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Summary
We have developed UncertainSCI (UncertainSCI, 2020) as an open-source tool designed to make
modern uncertainty quantification (UQ) techniques more accessible in biomedical simulation
applications. UncertainSCI is implemented in Python with a noninvasive interface to meet our
software design goals of 1) numerical accuracy, 2) simple application programming interface
(API), 3) adaptability to many applications and methods, and 4) interfacing with diverse
simulation software. Using a Python implementation in UncertainSCI allowed us to utilize
the popularity and low barrier-to-entry of Python and its common packages and to leverage
the built-in integration and support for Python in common simulation software packages and
languages. Additionally, we used noninvasive UQ techniques and created a similarly noninvasive
interface to external modeling software that can be called in diverse ways, depending on
the complexity and level of Python integration in the external simulation pipeline. We have
developed and included examples applying UncertainSCI to relatively simple 1D simulations
implemented in Python, and to bioelectric field simulations implemented in external software
packages, which demonstrate the use of UncertainSCI and the effectiveness of the architecture
and implementation in achieving our design goals. UnceratainSCI differs from similar software,
notably UQLab, Uncertainpy, and Simnibs, in that it can be efficiently and non-invasively used
with external simulation software, specifically with high resolution 3D simulations often used
in Bioelectric field simulations. Figure 1 illustrates the use of UncertainSCI in computing UQ
with modeling pipelines for bioelectricity simulations.
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Figure 1: User pipeline for UncertainSCI. After the user inputs parameter distributions, UncertainSCI will
compute an efficient sampling scheme. The parameter samples are run through the targeted modeling
pipeline, which can be implemented in external software tools. The computed solutions are collected and
compiled into relevant statistics with UncertainSCI.

Statement of need
Biomedical computer models include many input parameters that do not have precisely defined
values, for example because their value defines physiological processes that are not uniform
across patients. As such, any simulation output necessarily has some uncertainty associated with
the uncertain value of the input parameter. Exploration and quantification of this model output
uncertainty is challenging when more than a single parameter is present; biomedical computer
models often have 5-20 such parameters. Quantification of this uncertainty through UQ
techniques provides statistics and sensitivity information, a critical component when evaluating
the relative impact of parameter variation on the solution accuracy. While the need and
importance of UQ in clinical modeling is generally accepted, automated tools for implementing
UQ techniques remain evasive for many researchers. UncertainSCI has been used to quantify
uncertainty in multiple modeling pipelines, including: cardiac tissue modeling (Bergquist et al.,
2021; Rupp et al., 2020, 2021), electrocardiographic (ECG) simulation (Geneser et al., 2005;
Swenson et al., 2011), ECG imaging (ECGI) (Tate et al., 2019), transcranial current stimulation
(tCS) modeling (Rampersad et al., 2021; Tate et al., 2021), and electrocorticography (ECoG)
stimulation (Rampersad et al., 2021; Tate et al., 2021).

Mathematics
In UncertainSCI, we quantify forward parametric uncertainty in cardiac simulations using
polynomial chaos expansions (PCE) (Xiu, 2010). Although we also have an implementation of
Monte Carlo sampling, and we intend to expand to UncertianSCI to include other UQ methods,
such as Guassian process emulators (Rasmussen, 2004), Markov Chain Monte Carlo (Rahimi
et al., 2016) and Bayesian inference(Xu et al., 2014), we primarily focused on PCE due to its
non-invasive formulation and computational efficiency. PCE approximates the dependence of a
quantity of interest (QoI) that is the model output from the forward simulation on a finite
number of random parameters via a multivariate polynomial function of those parameters.
With 𝑢 the QoI (scalar-valued for simplicity), and 𝑝 ∈ ℝ𝑑 the vector of uncertain parameters,
the PCE approach builds the function 𝑢𝑁, given as,

𝑢(𝑝) ≈ 𝑢𝑁(𝑝) =
𝑁
∑
𝑗=1

𝑐𝑗𝜙𝑗(𝑝), (1)
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where the {𝜙𝑗}𝑁𝑗=1 functions are multivariate polynomials, and the coefficients {𝑐𝑗}𝑁𝑗=1 are
learned through an ensemble of collected data,

{𝑝𝑗}
𝑀
𝑗=1

−−−−−−−−−−→
Forward model 𝑢

{𝑢(𝑝𝑗)}
𝑀
𝑗=1

−−−−−−−−−−→
Emulator training

{𝑐𝑗}
𝑁
𝑗=1

. (2)

Typically one seeks convergence of 𝑢𝑁 to 𝑢 in an 𝐿2-type norm weighted by the probability
density of the parameters 𝑝. The polynomial function 𝑢𝑁 constitutes an emulator for QoI 𝑢,
from which statistics of the QoI, including the mean, variance, and parameter sensitivities,
are efficiently computed from the polynomial. UncertainSCI uses a particular type of pseudo-
random sampling for the parameter design {𝑝𝑗}𝑀𝑗=1, along with a particular weighted least-
squares approach for emulator training, both of which are recently developed advances in
high-dimensional approximation. The entire procedure (2) is non-intrusive, since the forward
model need only be queried at a particular set of samples.

The efficiency of PCE for analysis of UQ in a forward simulation depends on efficient selection
of parameter samples {𝑝𝑗}𝑀𝑗=1. The goal is to use as few samples 𝑀 as possible while still
ensuring that 𝑢𝑁 is an accurate emulator for 𝑢. UncertainSCI uses a two-step approach to
strategically sample the parameter space: 1. A discrete candidate set is generated via random
sampling with respect to a ‘’biased’’ probability measure 𝜇, that is distinct from (but related
to) the probability distribution of the parameter 𝑝. 2. A weighted D-optimal design is sought
by subsampling this discrete candidate set. UncertainSCI uses a greedy approach to produce
an approximation to such a design.

The probability measure 𝜇 that must be randomly sampled is a distribution that exploits a
concentration of measurable phenomena to provably increase the quality of the candidate set
(Cohen & Migliorati, 2017). Sampling from this distribution when the components of the
parameter vector 𝑝 are independent is computationally efficient, having complexity that is linear
in the number of parameters 𝑑 (Narayan, 2018). The relatively large candidate set generated
from this random sampling is pruned via subsampling using a weighted D-optimal design
optimization. UncertainSCI’s algorithm for this approach approximately computes a weighted
D-optimal design via the weighted approximate Fekete points (WAFP) procedure (Burk et al.,
2020; Guo et al., 2018), which greedily maximizes a weighted matrix determinant. The result
is a geometrically unstructured parameter design of 𝑀 samples for use in the pipeline (2).

Once the experimental design is created through the WAFP procedure, an ensemble of forward
simulations {𝑢(𝑝𝑗)}

𝑀
𝑗=1

is collected from the simulation software, and UncertainSCI produces
a PCE emulator 𝑢𝑁 through a (weighted) least-squares procedure. From this emulator,
UncertainSCI can compute statistics, sensitivities, residuals, and cross-validation metrics, and
can adaptively tune the complexity of the PCE emulator based on a user-prescribed tolerance
and/or computational budget.
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