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Fiber Uncertainty Visualization for Bivariate Data With Parametric
and Nonparametric Noise Models

Tushar M. Athawale, Chris R. Johnson, Sudhanshu Sane, and David Pugmire

Abstract—Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization.
Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization
for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers
extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data
to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g.,
histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we
leverage Green’s theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent
parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study
the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the
derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the
utility of our proposed techniques via experiments on synthetic and simulation datasets.

Index Terms—Uncertainty visualization, fiber surfaces, and probability

1 INTRODUCTION

In an era in which the growth of and dependence on data is increasing,
understanding the inherent uncertainty is critical. Uncertainty can be
introduced in many different ways [8]. Experimental and observational
data are limited to the accuracy of the sensors. Accuracy in simulation
data is a function of the model, numerical approximation, and parame-
ters (e.g., grid resolution, number of particles) being used. Additional
uncertainty can be introduced by data reduction (e.g., filtering, lossy
compression), which is often used to address the challenges of big data.
Further, the data are becoming increasingly more complex. Simula-
tion data are often multivariate, with multiple scalar-, vector-, and/or
tensor-quantities simulated over the spatial domain. Effective communi-
cation of uncertainty is, therefore, of paramount importance to perform
risk-aware science and increase trust in scientific decisions [27, 30, 70].
Although there have been several advances in multivariate data visual-
ization and analysis [16], relatively few studies have investigated the
uncertainty of multivariate data [7, 44]. Here, we address the challenge
of uncertainty visualization of bivariate scalar fields.

Fiber surfaces as proposed by Carr et al. [9] are a well-known bi-
variate data visualization technique for exploring correlations among
variables. Fiber surfaces generalize the idea of isosurfaces [37] for
univariate data to bivariate data. More specifically, given a bivariate
function f : R3 →R2 with a three-dimensional (3D) spatial domain and
a two-dimensional (2D) attribute space, fiber surfaces are a preimage of

• Tushar M. Athawale and David Pugmire are with Oak Ridge National
Laboratory. E-mail: {athawaletm | pugmire}@ornl.gov.

• Chris R. Johnson is with Scientific Computing & Imaging (SCI) Institute at
the University of Utah. E-mail: crj@sci.utah.edu.

• Sudhanshu Sane is with Luminary Cloud, Inc. E-mail:
sudhanshu.sane@gmail.com.
This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The publisher,
by accepting the article for publication, acknowledges that the U.S.
Government retains a non-exclusive, paid up, irrevocable, world-wide
license to publish or reproduce the published form of the manuscript, or
allow others to do so, for U.S. Government purposes. The DOE will provide
public access to these results in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

a user-defined fiber surface control polygon (FSCP) or trait selected in
the 2D attribute space (see Sect. 2.1). We use the terms FSCP and trait
interchangeably. FSCP generalizes the idea of an isovalue for univariate
data to higher dimensions. In this paper, we study the uncertainty in
fiber positions arising from noise in bivariate data.

Our contributions in this paper are primarily motivated by the recent
work by Zheng and Sadlo [69], who studied the positional uncertainty
of fibers for uncertain bivariate fields. They proposed a closed-form
uncertainty quantification framework for bivariate data fibers assuming
independent/correlated Gaussian (parametric) noise models and rect-
angular FSCP selection (see Sect. 2.2). The probabilities of uncertain
fiber positions for rectangular FSCP selection (referred to as uncertain
range-fibers) were visualized with direct volume rendering and were
shown to significantly deviate from the fiber positions extracted when
assuming no uncertainty. One of the future directions identified by
Zheng and Sadlo (see Sect. 7 of [69]) included extending their work to
probability distributions other than Gaussian, which we address here.

In this paper, we expand the work by Zheng and Sadlo to other
parametric distributions, such as uniform and Epanechnikov, and more
general nonparametric noise distributions (histograms or kernel density
estimation [KDE] [41]) for arbitrary shapes of FSCP. The nonpara-
metric models of uncertainty can provide greater accuracy than the
parametric models in the context of visualization [2, 4, 45] owing to
their ability to capture more realistic shapes of underlying probability
distributions. Compared with the more restrictive rectangular polygon
shapes, FSCP’s arbitrary shapes provide an additional flexibility to
choose features from the 2D attribute space and visualize their fiber
surfaces. For example, Carr et al. [9] and Klacansky et al. [32] studied
fiber surface visualizations for arbitrary FSCP shapes in application
domains, including chemistry and medical imaging (see Sect. 2.1).

Contributions. Our contributions in this paper are fourfold. First,
we propose a closed-form statistical framework for uncertainty quan-
tification of fibers of bivariate data when noise in data is modeled
with independent parametric probability distributions, such as uniform,
Epanechnikov, and Gaussian (Sect. 4). Note that our framework is
applicable to FSCP with arbitrary shapes as opposed to being limited to
rectangular FSCP [52, 69]. Our derivations for parametric distributions
act as building blocks for our derivations relevant to nonparametric
distributions. Second, we present a closed-form statistical framework to
derive the positional uncertainty of fibers when noise in bivariate data
is modeled with independent nonparametric probability distributions
(e.g., histograms or Parzen window/KDE [41]) (Sect. 5.1). We present
our results for noise kernels, including uniform, Epanechnikov, and
Gaussian. Third, we present a nonparametric statistical framework



614 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 1, JANUARY 2023

for uncertainty quantification of bivariate data fibers when noise in
variables is assumed to be correlated (Sect. 5.2). We present a closed-
form uncertainty quantification of fibers when the noise correlation is
estimated with 2D histograms, and a numerical integration technique is
proposed to approximate fiber uncertainty when the noise correlation
is estimated with bivariate KDE [62]. Lastly, we leverage the idea of
vertex-based classification [4] to extract the most probable fiber surface
from uncertain bivariate data (Sect. 7).

We organize our paper as follows: In Sect. 2, we define our notation
and provide a brief overview of bivariate fiber surfaces (Sect. 2.1) and
the state of the art in uncertainty visualization of fibers (Sect. 2.2). We
then discuss relevant prior work in multivariate data and uncertainty
visualization in Sect. 3. We describe our proposed frameworks for
uncertainty quantification of fibers with parametric noise assumptions
in Sect. 4 and nonparametric noise assumptions in Sect. 5. The memory
and computational complexities of our proposed statistical techniques
are discussed in Sect. 6. We describe our visualization methods in
Sect. 7. Finally, we present the results of our statistical uncertainty
analysis of synthetic and simulation datasets in Sect. 8 and discuss
conclusions and potential future directions in Sect. 9.

2 BACKGROUND

2.1 Fiber Surfaces
We briefly summarize the fiber surface extraction technique proposed
by Carr et al. [9] for bivariate scalar fields. Broadly, for a multivariate
function f : Rn → Rm, the spatial domain D ⊂ Rn is mapped to an
attribute space A ⊂ Rm. The attribute space A encodes scientific
observations or simulations comprising scalar, vector, and tensor fields.
In this paper, we consider bivariate scalar fields with D ⊂ R3 and
A ⊂ R2. Let A = {A1,A2} be the attribute space with two attributes
or scalar functions A1 and A2. A fiber is then defined as the inverse
image of a point a = (a1,a2) ∈ A [9, 32, 49], and it corresponds to an
intersection of isosurfaces [37] for isovalues A1 = a1 and A2 = a2.

The fibers of interest can be specified with FSCP, which we denote
as a trait, T ⊂ A . Each point on a trait boundary has a corresponding
fiber, and such fibers carve out or represent a fiber surface. Consider
the fiber surface example illustrated for the ethandiol dataset in Fig. 1,
which is similar to the one by Carr et al. [9]. Fig. 1a visualizes a con-
tinuous scatterplot [5] of the grid vertex data with the electron density
(Rho) as attribute A1 on the horizontal axis and the reduced gradient
(s) [28] as attribute A2 on the vertical axis. The continuous scatterplot
in all our examples is computed with the topology toolkit [60]. The four
traits {T1,T2,T3,T4} are selected as colored polygons with arbitrary
shapes in an attribute space. The respective colored fiber surfaces (i.e.,
the set of fibers corresponding to points along the polygon boundaries)
are visualized in Fig. 1b.
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Fig. 1. Fiber surface visualization of the ethanediol dataset. (a) Visu-
alization of a continuous scatterplot of the electron density (Rho) and
reduced gradient (s) at a logarithmic scale. (b) Fiber surfaces for four
traits {T1,T2,T3,T4} denoted by polygons in image (a).

The process of fiber surface extraction is similar to the process of
isosurface extraction, which uses the marching cubes algorithm [37]
but with a few tweaks [9]. Initially, each grid vertex of domain D is
classified as interior or exterior depending on whether the function
values lie inside (interior) or outside (exterior) FSCP. Mathematically, a
vertex v is classified as interior if (A1(v),A2(v)) ∈ T ; otherwise, it is

classified as exterior. Such classification determines the marching cubes
topology case within each grid cell for fiber surface reconstruction, and
inverse linear interpolation may be applied in the attribute space A to
estimate fiber surface positions on grid edges (please refer to Algorithm
1 of [9]). Feature level sets [25] generalize the idea of fiber surfaces and
extract features based on distance d from trait T . For d = 0, the feature
corresponds to the fiber surface itself. For d > 0, features present a
spatial evolution of fiber surfaces in the vicinity of trait T .

2.2 Fiber Uncertainty for Rectangular FSCP
The uncertainty in multivariate data can result in ambiguity as to
whether a vertex should be classified as interior or exterior. The prob-
lem of uncertain vertex classification was recently addressed by Zheng
and Sadlo [69] and Sane et al. [52]. Zheng and Sadlo proposed a sta-
tistical framework to compute the probability of data at point P ∈ D
being in the interior of a rectangular FSCP. The computed probabilities
were then visualized via direct volume rendering and referred to as un-
certain range-fibers. Their analysis assumed the independent/correlated
Gaussian (parametric) noise model and a rectangular shape of trait T .
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Fig. 2. Illustration of the interior probability computation for a single point
of a spatial domain when FSCP is rectangular. X and Y denote the
uncertain data ranges of a point, with blue denoting the joint probability
distribution over the uncertain range. The black rectangle denotes trait
T . The probability of a point being in the interior of a fiber surface can
be computed by integrating the probability density function (blue) over
trait T or the region enclosed by the dotted orange rectangle.

We illustrate the probability computation process proposed by Zheng
and Sadlo in Fig. 2. Let random variable U = (X ,Y ) denote uncer-
tain bivariate data at position P ∈ D , where X ⊂ A1 and Y ⊂ A2 are
the two random variables that indicate uncertain data ranges for two
attributes. Let pdfX (x) and pdfY (y) denote the probability distributions
of random variables X and Y , respectively. Let the rectangular trait T
be defined by ranges (a11,a12) and (a21,a22) for attributes A1 and A2,
respectively. Let Pr(U ∈ T ) denote the probability of uncertain data
at point P being in the interior of a trait, which we refer to as interior
probability. The interior probability (i.e., Pr(U = (X ,Y ) ∈ T )) can
be computed in two steps: (1) the joint probability distribution of X
and Y (i.e., pdfX ,Y (x,y)) is computed, and then (2) the joint probability
distribution pdfX ,Y (x,y) is integrated over trait T . Mathematically, the
probability of point P being in the interior of a fiber surface can be
expressed as the following double integral over a rectangular trait:

Pr(U = (X ,Y ) ∈ T ) =
∫ a12

a11

∫ a22

a21

pdfX ,Y (x,y)dxdy (1)

Zheng and Sadlo [69] proposed a closed-form computation of the
double integral in Equation 1 when pdfX ,Y (x,y) is Gaussian distributed.
Sane et al. [52] proposed confidence-feature level sets for Gaussian
distributed data and rectangular FSCP for bivariate fields. In their
technique, they considered confidence intervals of uncertain ranges at
a position P (i.e., random variables X and Y ) to generate respective
confidence visualizations of fiber surfaces.

3 RELATED WORK

Our proposed methods mainly relate to two important research areas of
scientific visualization: multivariate data visualization and uncertainty
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visualization. Next, we discuss prior work in each of these areas that is
relevant to fiber surface visualization.

3.1 Multivariate Data Visualization
Understanding correlations among variables is one of the main chal-
lenges in multivariate data analysis. Scatterplots [15] and parallel
coordinate plots [23] are fundamental tools that facilitate effective
exploration of attribute spaces of multivariate data. Several research
efforts have focused on improving challenges associated with scatter-
plot and parallel-coordinate plot visualization. Continuous versions of
scatterplots [5] and parallel coordinate plots [21] have been proposed
to avoid sampling artifacts of their traditional discrete versions. Quadri
and Rosen [46] used topological data analysis to identify and explore
clusters in scatterplots. Sauber et al. [54] proposed multifield graphs to
study correlations among variables and their correlation strength.

Data variables can be encoded into glyphs [63] to visualize a corre-
lation in a physical domain but can suffer from occlusion and cluttering
issues. Other effective alternatives for multivariate visualization include
brushing of scatterplots or parallel coordinate plots and linking them
with the spatial domain for exploration of correlations in a physical
space. For example, in Fig. 1, each trait Ti indicates brushing in the
attribute space, and their respective visualization in physical space
corresponds to a fiber surface. Hauser et al. [19] introduced angular
brushes for exploration of parallel coordinate plots and scatterplots.
Kniss et al. [33] proposed multidimensional transfer functions as a
brushing technique for volume rendering of multidimensional data.
Jänicke et al. [24] presented an approach for the projection of multi-
variate data to a 2D space (referred to as attribute clouds) followed by
clustering and brushing for visualization.

We provide a brief overview of several variants and applications of
fiber surfaces for visualizing multivariate data. Klacansky et al. [32]
extended the fiber surface extraction technique to tetrahedral meshes
and proposed a parallel computational framework for interactive ex-
ploration of fiber surfaces. Wu et al. [65] presented a direct volume
rendering framework for visualization of fiber surfaces without explicit
extraction of fiber surfaces. Sakurai et al. [51] extended the idea of
flexible isosurfaces [10] to flexible fiber surfaces for the visualization
of fiber surface components of interest without occlusion. Raith et
al. [47] applied fiber surface extraction to tensor-field invariant spaces
for the visualization of tensor fields. Tierny and Carr [59] derived
fiber surfaces around the Jacobi sets of bivariate fields (a conceptual
equivalent of critical points of univariate fields) for computing fiber sur-
face topological descriptors known as Reeb spaces [11]. Our literature
review covered a small subset of multivariate visualizations relevant
to fiber surfaces. For a comprehensive overview of multivariate data
analysis and visualization, we encourage readers to refer to the survey
papers by Fuchs et al. [16] and Kehrer et al. [31].

3.2 Uncertainty Visualization
To date, most of the research in uncertainty visualization has analyzed
noise propagation in univariate data and the associated visualization
algorithms. Specifically, these algorithms, including level sets [1, 4, 45,
48, 64], direct volume rendering [2, 14, 35, 38, 50], and topology-based
visualizations [3, 12, 17, 66, 68], have been extensively studied in the
context of uncertain univariate data. A few studies have investigated
the uncertainty in visualizations of vector-field [13, 18, 36, 40, 55] and
tensor-field [26, 29, 56] data.

There have been a few developments in uncertainty visualization
of multivariate data. Zheng and Sadlo [69] proposed a framework
for visualizing continuous scatterplots and uncertain fibers when the
uncertainty in bivariate data is modeled with Gaussian distributions.
Hazarika et al. [20] characterized multivariate data distributions with
copula-based models and proposed a sampling strategy for copula-
based models to quantify the uncertainty of features such as level sets
and vortices. Xie et al. [67] encoded data quality into scatterplots and
parallel coordinate plots for multivariate data in the context of infor-
mation visualization. Nagaraj et al. [39] studied the consistency and
inconsistency of gradient fields derived across attributes of multivariate
data. In this paper, we take a step toward uncertainty quantification for

multivariate data by investigating uncertainty in fiber visualizations of
bivariate data for parametric and nonparametric noise distributions and
arbitrary FSCP shapes.

4 FIBER UNCERTAINTY FOR INDEPENDENT PARAMETRIC
NOISE MODELS

In this section, we discuss two approaches, the closed-form integra-
tion and Monte Carlo integration, for fiber uncertainty computations.
Although we present a closed-form fiber uncertainty quantification
framework for integrable kernels (uniform, Epanechnikov, and Gaus-
sian), a more generic Monte Carlo approach can be utilized to estimate
fiber uncertainties for integrable as well as nonintegrable kernels.

4.1 Closed-Form Integration
We address the challenge of uncertainty quantification of fibers, similar
to Zheng and Sadlo [69], for arbitrary shapes of FSCP. Specifically, we
present a closed-form framework for computing interior probabilities
(i.e., Pr(U = (X ,Y ) ∈ T )) per grid vertex when data noise is modeled
with the independent uniform, Epanechnikov, and Gaussian distribu-
tions, which are integrable. The techniques detailed in this section are
then leveraged as building blocks of our derivations for nonparametric
noise models in Sect. 5.1. When the FSCP shape is not rectangular, the
double integral in Equation 1 cannot be utilized because it considers
the ranges of two attributes. For FSCP with an arbitrary shape, we
apply Green’s theorem to integrate the joint probability distribution
pdfX ,Y (x,y). Our approach is depicted in Fig. 3.
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Fig. 3. Illustration of interior probability computation for a single point of a
spatial domain when FSCP has an arbitrary shape. X and Y denote the
uncertain data ranges of a point, with blue denoting the joint probability
distribution over the uncertain range. The polygon with black boundaries
denotes trait T . The intersection of the two regions is indicated by dotted
orange lines, and the coordinates of the intersection are indicated by
pairs (pi,qi). The probability of a point being in the interior of a fiber
surface can be computed with Green’s theorem by summing the line
integrals of the probability density function (blue) along the edges of the
intersection polygon in a counterclockwise direction (see arrow heads).

In Fig. 3, the blue region indicates the joint probability distribution
of random variables X and Y (i.e., pdfX ,Y (x,y)). The polygon indicated
by the orange dotted lines in Fig. 3 results from the intersection of
the uncertain region (blue) with trait T . Let (pi,qi) denote the coordi-
nates of the intersection polygon. We compute the interior probability
(i.e., Pr(U = (X ,Y ) ∈ T )) by integrating the joint probability distribu-
tion pdfX ,Y (x,y) over the intersection polygon (depicted by the orange
dotted lines) using Green’s theorem.

To use Green’s theorem, we compute the new polynomials, L =
(−1/2)

∫
pdfX ,Y (x,y)dy and M = (1/2)

∫
pdfX ,Y (x,y)dx. Assuming

that X and Y are independent, the pdfX ,Y (x,y) = pdfX (x) · pdfY (y).
Thus, the polynomials L and M can be rewritten as follows:

L = (−1/2)
∫

pdfX (x) ·pdfY (y)dy

= (−1/2)pdfX (x)
[∫

pdfY (y)dy
]

M = (1/2)
∫

pdfX (x) ·pdfY (y)dx

= (1/2)pdfY (y)
[∫

pdfX (x)dx
]
. (2)
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Table 1. Integration table

Kernel K(x)
∫

K(x)dx

Uniform 1
2 (|x|≤1)

1
2 x(|x|≤1)

Epanechnikov 3
4 (1− x2)(|x|≤1)

3
4 (x−

x3

3 )(|x|≤1)

Gaussian 1√
2π e

−1
2 x2

(µ=0,σ=1)
1
2 er f ( x√

2
)

The integral over a line segment with end coordinates (p1,q1) and
(p2,q2), denoted by I(p1,q1),(p2,q2), can be computed as follows:

I(p1,q1),(p2,q2) =
∫ p2

p1

Ldx+
∫ q2

q1

Mdy. (3)

Substituting the expressions for L and M presented in Equation 2 into
Equation 3, we have the following:

I(p1,q1),(p2,q2) =
∫ x=p2

x=p1

(−1/2)pdfX (x)
[∫

pdfY (y)dy
]
dx+

∫ y=q2

y=q1

(1/2)pdfY (y)
[∫

pdfX (x)dx
]
dy

=
−1
2

∫ x=p2

x=p1

pdfX (x)dx
∫

pdfY (y)dy+

1
2

∫ y=q2

y=q1

pdfY (y)dy
∫

pdfX (x)dx. (4)

For each vertex (pi,qi) of a polygon, the line integral (Equation 4)
is computed for the line segment that connects coordinates (pi,qi)
and (p(i%N)+1,q(i%N)+1) in a counterclockwise direction (refer to the
arrow heads of the polygon with dotted orange lines in Fig. 3), where
N indicates the number of vertices of the intersection polygon. The
expressions of integration of the uniform, Epanechnikov, and Gaussian
distribution functions (computed with Wolfram alpha [22]) are provided
in Table 1. Finally, the interior probability, Pr(U = (X ,Y ) ∈ T ), can
be computed using Green’s theorem (i.e., by summing the line integrals
[Equation 4] computed for each edge of the intersection polygon).
Please refer to Sect. 1 of the supplementary material for a numerical
integration experiment validating our derivation in Equation 4.

4.2 Monte Carlo Integration
In Sect. 4.1, we derived interior probabilities in closed form for paramet-
ric distributions with the uniform, Epanechnikov, and Gaussian kernels.
Such analytical derivations are possible since a closed-form integration
exists for each of the three kernels (see Table 1). For parametric dis-
tributions that are difficult to integrate or do not have a closed-form
integration, a more generic Monte Carlo integration can be employed
to obtain an approximate solution. In the Monte Carlo approach for
the independent noise assumption, R samples are independently drawn
from distributions pdfX (x) and pdfY (y) at a vertex. If S samples lie in
the interior of trait T , we quantify or estimate the interior probabil-
ity as Pr(U ∈ T ) = S/R. This estimation technique is similar to the
probabilistic marching cubes [43] technique, which estimates the spa-
tial probability for level sets via Monte Carlo sampling of probability
distributions. The accuracy of Monte Carlo solutions increases and
converges with an increase in the number of samples.

5 FIBER UNCERTAINTY FOR NONPARAMETRIC NOISE MODELS

5.1 Independent Noise Assumption
We will first discuss a closed-form integration approach for fiber un-
certainty quantification. For our closed-form approach, we utilize the
analytical derivations of independent parametric noise models proposed
in Sect. 4.1 as building blocks for deriving polynomial integration of
nonparametric noise models. In nonparametric density models, the
probability distribution of each uncertain variable per vertex can be esti-
mated by deriving a histogram or by using KDE [41]. Let {x1,x2, ..,xm}

denote m independently drawn samples from an unknown probability
distribution pdfX (x) of a random variable X . The pdfX (x) can then be
estimated from samples with KDE as follows:

pdfX (x) =
1
m

i=m

∑
i=1

Khx(x− xi). (5)

The hx in Equation 5 denotes a non-negative bandwidth of a kernel K
associated with a sample. Khx(x− xi) represents a scaled kernel, where
Khx(x−xi) =

1
hx

K( x−xi
hx

). The functions K(x) in Table 1 denote kernels
with a unit bandwidth centered at xi = 0. We estimate the bandwidth
of a kernel from samples using Silverman’s rule of thumb [57]. Simi-
larly, for samples {y1,y2, ..,ym} independently drawn from an unknown
probability distribution pdfY (y), the probability distribution pdfY (y) for
bandwidth hy can be estimated as follows:

pdfY (y) =
1
m

j=m

∑
j=1

Khy(y− y j). (6)

Substituting Equation 5 and Equation 6 in Equation 4, the line integral
for the independent nonparametric density estimation can be written as

I(p1,q1),(p2,q2) =

−1
2

∫ x=p2

x=p1

1
m

i=m

∑
i=1

Khx(x− xi)dx
∫ 1

m

j=m

∑
j=1

Khy(y− y j)dy+

1
2

∫ y=q2

y=q1

1
m

j=m

∑
j=1

Khy(y− y j)dy
∫ 1

m

i=m

∑
i=1

Khx(x− xi)dx. (7)

Rearranging the order of summations in Equation 7 gives us

I(p1,q1),(p2,q2) =

1
m2

i=m

∑
i=1

j=m

∑
j=1

[−1
2

∫ x=p2

x=p1

Khx(x− xi)dx
∫

Khy(y− y j)dy+

1
2

∫ y=q2

y=q1

Khy(y− y j)dy
∫

Khx(x− xi)dx
]
. (8)

Equation 8 takes a form similar to the one for the parametric statistics
presented in Equation 4, except that it loops through all pairs of kernels
for random variables X and Y . Kernel K in Equation 8 can be replaced
with the uniform, Epanechnikov, or Gaussian functions presented in
Table 1.

Histograms could be considered as a special case of KDE with
nonoverlapping uniform kernels associated with fixed-bin centers (pre-
computed from noise samples and user-specified number of bins) and
with a bandwidth equivalent to the bin width. Thus, for histograms,
looping through all pairs of bins of histograms of random variables X
and Y is required for computing the line integral in Equation 8. Finally,
the interior probability (i.e., Pr(U = (X ,Y ) ∈ T )) can be computed
using Green’s theorem by summing line integrals for all edges of the
intersection polygon, as illustrated in Fig. 3.

When kernel K of a nonparametric distribution is difficult to inte-
grate or nonintegrable, a Monte Carlo approach similar to the one for
independent parametric distributions (Sect. 4.2) can be employed. In
other words, for R samples independently drawn from nonparametric
distributions pdfX (x) and pdfY (y) with the base kernel K, the interior
probability can be estimated as Pr(U ∈ T ) = S/R if S samples lie in
the interior of trait T .

5.2 Correlated Noise Assumption
When random variables X and Y are correlated, pdfX ,Y (x,y) is not
equal to the product pdfX (x) ·pdfY (y). In the correlated noise case, 2D
histograms or bivariate KDE can be used to capture the correlation
between variables X and Y and the multimodality of their probability
distributions. Bivariate KDE extends the idea of univariate KDE in
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Equation 5 to two variables [62]. An example of 2D histograms and
bivariate KDE is provided in Sect. 2 of the supplementary material.

For a 2D histogram, the interior probability (i.e., Pr(U = (X ,Y )
∈ T )) can be computed in closed form. Specifically, we loop through
each 2D bin of a 2D histogram and quantify the amount of bin overlap
with trait T by taking into account the bin extent. We then scale the
quantified overlap for a 2D bin with the weight of a bin computed
from a 2D histogram. Our approach here is similar to the histogram
approach for the independent nonparametric case (Sect. 5.1), except
that the weight of each bin is not a product pdfX (x) ·pdfY (y), but the
weight computed based on a 2D histogram.

In the case of a bivariate KDE, we propose a numerical integration
approach similar to the one presented in Sect. 1 of the supplementary
material. Specifically, we discretize the uncertain ranges of random
variables X and Y with a uniform grid. We then estimate the density
at each grid vertex using a bivariate KDE. We use the gaussian kde
function from the Python SciPy package [61] for bivariate KDE. We
then perform a point-in-polygon test for user-specified FSCP at each
grid vertex and sum the weights of all vertices that lie inside FSCP or
trait T to compute the interior probability (i.e., Pr(U = (X ,Y ) ∈ T )).

6 MEMORY AND COMPUTATIONAL COMPLEXITY

Here, we discuss the memory and computational complexity of our
proposed parametric and nonparametric statistical models. Let the size
of uncertain input data be D1×D2×D3×V ×M, where Di denotes the
ith dimension of a uniform grid that represents domain D , V indicates
the number of variables (V = 2 for bivariate data), and M is the number
of ensemble members or noise samples that represent uncertainty in
the data. For closed-form derivations with the independent parametric
noise models in Sect. 4.1, we summarize M noise samples with two
parameters per grid vertex. For example, we store the mean and width
per vertex for a uniform distribution and the mean and standard devia-
tion for a Gaussian distribution. Thus, for parametric noise models, the
memory consumed is D1 ×D2 ×D3 × (V = 2)×2, which amounts to
data reduction by a factor of M/2. To compute the interior probability
volume for parametric noise models, one polynomial integration is
performed per trait T ⊂ A per grid vertex if uncertain data at a vertex
intersect trait T . Thus, the worst-case computational complexity is
proportional to the grid size (i.e., D1 ×D2 ×D3).

For closed-form derivations with the independent nonparametric
statistical approach (Sect. 5.1), the probability density per vertex can
be estimated with KDE or histograms. For KDE, if a kernel is asso-
ciated with each of the M noise samples per vertex and per variable,
then the memory requirement is the same as the original data (i.e.,
D1 ×D2 ×D3 × (V = 2)×M). If nonparametric density is estimated
with a histogram with B bins per vertex and per variable, then mem-
ory consumption is reduced to D1 ×D2 ×D3 × (V = 2)×B, which
amounts to data reduction by a factor of M/B. To compute the interior
probability volume, the number of computations per vertex increases
quadratically with the number of kernels or histogram bins owing to
the nested summation in Equation 8 (see the experiment in Fig. 6).

For the more generic Monte Carlo approach described in Sect. 4.2
and Sect. 5.1, the number of computations grows in proportion to the
grid size and number of samples drawn per grid vertex (i.e., D1 ×D2 ×
D3×S). In the case of the correlated nonparametric statistical approach
(Sect. 5.2), the space complexity is again equivalent to that of the
independent nonparametric approach. For 2D histograms, the number
of computations grows quadratically with the number of bins because
we loop through each 2D bin. For bivariate KDE, we perform numerical
integration by discretizing the uncertain data range at a vertex with a
uniform grid of resolution, i× i. Thus, the worst-case time complexity
is proportional to D1 ×D2 ×D3 × i× i per trait T if the uncertain data
range at each grid vertex intersects trait T .

7 VISUALIZATION OF UNCERTAIN FIBERS

We visualize the positional uncertainty of fibers, i.e., the interior proba-
bility volumes derived using our proposed parametric (Sect. 4) and non-
parametric (Sect. 5) statistics, via most probable fiber surface extraction,
direct volume rendering, and probabilistic segmentation. Athawale et

al. proposed a vertex-based classification framework [4] for extracting
the most probable isosurface from uncertain scalar fields. We extend
their idea for extracting the most probable fiber surface from uncertain
bivariate data. Specifically, we derive the interior probability Pr(U
= (X ,Y ) ∈ T ) per vertex, as described in Sect. 4 and Sect. 5. We
then probabilistically predict the vertex sign as + if Pr(U ∈ T )≥ 0.5;
otherwise, we predict the vertex sign to be −. The isosurface extracted
from a grid with this sign classification indicates the most probable
fiber surface topology.

We visualize the positional uncertainty of fibers via direct volume
rendering of interior probability volumes derived using parametric and
nonparametric statistics, similar to the visualizations by Zheng and
Sadlo [69]. We render the positions with relatively high interior prob-
ability using higher opacity and the ones with relatively low interior
probability using lower opacity. We visualize the probabilistic segmen-
tation by thresholding computed interior probabilities. Specifically, for
threshold t, we visualize the positions with Pr(U ∈ T ) >= t. Such
visualizations provide probabilistic insight into fiber positions.

8 RESULTS AND DISCUSSIONS

We validate our techniques and present their effectiveness via experi-
ments on synthetic and simulation datasets.

8.1 Synthetic Data
8.1.1 Independent Noise Models
We present the results of our proposed closed-form independent para-
metric (Sect. 4) and nonparametric (Sect. 5.1) statistical models for
the synthetic data in Fig. 4. For our experiment, we sample the syn-
thetic sphere and tangle [34] functions on a 3D grid with resolution
64×64×64. Fig. 4a visualizes a 2D continuous scatterplot of sphere
and tangle values plotted on the horizontal and vertical axes, respec-
tively, for each grid vertex. The cyan polygon in Fig. 4a denotes FSCP
or trait T , and the corresponding fiber surface is visualized in Fig. 4b,
which we treat as the reference.

We mix the synthetic data sampled on a grid with noise to generate
an ensemble of 40 members. Specifically, we draw samples from a
bimodal probability distribution, in which the mode with 80% cumu-
lative probability density is centered around the ground truth, and the
mode with 20% cumulative probability density is situated relatively far
away from the ground truth. Thus, the noise samples from the mode
with 20% cumulative probability density denote the outlier samples.
We study the uncertainty in fiber positions arising from the ensemble.

Fig. 4c visualizes the fiber surface for the mean-field. The mean-field
fiber surface is color-mapped with respect to its signed distance [6]
from the ground truth fiber surface. Figs. 4d–4f visualize the results
for the independent Gaussian noise assumption. Fig. 4d visualizes
the interior probability volume (i.e., Pr(U ∈ T )) per grid vertex via
direct volume rendering, in which yellow with higher opacity denotes
positions with relatively high interior probabilities, and white with
lower opacity denotes positions with relatively low interior probabilities.
Fig. 4e visualizes the most probable fiber surface computed using
the vertex-based classification (Sect. 7) color-mapped with the signed
distance from the ground truth fiber surface. Fig. 4f visualizes the
probabilistic segmentation (Sect. 7) extracted for isovalues 0.9, 0.75,
and 0.6, and mapped to high, moderate, and low opacity, respectively.
The probabilistic segmentation provides insight into the probability
of fiber positions being in the interior of a fiber surface for different
segments. Figs. 4g–4i visualize results similar to Figs. 4d–4f for the
independent nonparametric KDE with the Gaussian base kernel.

The most probable fiber surface for the nonparametric noise as-
sumption (Fig. 4h) is spatially closer to the ground truth fiber surface
(Fig. 4b) when compared with the mean-field fiber surface (Fig. 4c) and
the most probable fiber surface for the parametric assumption (Fig. 4e),
as is evident by the color-mapped signed distance. The result implies
a greater accuracy of interior probability computations per grid vertex
with the nonparametric approach than with the mean-field or parametric
approach. This result is expected because the nonparametric models
can capture the bimodality of the underlying noise distribution more
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Fig. 4. Fiber visualizations for the synthetic tangle-sphere dataset. A continuous scatterplot for the dataset is visualized in image (a) with trait T
indicated by a cyan polygon. Image (b) visualizes the ground truth fiber surface that corresponds to trait T . The ground truth dataset is mixed
with random samples drawn from a bimodal noise distribution to generate an ensemble. Image (c) visualizes the mean-field fiber surface with a
color-mapped signed distance from the ground truth fiber surface. The volume rendering of the interior probability volume, most probable fiber
surface, and probabilistic segmentation are visualized for parametric (d)–(f) and nonparametric (g)–(i) statistical models. The volume rendering for
nonparametric noise models visually represents the ground truth fiber positions more accurately than the volume rendering for parametric models
(see Fig. 5 for quantitative analysis). Similarly, the most probable fiber surface for nonparametric models is spatially closer to the ground truth
fiber surface than the surfaces for the mean-field and parametric models, as is evident by the color-mapped signed distance. The probabilistic
segmentation provides insight into the positions with relatively high (opaque) or low (translucent) probability of fiber existence.

accurately than the parametric models, which results in nonparametric
models that are less sensitive to outliers than the parametric models.

We further confirm the enhanced accuracy of nonparametric models
compared to mean-field and parametric models using a quantitative
error analysis, as shown in Fig. 5. Specifically, we compute and plot
a Euclidean 2-norm of the difference between the interior probability
volume (i.e., Pr(U ∈T ) per vertex) computed using different statistical
techniques and the interior probability volume for the ground truth data,
which we refer to as interior probability error. In the case of the ground
truth data, the interior probability is 1 when data at a vertex lie inside
trait T ; otherwise, it is 0. Fig. 5a visualizes the results for parametric
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Fig. 5. Quantitative error analysis of interior probability computations for
independent parametric and nonparametric noise models with respect
to the ground truth interior probabilities. The solid lines plot the error as
a function of the number of Monte Carlo samples. The magenta dotted
line denotes the error for the mean-field, and the dashed lines denote
the error for our proposed analytical solutions.

noise models with uniform (red), Epanechnikov (green), and Gaussian
(blue) assumptions. Fig. 5b visualizes the results for nonparametric
KDE with uniform (red), Epanechnikov (green), and Gaussian (blue)
base kernels. The dotted magenta line in Fig. 5a represents the error
for the mean-field. In Fig. 5, we observe that the error computed for
the nonparametric approach (Fig. 5b) is consistently lower than the
error computed for the parametric density assumption and mean-field
(Fig. 5a). The Gaussian kernel for the parametric and nonparametric
statistics has the highest computational accuracy when compared with
the uniform and Epanechnikov kernels.

We compare the results of the Monte Carlo sampling technique
(Sect. 4.2 and Sect. 5.1) with our closed-form solutions in Fig. 5. In
Fig. 5, the dashed lines denote the fixed error corresponding to our
proposed closed-form solutions, and the solid curves plot the error as a
function of the number of Monte Carlo samples. The error computed for
the Monte Carlo solutions (solid curves) converges to the one computed
for our proposed analytical solutions (dashed lines) as we increase
the number of Monte Carlo samples. Such convergence confirms the
correctness of our derivations (Equations 4 and 8) and implementations.

Fig. 6 visualizes the accuracy and time curves as a result of his-
togram rebinning for the independent nonparametric noise assumption.
At each grid vertex of the domain, we perform nonparametric density
estimation by computing a histogram of ensemble members followed by
the computation of interior probability. We then compute and plot the
interior probability error (i.e., the Euclidean 2-norm of the difference
between the interior probability volumes for the histogram noise model
and the ground truth data). The number of bins determines the mem-
ory and computational requirements of the proposed nonparametric
approach (Sect. 6) and impacts the accuracy. As observed in Fig. 6a, the
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Fig. 6. The (a) accuracy vs. (b) computational cost curves for interior
probability computation using the nonparametric histogram model. The
computational cost grows quadratically, but the accuracy improves as the
number of histogram bins increases. The parallel implementation with
multiple openMP threads (red and magenta curves) and GPU (green
curve) provides computational speed-up.

error reduces as the number of histogram bins increases. Note the sharp
decline in errors for a relatively small number of bins. On the other
hand, the computational complexity appears to grow quadratically, as
we had anticipated. Since the interior probability at each grid vertex can
be computed independently, the computations can be parallelized. In
Fig. 6b, the red and magenta curves indicate the speed-up achieved with
the OpenMP C++ parallel implementation with four and 16 threads,
respectively. The GPU CUDA version of our code achieved 23X aver-
age speed-up with the NVIDIA V100 graphics card (the green curve in
Fig. 6b) compared to the Power9 CPU with 16 openMP threads.

8.1.2 Correlated Noise Models
We study the correlated noise models (Sect. 5.2) via a synthetic ex-
periment. The experimental settings are similar to the ones for the
independent noise, except the bimodal noise now comprises two cor-
related Gaussians (e.g., Fig. 2a in the supplementary material) with
the correlation specified by covariance matrices. A correlated Gaussian
with an 80% probability concentration is situated close to the ground
truth, and one with 20% probability concentration is situated relatively
far away from the ground truth (denoting the outliers). The noise sam-
ples drawn from such bimodal distributions are mixed with the ground
truth to generate an ensemble.

We observe that the ability of bivariate KDE or 2D histograms to
reliably capture the correlation between random variables X and Y at
each grid vertex is influenced by the number of ensemble members and
by the grid resolution used for numerical integration of bivariate KDE.
When the number of noise samples is relatively large (e.g., 10,000
samples for bivariate KDE estimation in Fig. 2c of the supplementary
material), the correlation is captured reliably. For fewer samples, the
correlation might not be captured well and might lead to relatively large
errors. As shown in Fig. 7a, the interior probability error (blue curve)
reduces with an increase in the number of ensemble members. The inte-
rior probabilities computed with the independent nonparametric noise
assumption (the green dotted line in Fig. 7a) appear to be more accurate
than the correlated noise assumption for 50 ensemble members.

The error for nonparametric models with the correlated or indepen-
dent noise assumptions (Fig. 7a) is again smaller than the errors for the
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Fig. 7. Interior probability error (blue curves) for the correlated noise
assumption plotted as a function of the (a) number of ensemble members
and (b) grid resolution for numerical integration.

mean-field and parametric noise models owing to the higher robustness
of nonparametric models to outliers. The mean-field for 50 ensemble
members resulted in an interior probability error equal to 16.79. The
parametric Gaussian noise assumption resulted in an interior probability
error equal to 15.41. The error for the mean-field and parametric noise
assumption does not fluctuate much with an increase in the number of
ensemble members. Fig. 7b visualizes the error as a function of a grid
resolution used for numerical integration in the case of bivariate KDE.
The error reduces slowly with an increase in grid resolution.

8.2 Rectangular Vs. Arbitrary Shape of Polygonal Traits
The uncertainty visualization framework proposed by Zheng and
Sadlo [69] is limited to a rectangular trait (Sect. 2.2). Our proposed
framework extends their work to a polygonal trait with arbitrary shape.
Fig. 8 demonstrates the advantage of an arbitrary polygon over rectan-
gle for trait selection in the contexts of the original as well as uncertain
data. Fig. 8a visualizes a continuous scatterplot of the electron density
(Rho) and reduced gradient (s) attributes of the ethanediol molecule.
The main separating axis or diagonal of the continuous scatterplot (with
strong red hue in Fig. 8a) indicates regions with no chemical interac-
tions. Thus, regions away from this axis are important for chemists in
analyzing chemical interactions. The two traits T1 and T2 are selected
in the continuous scatterplot space to enclose a nondiagonal feature. As
observed in Fig. 8a, the arbitrary shape of a polygon allows us to select
a trait (T1 in magenta) that is closer to a nondiagonal feature than the
rectangular shape of a trait (T2 in cyan).

The fiber surfaces corresponding to traits T1 and T2 are visualized
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(a) Continuous scatterplot with nonrectangular trait T1 and rectangular trait T2

(b) Fiber surface in the original data

(c) Fiber probabilities in the Gaussian-distributed hixel representation

Fig. 8. Uncertainty visualization of the ethanediol dataset with a rect-
angular [69] vs. arbitrary (our contribution) shape of the polygonal trait.
The arbitrarily shaped trait T1 yields a more accurate extraction of car-
bon atom positions compared to the rectangular trait T2 for both (b) the
original data and (c) uncertain hixel data.
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Fig. 9. Parametric vs. nonparametric noise models for uncertainty visualization of vortical features of the Red Sea ensemble dataset over the Gulf of
Aden. Fiber positions are visualized for trait T corresponding to anticyclonic (negative Z component of the curl of the velocity field) vortical features,
as indicated by the cyan polygon in the continuous scatterplot shown in image (a). Image (b) visualizes the mean-field fiber surface. Images (c) and
(d) visualize the results for the independent parametric (Gaussian) and independent nonparametric (histogram) noise models, respectively, with
volume rendering of interior probabilities (top) and a probabilistic segmentation for isovalue 0.7 (bottom). Although the three statistical models in
images (b)-(d) exhibit overall consistency in the positions of eddy features, the uncertainty of eddy features seems prominent in the region enclosed
by the magenta box. For instance, the parametric noise model yields multiple high-probability vortex features inside the magenta box, whereas the
nonparametric noise model yields a relatively low probability of vortex features inside the magenta box.

for the original data in Fig. 8b. The fiber surface for the nonrectangular
trait T1 (the left image in Fig. 8b) segments out carbon atoms more
accurately than the fiber surface for the rectangular trait T2 (the right
image in Fig. 8b). Next, we reduce the original data with the Gaussian-
distributed hixel representation [58]. Specifically, we partition the
original data into blocks of size 2× 2× 2 and represent each block
as a Gaussian distribution with mean and standard deviation. The
fiber surfaces corresponding to traits T1 and T2 are visualized for the
hixel representation in Fig. 8c. The carbon atoms are again segmented
well for trait T1 with the high probability (yellow) regions (the left
image of Fig. 8c). The two newly formed blobs in the left image of
Fig. 8c that do not exist in the left image of Fig. 8b are due to the
uncertainty in data arising from the hixel representation, but they have
a very low probability (purple) of existence. As observed in the right
image of Fig. 8c, the rectangular trait T2 results in an overestimation
of features, i.e., a multiple high probability (yellow) regions, that do
not quite correctly represent carbon atoms.

8.3 Analysis of Simulation Datasets with Parametric Vs.
Nonparametric Models of Uncertainty

We demonstrate an application of our proposed parametric and
nonparametric statistical techniques (Sect. 4 and Sect. 5) in the con-
text of oceanology for the analysis of ocean eddies. The knowledge
of eddy positions is important for oceanologists to understand the
transport of energy and biogeochemical particles in oceans. Fig. 9
visualizes the results of our probabilistic analysis of fibers that repre-
sent vortical features of the Red Sea dataset [53]. The dataset was
downloaded from the IEEE SciVis Contest 2020 website (https:
//kaust-vislab.github.io/SciVis2020/) and comprises ensem-
bles of multiple variables pertinent to the oceanology simulated for 60
time steps. In this experiment, we visualize the positional uncertainty
of fibers corresponding to eddy features of the Red Sea by analyzing
20 ensemble members of the velocity field for a time step of 40 over
the Gulf of Aden sampled on a grid of resolution 250×200×50.

Initially, we derive the vorticity field for each ensemble member by
computing the curl of the velocity field. We then compute the vorticity
magnitude and Z (vertical) component of a vorticity vector per grid

vertex for each member. Fig. 9a visualizes a continuous scatterplot
with the mean vorticity magnitude plotted on the vertical axis and the
mean Z component of vorticity vector plotted on the horizontal axis.
Trait T (cyan polygon) is selected to understand the fiber positions
with relatively high vorticity and a negative value of the Z component
of a vorticity vector which denote anticyclonic eddy positions.

Fig. 9b visualizes the mean-field fiber surface corresponding to
trait T . The magenta box in the mean-field visualization indicates a
rare occurrence of vortical features. Fig. 9c visualizes the results for
the independent Gaussian (parametric) noise model (the same assump-
tion as in the paper by Zheng and Sadlo [69]), but for nonrectangular
polygonal shape (our contributions). The volume rendering for the
Gaussian noise model (top image in Fig. 9c) indicates the presence of a
relatively large number of vortical features inside the region enclosed
by the magenta box because there are multiple regions with high inte-
rior probability (mapped to yellow). The probabilistic segmentation
of the interior probability volume with an isosurface for isovalue 0.7
(the bottom image in Fig. 9c) clearly shows the presence of multiple
vortical features inside the region enclosed by the magenta box. Fig. 9d
visualizes results similar to Fig. 9c, but for the independent histrogram
noise model with 10 bins. Both volume rendering and probabilistic
segmentation for the nonparametric noise model indicate a relatively
low probability of vortical features inside the region enclosed by the
magenta box. Such inconsistency regarding the presence of vortical fea-
tures inside the magenta box across the three statistical models indicates
the need for further eddy analysis in the same region.

We parallelized the implementation of the independent nonpara-
metric histogram models with OpenMP C++ and CUDA using an
approach similar to the one for the histogram results in Fig. 6. The
serial computation of interior probabilities required 83.84 seconds,
whereas computations with four and 16 threads resulted in a significant
speed-up with 22.21 and 6.755 seconds, respectively, of computational
time. The GPU CUDA computations required only 0.203 seconds.

Fig. 10 visualizes the results of our proposed statistical techniques
for the asteroid impact dataset [42]. For our experiment, we analyze
time step 189 of a simulation, in which an asteroid 250 m in diameter
bursts at an elevation of 5 km above sea level and impacts the sea at an
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Fig. 10. Fiber visualizations for the deep-water asteroid impact simulation dataset comprising the temperature and volume fraction of water variables.
Image (a) visualizes a continuous scatterplot of the two variables with trait T , as indicated by a dark blue polygon. Image (b) visualizes the ground
truth fiber surface that corresponds to trait T . The data are reduced with the hixel representation, where we partition the data into blocks of size
2×2×2, and each block is summarized with a probability distribution. The fiber positions are visualized for the hixel data using different statistical
techniques in (c)–(f) for the trait T . Both parametric and nonparametric noise models show enhanced feature recovery when compared to the
mean-field, as illustrated by the colored boxes and inset zoom views, with image (b) treated as the reference.

angle of 45◦ (simulation series YB31 on the IEEE SciVis 2018 contest
website https://sciviscontest2018.org/). We treat the dataset
with resolution 460×280×240 as the reference. Fig. 10a visualizes a
continuous scatterplot of the temperature and volume fraction of water
variables for the reference dataset. Fig. 10b visualizes the fiber surface
extracted from the reference volume for trait T , as indicated by the
dark blue polygon in Fig. 10a. Trait T denotes the positions with a
relatively high volume fraction of water and temperature. Next, we
partition the data into 2×2×2 bricks and summarize each brick with
a probability distribution similar to the hixel technique [58].

Fig. 10c visualizes the mean-field, which results in a significant loss
of features caused by data variations in each brick. Figs. 10d-10f visual-
ize the interior probabilities derived assuming the independent Epanech-
nikov (parametric) distribution (Sect. 4), independent histograms with
two bins per variable (Sect. 5.1), and correlated histograms with two
bins per variable (Sect. 5.2), respectively. Note that for the correlated
2D histograms in Fig. 10f, we compute interior probabilities in closed
form, as described in Sect. 5.2. The probabilistic feature recovery with
our proposed statistical frameworks is quite remarkable compared to
the mean-field features, as illustrated by the boxes in Fig. 10, with
Fig. 10b as the reference. The nonparametric statistics in Figs. 10e–10f
show a slightly improved recovery of probabilistic features than the
parametric statistics in Fig. 10d, as anticipated based on our synthetic
data experiments (e.g., Fig. 5). A relatively small number of noise
samples (here, eight per vertex) may not effectively capture noise cor-
relation in the case of correlated nonparamertic statistics (e.g., Fig. 7),
thus yielding quite similar results in Figs. 10e–10f.

9 CONCLUSION AND FUTURE WORK

We extend the prior work by Zheng and Sadlo [69] to study the posi-
tional uncertainty of fibers for uncertain bivariate data. Specifically,

we present a closed-form statistical framework for spatial uncertainty
quantification of fibers when data noise is characterized by independent
parametric and nonparametric probability distributions. We perform
our analysis for the uniform, Epanechnikov, and Gaussian kernels. Ad-
ditionally, we present a numerical integration approach for uncertainty
quantification of fibers when noise in bivariate data is correlated. We
present our statistical frameworks for arbitrary shapes of FSCP as op-
posed to being limited to rectangular FSCP [52, 69]. We show that the
nonparametric statistics improve the accuracy of uncertainty quantifica-
tion and visualization when compared to the parametric and mean-field
statistics via experiments on synthetic and simulation datasets.

In the future, we would like to extend our research to multivariate
data with more than two variables. For bivariate data with correlated
noise assumption, we would like to derive closed-form solutions (in-
stead of numerical integration) similar to the independent noise assump-
tion, if computable. Finally, we are interested in investigating the effect
of uncertainty in multivariate data on the topology of fiber surfaces.
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