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Abstract
Visualization is an important tool for scientists to extract understanding from complex scientific data. Scientists need to under-
stand the uncertainty inherent in all scientific data in order to interpret the data correctly. Uncertainty visualization has been an
active and growing area of research to address this challenge. Algorithms for uncertainty visualization can be expensive, and
research efforts have been focused mainly on structured grid types. Further, support for uncertainty visualization in production
tools is limited. In this paper, we adapt an algorithm for computing key metrics for visualizing uncertainty in Marching Cubes
(MC) to multi-core devices and present the design, implementation, and evaluation for a Filter for uncertainty visualization of
Marching Cubes on Multi-Core devices (FunMC2). FunMC2 accelerates the uncertainty visualization of MC significantly, and
it is portable across multi-core CPUs and GPUs. Evaluation results show that FunMC2 based on OpenMP runs around 11×
to 41× faster on multi-core CPUs than the corresponding serial version using one CPU core. FunMC2 based on a single GPU
is around 5× to 9× faster than FunMC2 running by OpenMP. Moreover, FunMC2 is flexible enough to process ensemble data
with both structured and unstructured mesh types. Furthermore, we demonstrate that FunMC2 can be seamlessly integrated as
a plugin into ParaView, a production visualization tool for post-processing.

1. Introduction

Exascale computing resources have significantly increased scien-
tists’ abilities to model complex physical phenomena and acceler-
ate scientific discoveries. Visualization is important for extreme-
scale computing and decision-making because it enables scientists
to effectively and efficiently explore interesting features present in
large-scale data, understand trends, and perform analysis. Funda-
mental visualization algorithms, for example, isosurface extraction,
volume rendering, topological feature characterization, and stream-
line tracking, play a critical role in analysis and decision-making
across a wide range of scientific domains. To gain insight and make
informed decisions, scientists must be able to trust the accuracy of
analysis and visualization produced from their data. Most, if not
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all, scientific data contain varying degrees of uncertainty due to a
number of factors. These include parameters and assumptions of
simulation models, spatial and temporal discretization, experimen-
tal sensor tolerances, data reduction to address storage and I/O con-
straints, and fixed precision representations.

Unfortunately, a majority of visualization tools and algorithms
ignore the uncertainty inherent in the input data and simulation
models. Visualization results that do not contain the uncertainty
must be carefully analyzed by scientists in order to be trusted. Ig-
noring uncertainty in data and in algorithms prevents visualization
systems from displaying standard deviation or confidence inter-
vals that are indicative of errors in visualizations [Joh04] and may
lead to scientists being unaware of the trustworthiness of visual-
izations. This lack of understanding of the reliability of visualiza-
tions can adversely impact analysis and may result in misleading
scientific analysis with potentially hazardous consequences. Given
the ubiquity of uncertainty throughout computational and visualiza-
tion pipelines, understanding and effectively communicating uncer-
tainty is critical for educating scientists about risks associated with
scientific processes to enable better decision-making.

Marching Cubes (MC) [LC87] is a classic algorithm used for
extracting isosurfaces from a scalar data field. Uncertainty visual-
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ization of MC has been an active and fruitful area of uncertainty
visualization research [PWH11; AE13; ASE16; AJ19; KDJ*21;
ASJ21]. Although new uncertainty algorithms of MC have been
developed, several challenges remain. One key challenge is that
uncertainty-aware visualization of MC algorithms is typically com-
putationally expensive. For example, uncertainty visualization of
MC [ASJ21] may require sampling data from a multivariate Gaus-
sian distribution, which is a time-consuming operation to complete
on a serial device. A second challenge is understanding the relation-
ship between data uncertainty and the representation of uncertainty
in extracted features. In addition, most of the research on uncer-
tainty algorithms has been focused on structured data in uniform
grids. Finally, effectively communicating uncertainty for decision-
making remains an important challenge.

In light of these challenges, we developed a data Filter that accel-
erates uncertainty visualization of Marching Cubes on Multi-Core
devices (FunMC2). FunMC2 utilizes VTK-m [MSU*16] to accel-
erate the computing of uncertainty visualization of Marching Cubes
(MC) [LC87; PWH11; ASJ21]. FunMC2 is implemented using data
parallel primitives with multiple backends that can be executed on
multi-core CPUs and GPUs, including both NVIDIA GPUs and
AMD GPUs. To the best of our knowledge, this is the first work on
accelerating uncertainty visualization for the MC isosurface extrac-
tion on multi-core CPUs and GPUs, as well as on both structured
and unstructured grids. We evaluate FunMC2 over four data sets
on supercomputers at the Oak Ridge Leadership Computing Fa-
cility. Evaluation results show that FunMC2 running on multi-core
devices achieves a significant speed-up over its corresponding se-
rial implementation. For example, FunMC2 based on OpenMP runs
between 11× to 41× faster on multi-core CPUs than the corre-
sponding serial using one CPU core. Furthermore, FunMC2 based
on a single GPU runs around 5× to 9× faster than correspond-
ing OpenMP. Finally, we demonstrate that FunMC2 can be inte-
grated as a plugin into ParaView [Aya15], an open-source multiple-
platform application for interactive scientific visualization.

2. Related Work

Uncertainty is one of the top challenges facing scientific visual-
ization [Joh04], and there has been much research on the subject,
which is reviewed in detail by Kamal et al. [KDJ*21], Bonneau et
al. [Han], and Potter et al. [PRJ12]. Here, we briefly discuss the
most relevant previous work on computing isosurfaces with uncer-
tain data. We also discuss past work on parallel MC algorithms and
parallel visualization frameworks leveraged by our work.

2.1. Algorithms for uncertainty visualization of MC

Pöthkow et al. [PWH11] and He el al. [HMH*15] describe a gen-
eral approach to express the uncertainty of scalar fields for isosur-
faces. Their approach is the foundation for representing the uncer-
tainty visualization of MC based on a multivariate Gaussian distri-
bution. The main metric for expressing uncertainty is the probabil-
ity of a grid cell crossing the specific isovalue, also known as the
level crossing probability. Their works mainly focus on the algo-
rithm in a serial implementation. Our work focuses on using par-
allel primitives to accelerate the computation of uncertainty MC,

including level crossing probabilities and other metrics such as
entropy-based uncertainty MC visualization [ASJ21].

Thompson et al. [TLB*11] describe a data representation called
hixel, which stores a histogram generated by values at points in the
sampled domain. This representation can express a fuzzy isosur-
face based on probabilistic MC for the reduced data set downsam-
pled from a large data set. The work of Thompson et al. [TLB*11]
mainly focuses on the algorithm description whereas our work de-
scribes how to use parallel primitives to accelerate both the down-
sampling process and the computing process for the isosurface ex-
traction with multiple use case scenarios.

Gillmann et al. [GWHA18; GWHH18] present a methodology to
model the uncertainty of geometry utilizing assumptions of uncer-
tainty measurements. Their approach can use uncertainty measure-
ment to find surfaces containing less geometric uncertainty. They
consider the uncertainty of underlying graphics elements, such as
the positions of points, lines, and triangles. Our work focuses on
techniques that visualize the uncertainty of the isosurface based on
ensemble data and downsampled data, which is a different use-case
scenario of uncertainty surface visualization. The source of uncer-
tainty is from the multiple versions of input data sets instead of the
estimation based on uncertainty models.

Athawale et al. [ASJ21] present multiple metrics for describing
the uncertainty of probabilistic isosurfaces [LTB*14]. The topology
case count and entropy are computed based on the distribution of
MC topology cases for the structured data set. However, their work
mainly focuses on describing the algorithm in serial implementa-
tion. Our work utilizes parallel primitives to reduce the overhead
for computing these metrics for uncertainty visualization of MC.

2.2. MC on multi-core devices

Multiple researchers discusses how to utilize GPU and multi-core
devices to accelerate the classical MC algorithm [LC87]. The typ-
ical optimization strategy is to improve the memory utilization for
multi-core devices based on efficient data structures [DZTS08a;
SSO*10; CP13]. Another optimization strategy is to change the
algorithm from one pass to multiple passes to improve the load
balance [MSM10] or decrease redundant vertex access [SMG15].
These works have mainly focused on adapting the MC algorithm to
multi-core devices. However, our work focuses on adapting the un-
certainty visualization of MC to multi-core devices. Although the
classical MC is the foundation of uncertainty visualization of MC,
the latter has different input data sets and output values.

Han et al. [HAPJ22] describe a parallel implementation for the
uncertainty MC algorithm based on Joblib, and they also explore
how to use a deep-learning model to accelerate the prediction of
uncertainty in MC. However, their approach is limited to uncertain
2D data and dedicated training data on specific types of devices.
The data filter described in our work is more flexible and can be
executed on different parallel devices.

2.3. Data parallel frameworks

VTK-m [MSU*16] is a production-ready library for executing data
analysis and visualization filters on multi-core devices. It provides
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flexible parallel primitives based on adaptors for multi-core de-
vices. The goal of this approach is both to minimize algorithm de-
velopment time and to achieve efficient portable performance on
multi-core devices, and studies show that despite the added layers
used to achieve these goals, performance is maintained [MMP*21].
Yang et al. [YLW21] present solutions for using the VTK-m’s par-
allel primitives to accelerate computations of histograms and the
Gaussian Mixture Model (GMM). However, they did not evaluate
the performance of different VTK-m device adaptors and how to
integrate associated filters into other interactive visualization tools.

3. Uncertainty visualization of MC

Computing the probability distribution of the field associated with
the grid vertex is a fundamental step to computing the uncertainty
of MC. For either downsampled data [TLB*11] or ensemble data
generated by ensemble simulations [LP08; STZ*20], a field associ-
ated with each vertex has uncertainty and contains a distribution of
probable values. If we use the random variable D to represent the
uncertain field value associated with each vertex, for each given
isovalue k, there are Pr(D < k) and Pr(D > k), which are the prob-
ability that the field value is under and over the given isovalue,
respectively. Based on these two probabilities for each vertex, this
work focuses on metrics such as level crossing probability, topol-
ogy count, and entropy for visualizing the uncertainty of MC in
each cell. These metrics are presented by Athawale et al. [ASJ21]
in detail.

3.1. Level crossing probability

The level crossing probability [PWH11; HMH*15], Pr(cross), rep-
resents the probability that the isosurface crosses a particular cell.
To compute the level crossing probability, we can integrate the
probability density function of the random variable for a field asso-
ciated with each vertex. Depending on the assumption about the
field variable, there are different strategies to compute the level
crossing probability.

For uncertainty models that satisfy the independent random field
assumption, such as the independent Gaussian distribution, we can
compute the noncrossing probability of each cell by adding the
products of the probabilities of each vertex under and over the iso-
value, respectively. That is,

Pr(¬cross) = ∏
v∈C

Pr(Dv < k)+ ∏
v∈C

Pr(Dv > k), (1)

where the v’s are the vertices in each cell, C, Dv is the random
variable representing the uncertain field value at vertex v, and k
is the given isovalue. We can then compute the level crossing
probability as 1 minus the noncrossing probability, Pr(cross) =
1−Pr(¬cross).

However, there is no straightforward approach to compute the
noncrossing probability of each cell under the correlated random
field assumption, such as the multivariate Gaussian distribution.
Instead of computing the integration of an n-dimensional density
function, the commonly adopted strategy is to use Monte Carlo
sampling from the distribution function to compute the level cross-
ing probability. If there are M samples among N total samples hav-

ing a cell that crosses the given isovalue, the level crossing proba-
bility of each cell equals M

N .

3.2. Topology case count visualization

For the 2D structured data set, each cell contains four vertices, and
each field associated with the vertex has two probabilities (Pr(D <
k) and Pr(D > k)). For each cell, there are 24 = 16 combinations
in total. Likewise, there are 28 = 256 cases for the eight vertices in
each hexahedron of a 3D structured data set. Based on the process
of computing the level crossing probability described in Subsec-
tion 3.1, we can get a distribution of the probability for all possi-
ble MC topology cases per cell. The case count approach [ASJ21]
checks the probabilities of all these cases and counts the number of
cases for which their probabilities are greater than a given thresh-
old. High values of a lower threshold can help us understand iso-
surface positions with relatively high topological uncertainty.

3.3. Entropy-based uncertainty visualization

The first step of the entropy-based approach [ASJ21] is the same as
for the topology case count approach discussed in Subsection 3.2.
After computing the probability of each case, we use the Shannon
entropy [Sha48] as an information summary for each cell. For ex-
ample, for the 2D structured data set, the entropy value for each cell
equals −∑

i=2d

i=1 Pi× log2(Pi), where d is the cell dimension and Pi
is the probability of each MC case. A low entropy value represents
a more deterministic isocontour, and a high entropy value implies
there is more uncertainty in the data field.

Figure 1 shows concrete visualization examples for the uncer-
tainty metrics described in this section. We use a data set generated
by the ensemble simulations of variables relevant to oceanology
for the Red Sea [STZ*20]. In particular, Figure 1(a) illustrates the
isosurface with isovalue 0.1 based on the mean value of the ensem-
ble data without an indication of uncertainty; Figure 1(b) illustrates
the level crossing probability; Figure 1(c) illustrates the number of
nonzero crossing probabilities (the given threshold is 0); and Fig-
ure 1(d) illustrates the entropy value used as the uncertainty visual-
ization result of MC for each cell.

4. Design considerations of FunMC2

A feature of the MC algorithm is that the computation of the section
of the contour contained within a cell is independent of the rest of
the computation. Therefore, the MC algorithm lends itself naturally
to data parallelism, and many algorithms have taken advantage of
this feature [DZTS08b; LSA12; MMM14]. Because our algorithms
are based on the probabilities of MC cases, we have similar oppor-
tunities for constructing parallel algorithms.

To simplify the parallel implementation of FunMC2, we lever-
age the VTK-m software framework [MSU*16], which provides a
collection of primitives to construct visualization algorithms in par-
allel. This section describes design considerations of how FunMC2

leverages the capability of VTK-m to accelerate the computation of
uncertainty visualization of MC discussed in Section 3.
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(a) Mean of ensembles (b) Cross probability (c) Number of nonzero cross
probability

(d) Entropy

Figure 1: Different visualization results for the Red Sea data set at step 40 (the first vertical layer with isovalue 0.1).

4.1. Preparing data sets with uncertainty

A typical way to represent uncertainty data is to use a collection of
data about a variable (distribution data) instead of a single scalar
value [LKP03]. The distribution data can then be used as the in-
put for generating more flexible representations, such as the proba-
bility density function constructed through density estimation. For
the data generated by ensemble simulation, there is uncertainty be-
tween different ensemble members, and we need to group only the
ensemble values associated with each vertex into a vector (distri-
bution field) when loading the data set. For the data sets with struc-
tured grids, we execute a downsampling operation and collect all
values within a sampling region for the sub-block to construct dis-
tribution data. This downsampling process can be accelerated by
parallel primitives.

When downsampling the data set with a structured grid mesh,
we first specify the size of the downsampling domain. Then we
extract the summary information within each downsampling do-
main. The assumptions of data distribution determine what infor-
mation we need to extract in each downsampling domain. A uni-
form distribution requires only the minimal and maximal value for
each downsampling domain; an independent Gaussian distribution
requires the mean and standard deviation value for each sampling
domain; and a multivariate Gaussian distribution requires the mean
and all the raw data in each sampling domain for computing the
covariance matrix used in the probability distribution function.

The complex part of performing this downsampling in parallel is
identifying the members of each block to be reduced and indepen-
dently combining them. FunMC2 utilizes two approaches to accel-
erate the downsampling operation. The default strategy is to first
mark each point of the input with an identifier of the unique down-
sampling block (a simple WorkletMapField) and then com-
bine all points with the same downsampling block identifier with a
reduce-by-key operation (WorkletReduceByKey in VTK-m).
In this way, we can specify the different sizes of data blocks for
downsampling. For example, we can set a small downsampling do-
main for interesting data regions and a large block size for regions
with no interesting phenomena, such as the background region. If
we assume the sizes of the data block are equal for each subdomain,
we can use an alternative downsampling approach (the second strat-
egy) where we use VTK-m’s WorkletPointNeighborhood
to compute the indexing of points within each downsampling block

using strides and offsets. This approach avoids the overhead of pro-
cessing the key in parallel, but the subdomain partitioning must be
regular. Evaluation results in Section 5.2.1 show more details about
the comparison of these two strategies.

4.2. Metrics for visualizing the uncertainty of MC

Whether getting uncertainty data from the downsampling operation
described in Section 4.1 or through other means such as ensemble
data, FunMC2 can take these data sets and compute the probabilis-
tic locations of contours. As described in Section 3, contour proba-
bility and other metrics are computed by considering the probabil-
ity of each MC case for each cell. WorkletVisitCellsWith-
Points of VTK-m allows an algorithm to visit each cell and ac-
cess the field data on incident points to perform operations of this
nature. This worklet provides a mechanism to implement the level
crossing probability, topology case count, and entropy metrics.

Algorithm 1 describes detailed operations for computing the un-
certainty metrics within each cell. This algorithm is executed by
WorkletVisitCellsWithPoints, which can iterate through
each cell in parallel and access the information associated with each
vertex. The inputs of the algorithm include the distribution assump-
tion of the scalar field and associated summary information of the
scalar field in each cell. The extraction of the summary informa-
tion of the scalar field follows the description in Subsection 4.1.
Specifically, for the assumption of uniform distribution, the sum-
mary information contains the min and the max values of the scalar
field associated with each vertex. For the assumption of an inde-
pendent Gaussian distribution, the summary information contains
the mean and the standard deviation values of the scalar field asso-
ciated with each vertex. For the multivariate Gaussian distribution,
the summary information contains the mean value and the raw data
of the scalar field. The output of the algorithm are metrics described
in Subsection 3, and we define these metrics as CrossProb, NonZe-
roCases, and E(Entropy) in this algorithm.

From line 1 to line 6, we assume the field variable is represented
as a uniform or an independent Gaussian distribution. We can com-
pute the probability density function of the field variable conve-
niently and derive the probability that the value is greater (less)
than a given isovalue. After that, we can compute the probability
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Algorithm 1: Pseudocode executed per thread to compute
metrics for uncertainty visualization of MC.

Input : Distribution, Summary of the scalar field
Output: CrossProb, NonZeroCases, E (Entropy)

1 if Distribution is uniform or independent Gaussian then
2 for each vertex in the cell do
3 f ← probability density function (< min,max > or

< mean,stdev >);
4 P(d > iso),P(d < iso)← computing probability( f );
5 CasesProb← updating cases of probability(P);
6 end
7 else if Distribution is multivariate Gaussian then
8 Σc← computing covariance matrix (summary

information for all vertices in the cell);
9 AAT ← EigenDecomposition(Σc);

10 for 1 ... number of samples do
// There are m vertices per cell

11 Ym×1← generating random numbers from N(0,1);
12 Ym×1← Am×m×Ym×1 +µm×1;
13 CasesCount← computing cases list (Ym×1, iso) ;
14 CasesProb← cases of probability (CasesCount);
15 end
// Computing metrics for visualizing

uncertainty MC
16 CrossProb← 1−CasesProb[0]−CasesProb[2m−1];
17 for i in 0 ... 2m−1 do
18 if CasesProb[i]>0 then
19 NonZeroCases← NonZeroCases+1;

// Updating entropy value
20 E← E +(−CasesProb[i])× log(CasesProb[i]);
21 end

for each MC topology case within the cell (denoted by variable
CasesProb in Algorithm 1).

From line 7 to line 15 for the more complex multivariate Gaus-
sian distribution, we use the sampling strategy to compute the prob-
abilities for each case. For each sampling operation, we sample a
vector Ym from N(µ,Σ), where µ contains the mean value of each
vertex, and Σ is the covariance matrix for vertex values in the cor-
responding cell. A more detailed explanation of sampling a multi-
variate Gaussian distribution is provided by Dong and Yao [DY08].
After sampling the multivariate Gaussian distribution, we can com-
pute the probability of each MC topology case.

Line 16 computes the level crossing probability using 1 minus
the probability that all vertex values are under or over the given
isovalue (described in Section 3.1). In this line, we are assuming
that the first and last case indices represent the case of all field
values under and over the isovalue, respectively, which is common
in MC algorithms. From line 17 to line 21, we iterate the probability
table for all cases and compute the number of nonzero probabilities
and the entropy value (discussed in Section 3.2 and Section 3.3).

Figure 2: A plugin makes the algorithms described in this paper
easily accessible in the ParaView application.

4.3. Integrating with the post-processing pipeline

Our ultimate goal is to make uncertainty visualization practical
for real use and to put tools in the hands of end users. Para-
View [Aya15] is a widely used post-processing tool for visualizing
and analyzing scientific data sets. As a proof of concept, we have
created a plugin for the ParaView application that makes FunMC2

available within the tool, as demonstrated in Figure 2. The plu-
gin adds to the ParaView interface new filters that execute uncer-
tain contouring algorithms described in Subsection 4.1 and Sub-
section 4.2. The ParaView GUI allows direct manipulation of the
parameters used by the algorithms (such as the isovalue used for
the contour). A video in the supplementary material presents how
to use FunMC2 in ParaView for uncertainty visualization of isosur-
faces in detail.

The ParaView filters internally run the previously described
VTK-m implementations of the uncertain contour algorithms. Al-
though our plugin’s filter implementations are executed in VTK-m,
they seamlessly integrate with the other ParaView systems – file
readers, other filters, and rendering – regardless of whether these
components use or directly support VTK-m. Integrating FunMC2

into ParaView is achieved through VTK accelerator interface,
which allows zero-copy data passing between the two systems.

5. Performance Evaluation

The performance evaluation is divided into three subsections. Sub-
section 5.1 introduces the platform and data sets we targeted in
the evaluation. In Subsection 5.2, we evaluate the performance re-
sults for downsampling data. Finally, Subsection 5.3 describes per-
formance results for data generated by ensemble data. The corre-
sponding code of all experiments is publicly available†.

5.1. Platform and data sets

VTK-m uses an abstraction mechanism called a device adaptor to
provide portability across a number of hardware devices. These in-
clude single-core CPU, multi-core CPU, and GPUs. Implementing

† https://github.com/wangzhezhe/UCV
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(a) Beetle (b) Supernova (c) Wind (d) Red Sea

Figure 3: Visualization results of the isosurface for different data sets used in the evaluation.

Table 1: Performance results of FunMC2 to sample the structured data sets (time unit is milliseconds) with the Beetle data set. The number
in parentheses is the ratio computed using the execution time of the serial adaptor divided by the execution time of the specific parallel device
adaptor. In particular, “IndependentG” represents the independent Gaussian distribution, and “MultivariateG” represents the multivariate
Gaussian distribution.

Approach Distribution Serial OpenMP CUDA Kokkos_CUDA Kokkos_HIP

Reduce by key
Uniform 24363 713 (34×) 635 (38×) 3188 (7×) 1423 (17×)
IndependentG 25117 716 (35×) 624 (40×) 3183 (7×) 1475 (17×)
MultivariateG (1000 samples) 24996 725 (34×) 826 (30×) 3351 (7×) 1454 (17×)

Fixed block size
Uniform 1075 91 (11×) 171 (6×) 147 (7×) 74 (14×)
IndependentG 1609 92 (17×) 171 (9×) 155 (10×) 78 (20×)
MultivariateG (1000 samples) 1444 93 (15×) 357 (4×) 302 (4×) 94 (15×)

FunMC2 in VTK-m gives it portability across the supported hard-
ware types. We used the Serial, OpenMP, and CUDA device adap-
tors when conducting experiments on the Summit supercomputer
at ORNL ‡. VTK-m supports AMD GPUs through the Kokkos
programming model [TLA*22; DGM*21]. Experiments using the
Kokkos_HIP adaptor are executed on Crusher §, the test system for
Frontier ¶ at ORNL. Since Kokkos also supports NVIDIA GPUs,
we also ran Kokkos_CUDA experiments on Summit to compare
the two VTK-m’s CUDA implementation.

We use four data sets in the evaluation. Two of them are struc-
tured data sets, and we use the downsampling operation to intro-
duce the uncertainty to the data set in the evaluation. The other two
data sets are generated by ensemble simulations, and there is un-
certainty between different ensemble members in the data set. The
details of the data sets are described as follows:

Beetle data set ∥ is a structured block data set of size 494×
832×832. This data set is generated by a CT scan of a stag beetle.
This data set has been frequently used for uncertainty research of

‡ https://docs.olcf.ornl.gov/systems/summit_user_
guide.html
§ https://docs.olcf.ornl.gov/systems/crusher_
quick_start_guide.html
¶ https://docs.olcf.ornl.gov/systems/frontier_
user_guide.html
∥ https://www.cg.tuwien.ac.at/research/
publications/2005/dataset-stagbeetle/

MC [TLB*11; ASJ21]. Figure 3(a) illustrates an isosurface of this
data set with an isovalue 900.

Supernova data set is generated by a simulation for core-
collapse supernovae [SHM*21]. For the purposes of this study, we
resampled the original data onto a 400×400×400 structured mesh.
Figure 3(b) illustrates the isosurface of an iron fraction field with
an isovalue 0.3.

Wind data set is from the European Center For Medium Range
Weather Forecast (EXMWF) Sub-seasonal to Seasonal (S2S) Pre-
diction Project. This data set has been used [HAPJ22] for acceler-
ating the computation of probabilistic MC. This data set consists
of a structured grid of size 240× 121 with 15 ensemble members.
The upper portion of Figure 3(c) shows the mean value wind pres-
sure across all ensemble data, and the lower portion of Figure 3(c)
shows the corresponding isosurface with an isovalue 0.3.

Red Sea data set is provided by the 2020 SciVis Contest ∗∗.
It consists of an ensemble of oceanology simulations with vary-
ing parameter values. The data set has a spatial resolution of
500× 500× 50 with 20 ensemble members. The left side of Fig-
ure 3(d) illustrates the mean value velocity magnitude of ensemble
members for this data set. The right side of Figure 3(d) shows the
corresponding isosurface with an isovalue 0.1.

∗∗ https://kaust-vislab.github.io/SciVis2020/
index.html
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Table 2: Performance results of FunMC2 to compute uncertainty metrics for structured data sets (time unit is milliseconds). In particular,
“IndependentG” represents the independent Gaussian distribution, and “MultivariateG” represents the multivariate Gaussian distribution.

Data sets Distribution Serial OpenMP CUDA Kokkos_CUDA Kokkos_HIP

Beetle

Uniform 11115 266 (41×) 185 (60×) 47 (236×) 28 (396×)
IndependentG 10961 263 (41×) 185 (59×) 46 (238×) 34 (322×)
MultivariateG (1000 samples) 1706650 40951 (41×) 17542 (97×) 7028 (242×) -
MultivariateG (2000 samples) 3298010 79220 (41×) 35321 (93×) 11148 (295×) -

Supernova

Uniform 2034 52 (39×) 48 (42×) 17 (119×) 6 (339×)
IndependentG 2053 51 (40×) 49 (41×) 17 (120×) 7 (293×)
MultivariateG (1000 samples) 323165 7939 (40×) 5910 (54×) 2003 (161×) -
MultivariateG (2000 samples) 615802 15557 (39×) 9063 (67×) 2828 (217×) -

Beetle_Small MultivariateG (1000 samples) 25689 1505 (17×) 1720 (14×) 234 (109×) 265 (96×)
Supernova_Small MultivariateG (1000 samples) 17839 1191 (14×) 1161 (15×) 197 (90×) 244 (73×)

5.2. Performance results for downsampled data sets

We first describe the performance results of different downsam-
pling strategies in Subsection 5.2.1. Then, in Subsection 5.2.2, we
discuss the performance results for computing uncertainty metrics.

5.2.1. Comparison of downsampling strategies

Table 1 illustrates the performance results for the downsampling
operation based on different device adaptors. The first column lists
the downsampling approaches described in Subsection 4.1. The
second column lists assumptions about the field variable. The block
size is four when executing the downsampling process.

“Fixed block size” shows better performance than “Reduce by
key” for all adaptors. This result is expected because Workle-
tReduceByKey in VTK-m contains sorting operations based on
customized keys, which take extra overhead. The evaluated device
adaptors have different performance results for this downsampling,
and the speed-up with the highest performance improvement is
labeled in bold font. In particular, the CUDA adaptor shows the
highest performance improvements among all adaptors when using
the “Reduce by key” approach for uniform and independent Gaus-
sian distributions. Kokkos_HIP has the highest performance im-
provements when using the “Fixed block size” sampling approach.
Kokkos_CUDA does not perform as well as the other CUDA de-
vice adapter for the “Reduce by key” approach. This is likely due
to a known performance issue [RAB*21] with sorting in Kokkos
compared with the Thrust library [BH12], and will be addressed in
future versions of VTK-m and Kokkos.

With the assumption of a multivariate Gaussian distribution, we
need the covariance matrix when computing the metrics for uncer-
tainty MC; therefore, the operation of extracting summary infor-
mation of the MultivariateG case requires both the mean value and
the raw scalar field data for each subsampled domain. Executing
the associated kernel function takes longer (around 15 times longer
with CUDA adaptor) than the corresponding Uniform case.

5.2.2. Computing metrics for uncertainty visualization of MC

Table 2 illustrates the performance results of computing metrics for
the uncertainty of MC (discussed in Section 3) for the Beetle and

the Supernova data sets. The meaning of each column in Table 2 is
the same as in Table 1. Since the Beetle and Supernova data sets are
too large to be properly processed by the Kokkos_HIP adaptor for
the case of the multivariate Gaussian distribution, we re-sampled
these two data sets into Beetle_Small (124× 208× 208) and Su-
pernova_Small (152× 152× 152) to show the performance of the
Kokkos_HIP adaptor for the multivariate Gaussian distribution.

As shown in Table 2, performance results based on parallel de-
vice adaptors show significant improvements compared with the
serial device adaptor. Specifically, performance results of uniform
and independent Gaussian are close to each other since they have
the same code structure when computing metrics regarding the un-
certainty of MC (shown in algorithm 1). In contrast, the multi-
variate Gaussian distribution has a heavier workload, and it needs
to compute covariance metrics and execute sampling operations,
which take a comparatively long execution time for each thread.
The heavy workload makes the GPU speed-up particularly impor-
tant for the multivariate Gaussian metrics.

The Kokkos_HIP adaptor has clear benefits over other device
adaptors for the uniform and independent Gaussian distributions
for Beetle and Supernova data sets, and the Kokkos_CUDA adaptor
shows better performance for the multivariate Gaussian.

Figure 5 illustrates the speed-up ratio of the Supernova data set
with different sizes. We resampled the original Supernova data into
data sets with different dimension values in this experiment. Re-
sults show that there is more speed-up with the increase in the
data size. For example, the speed-up of Kokkos_CUDA adaptor
increases from around 50× to 230× when the data size increases
from 1003 to 8003.

Figure 4 and Figure 6 present metrics for the uncertainty vi-
sualization of MC discussed in Section 3. Figure 4 illustrates the
entropy-based uncertainty visualization of MC with the Beetle data
set. The uniform and independent Gaussian distributions tend to
overestimate entropy values compared with the multivariate Gaus-
sian distribution because they do not take into account the corre-
lation. There are minor differences for the multivariate Gaussian
distribution with 1000 and 2000 random samples.

Figure 6 illustrates two representative visualization results of the
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(a) Uniform (b) Independent Gaussian (c) Multivariate Gaussian (1000
random samples)

(d) Multivariate Gaussian (2000
random samples)

Figure 4: The entropy-based uncertainty visualization of MC with different assumptions of distribution for the Beetle data set.
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Figure 5: Speed-up of the Supernova data set with different sizes.

(a) Number of nonzero probabilities (b) Entropy

Figure 6: Uncertainty visualization of MC for the Iron field of the
Supernova data set.

uncertainty visualization of MC based on the Iron field for the Su-
pernova data set with an isovalue of 0.3. Figure 6(a) shows the
number of MC topology cases with nonzero probability for each
cell, and Figure 6(b) shows the entropy of the probability distribu-
tion of MC topology cases for visualizing the uncertainty of MC.

5.3. Performance results based on ensemble members

In this subsection, we first present the overall speed-up for the Wind
and the Red Sea ensemble data sets in Subsection 5.3.1. Next, in
Subsection 5.3.2, we discuss the comparison of execution time with
a previous work [HAPJ22] that also uses the Wind data set for ac-

celerating the uncertainty visualization of MC. Lastly, we discuss
the flexibility of FunMC2 for processing ensemble data with differ-
ent types of meshes in Subsection 5.3.3.

5.3.1. Overall speed-up

Table 3 illustrates the performance results of FunMC2 for comput-
ing metrics for visualizing the uncertainty of MC with the Wind and
the Red Sea data sets. We show the results based on the multivari-
ate Gaussian distribution, which considers the correlation between
vertices and contains the heaviest workload among all distribution
assumptions discussed in this paper. Since both the Wind and the
Red Sea data sets are generated by ensemble simulations, we can
compute the metrics for visualizing the uncertainty of MC directly
based on these ensemble members. As shown in Table 3, all par-
allel devices show significant performance improvements. With an
increasing number of samples, the performance speed-up becomes
more apparent. In particular, the Kokkos_CUDA adaptor has the
highest speed-up for all measurements, achieving 313× speed-up
compared with the serial adaptor (and 17× faster than the OpenMP
adaptor) for the Red Sea data when there are 4000 random samples.

5.3.2. Comparison to other implementations

Figure 7: The visualization of the uncertainty isosurface based on
the Wind data set using isovalue 0.3 with the multivariate Gaussian
distribution.

The Wind data set used in our experiments is used by Han et
al. [HAPJ22], and their work also focuses on improving the per-
formance of the uncertainty visualization of MC. Although their
work mainly focuses on using deep learning to improve the speed
of computing metrics for visualizing the uncertainty of MC, they
also present a parallel version of computing probabilistic MC in
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Table 3: Performance results of FunMC2 based on ensemble data sets (the unit is ms).

Data sets Distribution Serial OpenMP CUDA Kokkos_CUDA Kokkos_HIP

Wind
MultivariateG (1000 samples) 5464 193 (28×) 121 (45×) 39 (140×) 119 (45×)
MultivariateG (2000 samples) 9602 339 (28×) 143 (67×) 46 (208×) 188 (51×)
MultivariateG (4000 samples) 17798 627 (28×) 199 (89×) 57 (312×) 317 (56×)

Red Sea
MultivariateG (1000 samples) 7264 404 (17×) 145 (50×) 47 (154×) 179 (40×)
MultivariateG (2000 samples) 12717 708 (17×) 203 (62×) 55 (231×) 274 (46×)
MultivariateG (4000 samples) 23547 1309 (17×) 309 (76×) 75 (313×) 465 (50×)

the paper. In particular, they use Joblib †† as the infrastructure to
support the parallel running of probabilistic MC. On our test plat-
form, the probabilistic MC implemented in their work takes around
2.8 seconds with 1000 Monte Carlo samples. The concrete perfor-
mance test depends on the experimental device. Our implementa-
tion based on VTK-m shows better performance for both OpenMP
(14× faster) and other adaptors, such as CUDA (23× faster) on the
same device.

Figure 5.3.2 illustrates the level crossing probability of isosur-
faces with an isovalue of 0.3 of the Red Sea data set. We also com-
pare our results with the results using the parallel implementation
in [HAPJ22]. In particular, the maximal probability difference is
0.073 on average with a standard deviation of 0.003 if we execute
the compared implementation five times. The difference between
multiple runs is caused by randomness during the sampling pro-
cess. The difference between our results and the compared results
is 0.067 on average for five runs, and this error is close to the dif-
ference caused by random sampling.

5.3.3. Flexibility

(a) Unstructured quads. (b) Unstructured triangles.

Figure 8: Illustration of entropy with different types of mesh for the
Gulf of Aden in the Red Sea.

One benefit of using primitives within VTK-m is to process dif-
ferent types of meshes using the same function call. As a proof
of concept, we convert the original Wind data set into an unstruc-
tured mesh of quadrilaterals with explicit cell connections. We also
produce a second unstructured mesh by dividing the quadrilaterals
into triangles. Figure 8 shows the connectivity of the unstructured

†† https://joblib.readthedocs.io/en/latest/

meshes. Both of these unstructured meshes along with the original
structured mesh are demonstrated as input to FunMC2.

Figure 1 illustrates different metrics of the uncertainty visualiza-
tion of MC (discussed in Section 3) based on the original structured
mesh of the Red Sea data. Figure 8 illustrates the entropy-based un-
certainty visualization MC for the Gulf of Aden in the Red Sea data
set with the unstructured meshes. There are minor differences visu-
ally between the results for different mesh types, which are dictated
by the differences in connectivity and cases of the meshes.

Table 4 illustrates the performance results of FunMC2 to pro-
cess the Wind and the Red Sea data with different types of mesh
for a multivariate Gaussian distribution with 1000 samples. The
performance of processing different types of mesh is influenced
by the number of cells in the data and the kernel function VTK-
m used to process the data in parallel. The results show that the
Kokkos_CUDA can achieve the highest speed-up.

6. Conclusions and Future Work

We have presented the design, implementation, and evaluation
for FunMC2, a filter for uncertainty visualization of Marching
Cubes on multi-core devices. The performance results show that
FunMC2 achieves significant performance improvements for com-
puting metrics used for visualizing the uncertainty of MC on multi-
core CPU, NVIDIA GPU, and AMD GPU. In addition, FunMC2

can also support ensemble data sets with different mesh types.

We observe that the parallel processing of the uncertainty visual-
ization algorithms is an important but understudied problem. Prop-
erly managing and representing the inherent uncertainty in data
processed by scientific visualization is critical to maintain trust in
the results. The additional computation required to analyze prob-
abilistic rather than absolute data can add a prohibitive amount of
time to visualization systems. Parallel processing is a fruitful and
necessary feature to keep uncertainty visualization tractable.

We further observe that uncertainty visualization techniques are
seldom integrated into visualization tools, particularly those for sci-
entific visualization. We have shown that scientific visualization
tools are capable of adopting uncertainty techniques, and we en-
courage the visualization community to contribute new algorithms
to these shared tools. Although we have demonstrated the use of
FunMC2 in ParaView, there is much work to be done to provide a
production quality solution for end users.

The scope of this paper focuses on the parallelization over one
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Table 4: Performance results of FunMC2 for processing the Wind data set and the Red Sea data set with different types of mesh. Time unit is
milliseconds, and there are 1000 samples for the multivariate Gaussian distribution

.

Data sets Mesh type Serial OpenMP CUDA Kokkos_CUDA Kokkos_HIP

Wind
Structured 5431 192 (28×) 100 (54×) 26 (208×) 114 (47×)
Unstructured Quads 5473 135 (40×) 48 (114×) 34 (160×) 81 (67×)
Unstructured Triangles 7084 181 (39×) 32 (221×) 21 (337×) 63 (112×)

Red Sea
Structured 7264 404 (17×) 145 (50×) 46 (157×) 168 (43×)
Unstructured Quads 7268 379 (19×) 83 (87×) 59 (123×) 198 (36×)
Unstructured Triangles 9419 484 (19×) 42 (224×) 27 (348×) 140 (67×)

GPU device. That said, FunMC2 can be easily extended to sup-
port distributed data processing. We have shown that the process
of computing metrics of the uncertainty of MC is embarrassingly
parallel, and this parallelism could be extended over multiple de-
vices. We leave it to future work to demonstrate this capability by,
for example, leveraging the MPI-parallel capabilities of ParaView.

Although our implementation of FunMC2 demonstrates signifi-
cant performance improvements for visualizing the uncertainty of
MC, we believe there is much room for iterative improvements
in future work. We observe that the comparative performance be-
tween devices is not completely explained by their respective hard-
ware limits. Further exploration of scheduling and data manage-
ment could potentially reap more benefits from the hardware and
improve, for example, the size of data sets the Kokkos_HIP adapter
can operate on. Furthermore, our straightforward parallelization of
operations results in some repetition of computation, which may be
shared with a different code structure.

The current implementation of FunMC2 uses parametric distri-
butions to construct probability density functions used for comput-
ing uncertainty metrics. We will extend it and support nonparamet-
ric distribution in the future.
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