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Abstract

Neural network have achieved remarkable successes in
many scientific fields. However, the interpretability of the
neural network model is still a major bottlenecks to deploy
such technique into our daily life. The challenge can dive
into the non-linear behavior of the neural network, which
rises a critical question that how a model use input feature
to make a decision. The classical approach to address this
challenge is feature attribution, which assigns an impor-
tant score to each input feature and reveal its importance
of current prediction. However, current feature attribution
approaches often indicate the importance of each input fea-
ture without detail of how they are actually processed by a
model internally. These attribution approaches often raise
a concern that whether they highlight correct features for a
model prediction.

For a neural network model, the non-linear behavior
is often caused by non-linear activation units of a model.
However, the computation behavior of a prediction from a
neural network model is locally linear, because one predic-
tion has only one activation pattern. Base on the observa-
tion, we propose an instance-wise linearization approach
to reformulates the forward computation process of a neu-
ral network prediction. This approach reformulates differ-
ent layers of convolution neural networks into linear ma-
trix multiplication. Aggregating all layers’ computation,
a prediction complex convolution neural network opera-
tions can be described as a linear matrix multiplication
F (x) = W · x + b. This equation can not only provides
a feature attribution map that highlights the important of
the input features but also tells how each input feature con-
tributes to a prediction exactly. Furthermore, we discuss the

application of this technique in both supervise classifica-
tion and unsupervised neural network learning parametric
t-SNE dimension reduction.

1. Introduction
Neural network techniques have achieved remarkable

success across many scientific fields [13, 26, 30, 6]. Fur-
thermore, many applications (e.g., autopilot, debt loan, can-
cer detection, criminal justice,...) which utilize this tech-
nology, starts to involve into our daily life and even more
in the expected future. However, the uninterpretable behav-
ior of the neural network prediction causes many concerns.
For example, recently, a few countries’ governments have
published AI act [1, 38] to regulate AI systems and require
automate systems must provide an explanation for why it
makes such a decision. Meanwhile, improving the inter-
pretability of the neural network can also benefit scientific
fields for knowledge discover, such as drug discover [36, 2]

A key challenge of the neural network interpretability is
the non-linear behavior of the neural network model. These
non-linear behaviors are caused by different activation pat-
terns which are triggered by different inputs, and these di-
verse activation patterns lead to an uninterpretable behavior.
A classical approach to explain neural network prediction
is the feature attribution method [16, 22], which assigns
an important score to each input feature and highlight the
most important features. However, different feature attri-
bution approaches may end up with different feature maps,
and how input features are processed by the neural network
model internally is mysterious [41].

For a single neural network prediction, the neural net-
work model has only single activation pattern. The input
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y = ReLU(WX) + b y = W’X + b’

Figure 1. A prediction of neural network model has only one ac-
tivation pattern and the complex prediction operation can be sim-
plified as a linear matrix multiplication.

features which are processed by the neural network layer by
layer during the prediction is linear. It raises a question that
whether the computation process of a neural network can
generate an answer of how each input feature contributes
to the prediction. In this study, we propose an approach to
reformulate the decision process of a neural network pre-
diction and reformulate the forward computation process of
a neural network prediction. Our approach is based on an
observation that a neural network prediction has only one
activation pattern. As the Figure 1 shows, the non-linear
ReLU activation components of a neural network prediction
can be consider as linear components. Therefore, the non-
linear matrix multiplication of a neural network performs
on a single prediction is linear process. The whole com-
putation process can be reformulated and aggregated into a
linear equation F (x) = W · x+ b.

We find that this linear equation can be used to explain
how the input feature is used by the neural network model to
make prediction. In this paper, we discuss how to reformu-
late the forward propagation of a neural network layer by
layer and discuss the potential challenge of this computa-
tion. We propose an efficient approach to calculate W ∗, b∗,
and discuss the role of W ∗ and b∗ during model prediction.
Our approach is much more flexible and can be applied to
supervise learning task or unsupervised learning task.

At the end, we demonstrate a use case of how neural
network models capture input feature in different layer of
network models and how researchers can use our technique
to understand the behavior of neural network models.

2. Relative Work
Because of the black-box nature of the neural network

model, understanding how it makes prediction is an impor-
tant but challenge topic. In this section, we discuss previous
techniques that have been proposed in the literature to ad-
dress this challenge.

2.1. Feature Attribution

Feature attribution is a classical approach, which gener-
ates a heat map to highlight the importance of input fea-
ture for a model prediction. Different methodology has

been designed to calculate the heat map. Gradient base ap-
proaches [31, 34, 25, 33] calculate the model gradient of an
input with respect to the target label and use or accumulate
the gradient values to highlight the importance of each in-
put feature. Perturbation base approaches [20, 7, 8, 39, 22]
ablate or modify a part of the input and observe the out-
put variation to understand the contribution of each input
feature to the prediction. Other approach like SHAP [16],
Deep-Lift [29], and LRP [3] provide a feature attribution
map from different angle. However, because of the lack-
ing of ground truth, whether a feature attribution approach
highlights the real important regions of an input is still un-
der exploration.

Understanding features that captured by a neuron of
neural network can also improve the interpretability of
neural network. Feature visualization [19] optimizes an
input image by maximizing a neuron’s activation value.
The output of the optimization provides information about
what features are captured by the neuron. Previous re-
searchers [4, 40] have also measured the alignment be-
tween individual neuron unit and semantic concepts. Fong
et al. [7] applies input perturbation to measure the reaction
of a neuron to these perturbation and capture the input re-
gions that contribute most to these activation.

2.2. Local Linearity of Neural Network

Researchers have investigated the local linearity of
ReLU network, which mainly focus on the complexity of
the model such as approximating the number of linear re-
gions [23, 28, 9, 17, 21, 27]. Previous researches have also
aligned local linearity with input perturbation to understand
a model’s prediction robustness and generalization. Novak,
et al [18] performs a large scale experiments on different
neural network models to show that input-output Jacobian
norm of samples is correlated with model generalization.
Lee, et al. [15] design algorithm to expand the local linear
region of neural network model.

3. Instance-wise Linearization
In this section, we discuss how to transform different lay-

ers of neural network into linear operation under this condi-
tion. After transforming all layers, we demonstrate how to
aggregate all linear operations into a linear matrix multipli-
cation (1). In this study, we mainly focus our discussion on
convolution neural network, which is the de-faco setting for
many computer vision tasks.

F (x) = W · x+ b (1)

A series operations of a neural network can be repre-
sented as a nest function F (x) = fn · fn−1....f2 · f1 and n
is the number of layers in neural network. The detail opera-
tion of each layer can be generalized as fi = σ(Wi ·xi+bi).



Wi, xi and bi are the weight, feature representation and bias
of i-th layer. σ is the activation function of neural network
model.

3.1. Fully Connected Layer

To explain above statement, we use a fully connected
layer as an example. Our discussion mainly focus on the
activation functions such as ReLU, GELU, SELU and ELU.

y = σ(Wi · xi + bi) (2)

Wi ·xi is the dot product operation. xi is the feature vec-
tor, and σ is the activation function that changes the compu-
tation output. For each activation function, the computation
can be transformed to linear matrix multiplication case by
case, and the equation (2) is rephrased as y = λ(Wi·xi+bi).
Here, the variable λ is a re-scale factor which represents the
impact of activation function on the computation result.

3.2. Convolution Layer

The convolution layer can be considered as a sparse fully
connected layer and transformed into the linear matrix mul-
tiplication. Assume the kernel size is (c, k, k), the stride size
is s, and the input tensor with a size channel × width ×
height can be flatten as a channel * width * height dimen-
sion vector x. Each output element of a convolution opera-
tion can be considered as a dot product of vector multiplica-
tion wi ·x+bi. Here, wi is the same size as the vector X and
most of elements are zero except elements which are oper-
ated by the kernel operation. The overall convolution oper-
ation can be converted into W · x + b. In the equation, W
is the toeplitz matrix which is consisted of wi, and b is con-
sisted of bi. The convolution operation also comes with the
activation function, so overall equation is ReLU(W ·x+b).
Similar to equation (1) and (2), can be rephrase above equa-
tion as W

′ · x+ b
′
.

In Figure 2, we demonstrate how to transform a 2x2 con-
volution kernel with stride 2 on a 4x4 matrix input into a dot
product between a matrix and a vector. The bias term is set
to zero. The original 4x4 matrix can be flatten into a 16
dimension vector a. The first convolution kernel operation
on the matrix x can be converted into a vector w1 and the
overall convolution operation is converted into a matrix W .

3.3. Pooling Layer

The pooling operation in the neural network can be de-
scribe as matrix multiplication W · x. Assume the pooling
kernel size is (c, k, k), the stride size is s, and the input ten-
sor with a size channel × height × width can be flatten
as a channel*height*width dimension vector x. We use the
maximum pooling as an example to discuss transformation
process and the other pooling (e.g., average pooling) oper-
ations should be similar. An element of output tensor is a

1 1
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Figure 2. A convolution operation can be rephrased as a matrix
vector multiplication. Performing a 2x2 convolution operation
with stride size 2 on a 4x4 input matrix can be rephrased as a dot
product between matrix and input vector W · x+ b.

dot product of indicator vector W(i,j,k) (i,j,k is the index of
the output tensor) indicates the elements of input x that are
selected by the maximum pool operation. Therefore, the
pooling operation can be rephrased as W · x.

In Figure 3 demonstrate a case which transforms a 2x2
maximum pooling operation with stride 2 on a 4x4 matrix
into a dot product between a matrix and a vector. The orig-
inal 4x4 matrix can be flatten into a 16 dimension vector
x. The first maximum pooling operation on the matrix X
can be convert into a vector w1 and the overall maximum
pooling operation is converted into a matrix W ,

Max Pooling

Flatten Operation X into a
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2x2 kernel
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0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

stride:2
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Figure 3. A maximum pooling operation can be rephrased as a
matrix vector multiplication. Performing a 2x2 maximum pooling
operation with stride size 2 on a 4x4 input matrix can be rephrased
as W · a



Weight Layer (1)

Weight Layer (2)
relu F(x)

F(x) + x
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identity

Figure 4. A skip connection component in ResNet architecture.

3.4. Skip Connection

Skip connection is a critical component in the
ResNet [10] architecture. In Fig. 4 is an example of the
skip connection and the equation can be representation as
F (x) + x. In the equation, F (x) is often consisted of con-
volution layer, batch normalization, ReLU activation and
Full connected layers. As we discuss in previous section,
these layers can be simplified as a linear matrix multiplica-
tion F (x) = Wskip · x+ bskip. The overall equation can be
rephrase as

(Wskip + I) · x+ bskip

Merging the identify matrix I into Wskip and the equation
can be simplified into W

′

skip · x+ bskip.

3.5. Batch Normalization Layer

Batch normalization [12] is a critical component in neu-
ral network model which makes the training easy and ef-
ficient. The inference process of the batch normalization
layer is an element-wise linear transformation in equation 3.
The equation that used to perform batch normalization on a
single value is described as following:

y =
xi − µ√
σ2 + ϵ

∗ γ + β =
γ√

σ2 + ϵ
∗ xi +

−µγ√
σ2 + ϵ

+ β

(3)

In the equation, µ, σ2, γ, and β are calculated during
the training process. These variables are available during
the network inference. This equation can be rephrased as
y = wnorm

i ∗ xi + bnormi and wnorm
i = γ√

σ2+ϵ
, bnormi =

−µγ√
σ2+ϵ

+ β. The batch layer operation can be represented
as:

Wnorm ⊙ x+ b

3.6. Layer Aggregation

We have mentioned that a neural network can be defined
as a nest function F (x) = fn·fn−1....f2·f1 and each layer’s
function can be generalized as following:

fi = σ(Wi · xi + bi)

With our previous description, for a single prediction,
each layer can be replaced as a linear matrix multiplication

fi = W
′

i · xi + b
′

i

and the overall equation can be rephrased as

F (x) = W
′

n ·W
′

n−1...W
′

2 ·W
′

1 ·x+
n−1∑
i=1

(W
′

n...W
′

i+1 ·bi)+bn

After linearization of a neural network prediction, the
prediction is represented as F (x) = W · x + b. In
the equation, W = W

′

n · W ′

n−1 · ...W ′

2 · W ′

1 and b =∑n−1
i=1 (W

′

n...W
′

i+1 · bi) + bn. For piece-wise linear acti-
vation function, the inference behavior of neural network
model is locally linear. In a local region, the behavior of
neural network on input x is equal to F (x) = W · x+ b.

Lemma 1 For a network with piece-wise linear activation
function, for x ∈ Rm, there is a maximum |δ| ∈ Rm such
that ∀θ, |θ| < |δ| and x+ θ has the same activation pattern
as x. The matrix W can be used to explain the prediction of
x+ θ and x.

Under this condition, the feature attribution W is equal
to input-output Jacobian matrix JF (x), and W not only tells
the sensitivity of input with respect to the model prediction
but also represents how neural network use input to make
prediction exactly. ReLU networks split the input space into
linear regions [17]. In each linear region, these samples
share the same explainable matrix W .

JF (x) = [
∂F (x)1

∂x
,
∂F (x)2

∂x
, ...,

∂F (x)n
∂x

]T = W

For piece-wise linear activation function, a prediction of
neural network has an equivalent input and output linear
mapping y = W · x+ b. However, activation function such
as GELU, SELU and ELU can not use Jacobian matrix to
calculate W . Therefore, the equation for y = W · x + b
need to be calculated layer by layer.

3.7. Ensemble Model

A prediction of ensemble neural network model can be
represented as

F (x) =

n∑
i=1

aiF1(X)

. Fi is the individual neural network and the ai is the share
assigned to the prediction of the ith neural network. As we
discuss in section 3.8, the equation can be rephrased as

F (x) =

n∑
i=1

ai(W
∗
i · x+ b∗i ) = (

n∑
i=1

aiW
∗
i ) · x+

n∑
i=1

aib
∗
i



Network W · x bLFR b Accuracy
Lenet300 0.9794 0.8161 0.1828 0.982

Lenet5 0.9927 0.8408 0.1596 0.9924
Table 1. Compare the prediction accuracy and label flip rate of
W · x and b with original accuracy of MNIST test dataset over
LeNet5 and LeNet300 model.

Network W · x bLFR b Accuracy
LeNet5 0.3672 0.6222 0.3307 0.754
AlexNet 0.305 0.3416 0.6223 0.8468
VGG16 0.3782 0.1116 0.8567 0.9123
VGG19 0.4257 0.1129 0.8544 0.9113

ResNet18 0.1817 0.0976 0.8756 0.9219
ResNet50 0.2496 0.1093 0.8687 0.9217

ResNet152 0.2398 0.0965 0.8758 0.927
DenseNet121 0.1957 0.0893 0.8876 0.9328

Table 2. Compare the prediction accuracy and label flip rate of
W · x and b with original accuracy of cifar10 test dataset over
different CNN architectures.

Network W · x bLFR b Accuracy
AlexNet 0.0487 0.6504 0.3061 0.6108
VGG16 0.0471 0.3559 0.5918 0.7254
VGG19 0.0397 0.3297 0.6073 0.7176

ResNet18 0.1344 0.355 0.5931 0.7636
ResNet50 0.1581 0.3164 0.633 0.7911

ResNet101 0.1388 0.2854 0.6624 0.7961
ResNet152 0.1545 0.2898 0.6528 0.7954

DenseNet121 0.1553 0.3381 0.6193 0.7906
Table 3. Compare the prediction accuracy and label flip rate of
W · x and b with original accuracy of cifar100 test dataset over
different CNN architectures.

Network W · x bLFR b Accuracy
ResNet18 0.032 0.4227 0.5029 0.7028
ResNet50 0.056 0.3459 0.5889 0.7673

ResNet152 0.0632 0.3031 0.6354 0.7866
Table 4. Compare the prediction accuracy and label flip rate of
W · x and b with original accuracy of 10000 samples of ImageNet
validation dataset over different CNN architectures.

4. Experiment
The neural network prediction can be represented as a

linear matrix multiplication F (x) = W · x + b. How do
W · x and b impact the decision of the neural network pre-
diction is important to interpreted the decision of the net-
work model. To evaluate the impact of these two terms in
a network prediction, we perform experiments on multiple
neural network architectures that trained with MNIST, ci-
far10, cifar100, and Imagenet datasets.

4.1. Decompose the Model Prediction

Previous section has mentioned that a prediction is de-
scribed as F (X) = W · x + b. To evaluate the impact of

these two terms, we compare the original prediction accu-
racy of neural network F (x) with the prediction of W · x
and b. During the experiment, we use label flip rate (LFR)
to track the prediction difference between the select term
and the original prediction. The label flip rate is defined as
the number of prediction change during the decision pro-
cess. A smaller LFR value indicates a similar prediction
result with the original model. In the experiment, we use
stochastic gradient decent(SGD) to train the neural network
model. For the MNIST dataset, each model is trained with
50 epochs. The neural network models used for cifar10 and
cifar100 are trained with 200 epochs. We use the pre-train
models from Pytorch to evaluate the ImageNet dataset.

LeNet300 and LeNet5 are the classical models that used
to train MNIST dataset. Both models are trained without
batch normalization layer. In Table 1, we compare two
models’ prediction results with b and W · x. The W · x
is model accuracy without bias term and W · xLFR is the
label flip rate compared with accuracy which is the origi-
nal accuracy of the model. From the evaluation result, we
can tell that after removing the bias term, the label flip rates
W · xLFR are 0.0082 and 0.0012. The W · x accuracy and
original accuracy is similar. In the other hand, the impact of
b is an insignificant part of the prediction and the bLFR is
large.

However, the observation from MNIST dataset does not
generalize to large models and complex datasets. In cifar10,
and cifar100 dataset, we use popular convolution architec-
tures (VGG [32], ResNet [10], and DeseNet [11]) to com-
pare the performance of W · x and b. From the results of
Table 2 and Table 4, we can tell that bias term b dominates
the prediction behavior of a neural network model. Except
the network such as LeNet5 and AlexNet, which have rel-
ative large impact in both b and W · x, the rest of model
shows that b has the dominant impact during the model pre-
diction. Using the information from b can determine the
majority prediction of the model. In the other hand, the im-
pact of W · x along is not enough to determine the model
prediction.

4.2. Explainability of W · x

In previous section, we has discussed that decompose
the prediction of neural network into 2 components. In the
datasets such as MNIST, W · x has similar prediction ac-
curacy as the original model to explain the model predic-
tion. However, for dataset such as cifar10, cifar100 and Im-
ageNet dataset, it does not show promising accuracy to ex-
plain the majority prediction of the neural network model.
During the model prediction, b =

∑n−1
i=1 (W

′

n...W
′

i+1 ·
bi) + bn plays a significant role to determine the predic-
tion. It worth to notice that the convolution layer of con-
volution neural network model does not contain the bias
term. During the model decomposition, the bias term b



Figure 5. The neural network architecture that used to perform
auto encoder training and parametric t-sne dimension reduction.

comes from the batch normalization layers. For each value
of bi, its value is constant and determined once the model
is trained. In the equation, the variance that updated is W ′

i

which is triggered by the activation of the different input.
W = W

′

n · W ′

n−1...W
′

2 · W
′

1 contains the unique footprint
of a model’s reaction to a prediction.

An alternative approach to improve the sufficient of W is
to train a neural network without batch normalization layer.
Since the prediction of these networks can be represented as
F (x) = W ·x+bn and bn is the bias term in the last layer of
neural network. We can use the W to explain the network
behavior directly. A potential approach to improve the per-
formance of such models include techniques such as weight
normalization [24], initialization and other batch normaliza-
tion free techniques. Previous researches have demonstrate
that network training without batch normalization can still
achieve state-of-art performance [5]

5. Applications

In this section, we discuss the application of our pro-
posed approach in supervise task, unsupervised task, and
ensemble neural network model prediction.

5.1. Supervised Learning - Image Prediction

For MNIST dataset, we use our method to understand
the decision of LeNet5, which the encoder layer does not
include bias term. The accuracy of the model is 0.9904. For
MNIST dataset, W for the final prediction is a (10, 784)
matrix and for each digit outcome, W will give an explana-
tion. Each row of W tells how a neural network use input
feature to tell the prediction score for that digit. Our feature
attribution has natural semantic meaning. The value, which
assigned to the input pixel, multiplied with input pixel value
is the value of current pixel contribute to the prediction. A
positive value has a positive contribution to the prediction
and a negative value has a negative contribution.

Figure 6 demonstrates how LeNet5 processes input dig-
its image 1 and 7 for different label decision. In the heat
map visualization, the red color indicates the positive con-
tribution and the blue color tells the negative contribution.

From the result, we can tell that both digits are recognized
by the neural network model in the right shape. It property
of our approach is that compute the our feature attribution,
it needs to compute the contribution of input to each neu-
ron in the neural network first. The final feature attribution
is a summary of all previous’ neuron’s contribution. This
property brings the convenient to not only understand how
neural network use input feature for decision but also pro-
vides how each network neuron use input feature to produce
activation output. In Figure 7, we display our feature attri-
bution of digits 7 and how top 5 most activate neurons in
different layers of LeNet5 use input features.

5.2. Unsupervised Learning - Parametric Dimen-
sion Reduction

Dimension reduction such as t-SNE is a popular ap-
proach to understand the structure of neural network model.
However, the classical t-SNE algorithm is non-parametric.
Therefore, how the input is mapped into two dimensional
space is unknown. The uninterpretable process of t-SNE
dimension reduction cause confusion and misleading dur-
ing the analysis. Comparing with t-SNE algorithm, para-
metric t-SNE perform similar operations by training a neu-
ral network model to perform the dimension reduction. In
this work, we mainly discuss the neural network architec-
ture in Figure 5 to perform the dimension reduction. Many
works [37, 35, 14] have developed to implement parametric
t-SNE.

The loss function (equation (1)) that used to train para-
metric t-SNE try to minimize the probability distribution
difference between the original high dimension data and the
projected low dimension data.

L(θ) =
∑
i̸=j

pij log
pij
qij

(4)

pj|i =
exp(−||xi − xj ||2/2σ2

i )∑
k ̸=i exp(−||xi − xk||2/2σ2

i )
(5)

pij =
pj|i + pi|j

2N
(6)

qij =
exp(−||fθ(xi)− fθ(xj)||2/2σ2

i )∑
k ̸=i exp(−||fθ(xi)− fθ(xk)||2/2σ2

i )
(7)

Because of the non-linear properties of the neural net-
work model. Understanding the relationship between in-
put and output of these networks trained with different loss
function is difficult. In the literature, limited work focus on
understanding how input contribute to the final two dimen-
sion output. Gradient is the common approach to perform
feature attribution of the neural network model. However,
it is difficult to generate gradient for a single sample with



input 0 1 2 3 4 5 6 7 8 9

Figure 6. How neural network use input features to make a prediction in MNIST dataset with LeNet5.

Conv1

Conv2

fc1

fc2

Input Image

Pre. 99.99% 10.40 % 9.45 % 8.92 % 7.15 % 6.26 % -4.04 % -2.70 % -2.65 % -2.50 % -2.29 %

18.07 % 11.63% 11.09% 8.24% 8.18% -10.39% -5.97% -3.82% -3.81% -3.77%

27.62 % 18.74 % 14.00 % 8.24 % 5.66% -3.52% -3.30% -3.18% -2.25% -1.95%

18.84% 11.59% 11.02% 10.22% 10.08% -1.94% -1.37% -1.19% -1.04% -0.91%

Figure 7. Displaying the features that captured by top 5 positive neurons and 5 negative neurons with their contribution to a model’s final
prediction in different layers of the LeNet5 model.

the loss function that used to train neural network for para-
metric t-SNE. Furthermore, parametric t-SNE [37] may use
neural network with an encoder with unsupervised approach
to pretrain a network model, then use the neural network
to perform the dimension reduction. The overall process
involve two neural network model which make the inter-
pretability of the parametric t-SNE difficult. Our approach
is flexible enough to fill this gap by concatenate two net-
work’s matrix multiplication to understand the process of
the parametric dimension reduction and the final projection
can still be phased as y = Wx+ b for each sample’s behav-
ior.

What features are used during dimension reduction pro-
cess is important to interpret the dimension reduction re-
sult. In Fig. 8, we apply parametric t-SNE dimension reduc-
tion approach on iris dataset and use our proposed method
to generate the feature attribution for dimension reduction
result. t-SNE dimension reduction often projects samples
that are similar to each other to the nearby location. From
visualization, samples include (d), (e), (f) are nearby and
the feature attribution result over these samples are similar.
However, samples (a), (b), (c) are nearby with very different
feature attribution result.

(a), (b), (c)

(d), (e), (f)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. iris flower dataset is projected into two dimensional
space with parametric t-SNE. With our feature attribution, it high-
lights the critical features that are used for dimension reduction.

6. Conclusion
In this work, we propose an approach to reformulating

the forward propagation computation to understand a neu-
ral network prediction. Our study find that a prediction of
neural network can be rephrased as a series of matrix multi-
plication. For each input instance, its output have a straight
forward mapping which can be phrased as y = W ·x+b. At
the end, we demonstrate the flexibility of our approach on



how this approach can help use to understand the supervise
classification task, and unsupervised dimension reduction
task.
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