
DOI: 10.1109/tvcg.2017.2744079

racing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists.



Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology
M. Hajij, B. Wang, C. Scheidegger, P. Rosen. In 2018 IEEE Pacific Visualization Symposium (PacificVis), IEEE, April, 2018.
DOI: 10.1109/pacificvis.2018.00024

Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into a metric space, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real-world datasets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether a persistence-based similarity measure satisfies a set of well-established, desirable properties for graph metrics.



OpenSpace: Changing the Narrative of Public Dissemination in Astronomical Visualization from What to How
A. Bock, E. Axelsson, C. Emmart, M. Kuznetsova, C. Hansen, A. Ynnerman. In IEEE Computer Graphics and Applications, Vol. 38, No. 3, IEEE, pp. 44--57. May, 2018.
DOI: 10.1109/mcg.2018.032421653

We present the development of an open-source software called OpenSpace that bridges the gap between scientific discoveries and public dissemination and thus paves the way for the next generation of science communication and data exploration. We describe how the platform enables interactive presentations of dynamic and time-varying processes by domain experts to the general public. The concepts are demonstrated through four cases: Image acquisitions of the New Horizons and Rosetta spacecraft, the dissemination of space weather phenomena, and the display of high-resolution planetary images. Each case has been presented at public events with great success. These cases highlight the details of data acquisition, rather than presenting the final results, showing the audience the value of supporting the efforts of the scientific discovery.



Outcomes of an electronic social network intervention with neuro-oncology patient family caregivers
M. Reblin, D. Ketcher, P. Forsyth, E. Mendivil, L. Kane, J. Pok, M. Meyer, Y.Wu, J. Agutter. In Journal of Neuro-Oncology, Springer Nature, pp. 1--7. May, 2018.
DOI: 10.1007/s11060-018-2909-2

Introduction

Informal family caregivers (FCG) are an integral and crucial human component in the cancer care continuum. However, research and interventions to help alleviate documented anxiety and burden on this group is lacking. To address the absence of effective interventions, we developed the electronic Support Network Assessment Program (eSNAP) which aims to automate the capture and visualization of social support, an important target for overall FCG support. This study seeks to describe the preliminary efficacy and outcomes of the eSNAP intervention.

Methods

Forty FCGs were enrolled into a longitudinal, two-group randomized design to compare the eSNAP intervention in caregivers of patients with primary brain tumors against controls who did not receive the intervention. Participants were followed for six weeks with questionnaires to assess demographics, caregiver burden, anxiety, depression, and social support. Questionnaires given at baseline (T1) and then 3-weeks (T2), and 6-weeks (T3) post baseline questionnaire.

Results

FCGs reported high caregiver burden and distress at baseline, with burden remaining stable over the course of the study. The intervention group was significantly less depressed, but anxiety remained stable across groups.

Conclusions

With the lessons learned and feedback obtained from FCGs, this study is the first step to developing an effective social support intervention to support FCGs and healthcare providers in improving cancer care.