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Figure 1: Left: We render spherical harmonics glyphs using an efficient and accurate method based on polynomial root finding. A second
glyph visualizes uncertainty and we trace secondary rays to render soft shadows. Right: Our method renders large HARDI datasets in real
time on a single GPU.

Abstract
Spherical harmonics glyphs are an established way to visualize high angular resolution diffusion imaging data. Starting from
a unit sphere, each point on the surface is scaled according to the value of a linear combination of spherical harmonics basis
functions. The resulting glyph visualizes an orientation distribution function. We present an efficient method to render these
glyphs using ray tracing. Our method constructs a polynomial whose roots correspond to ray-glyph intersections. This polyno-
mial has degree 2k+ 2 for spherical harmonics bands 0,2, . . . ,k. We then find all intersections in an efficient and numerically
stable fashion through polynomial root finding. Our formulation also gives rise to a simple formula for normal vectors of
the glyph. Additionally, we compute a nearly exact axis-aligned bounding box to make ray tracing of these glyphs even more
efficient. Since our method finds all intersections for arbitrary rays, it lets us perform sophisticated shading and uncertainty
visualization. Compared to prior work, it is faster, more flexible and more accurate.

CCS Concepts
• Computing methodologies → Ray tracing; • Human-centered computing → Scientific visualization; • Mathematics of
computing → Solvers;

1. Introduction

Diffusion weighted imaging (DWI) is a magnetic resonance imag-
ing technique for non-invasively measuring the orientation and
magnitude of fiber populations that correspond to local diffusion.
DWI data are inherently multivariate, because an ensemble of

orientation vectors and magnitudes are measured for each voxel.
This high dimensionality makes their visualization challenging and
many approaches have been put forward. Diffusion tensor imaging
(DTI) works with a symmetric 3× 3 matrix per voxel, which can
be visualized as ellipsoid [WMK∗99, BML94]. However, this rep-
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resentation is misleading when the distribution of fiber orientations
within a voxel is heterogeneous.

High angular resolution diffusion imaging (HARDI) [TRW∗02]
acquires more data and represents them more faithfully. Many of
its variants store a fiber orientation distribution function (ODF)
per voxel, encoded using a truncated spherical harmonics (SH) ba-
sis [TCGC04, TCC07, ÖSV∗06]. These data may be visualized us-
ing tractography [BPP∗00] but for validation a more direct visu-
alization of the fiber ODFs using one SH glyph per voxel is use-
ful [vPP∗11]. An SH glyph is obtained by taking a sphere and scal-
ing each point in proportion to the value of the ODF. Thus, angular
maxima of the fiber ODF, which correspond to major fiber direc-
tions, are visualized as lobes of the glyph.

One option to visualize SH glyphs is to deform a densely
tesselated sphere based on the ODF, e.g. through a compute
shader [PDG21]. However, smooth glyphs call for more than thou-
sand triangles [PPv∗09, PDG21] and rendering that much geom-
etry for many glyphs takes a lot of computation and bandwidth.
Ray casting is compelling because its cost scales with the number
of pixels, not with the number of glyphs. Prior work accomplishes
that using different forms of ray marching [vPP∗11, PPv∗09]. The
accuracy of these methods depends on the number of ray marching
steps such that computing accurate results is quite costly. Addi-
tionally, the faster one of these methods [vPP∗11] assumes that all
rays originate at the camera and does not support secondary rays
natively, e.g. for shadows.

We present an efficient method to compute all intersections of an
arbitrary ray and an arbitrary SH glyph. To this end, we interpret the
SH basis functions as homogeneous polynomials (Sec. 3.1). Then it
turns out that all sought-after intersections correspond to roots of a
polynomial of degree 2k+2 for SH bands 0,2, . . . ,k (Sec. 3.2). We
compute coefficients of this polynomial in a numerically stable way
(Secs. 3.3 and 3.4) and apply an off-the-shelf root-finding method
[Yuk22] to solve it (Sec. 3.5).

Our homogeneous formulation of the SH basis also gives rise to
a simpler formula for the surface normals of the glyph (Sec. 4.1).
That in turn enables us to compute nearly exact axis-aligned bound-
ing boxes (AABBs) for SH glyphs, which we use for hardware-
accelerated ray tracing (Sec. 4.2). Unlike prior work [vPP∗11], our
method computes all intersections for arbitrary rays without pre-
computation. That enables us to perform efficient volume render-
ing for uncertainty visualization and to render our glyphs with soft
shadows (Sec. 4.3). Our evaluation demonstrates that this method
is more accurate, more flexible and faster than prior work [vPP∗11]
(Sec. 5). At the same time, the intersection test is considerably sim-
pler (Alg. 1). We provide a GLSL implementation of the intersec-
tion test and C code for our AABB computation as supplemental.

2. Related Work

The high dimensionality of DWI data makes their visualization
challenging and many approaches have been proposed to address
the problem. A classic method for representing intravoxel fiber
populations is DTI [BML94], which computes a 3× 3 symmet-
ric positive-definite tensor for each voxel. The eigenvectors of

the tensor encode the main diffusion directions, while the eigen-
values encode the magnitude of diffusion [LBMP∗01]. They can
be visualized using ellipsoids [WMK∗99] or superquadric tensor
glyphs [Kin04]. The latter improve the perception of orientation
and fractional anisotropy. A major limitation of DTI is that it can-
not resolve multiple fiber directions within a voxel, although that is
a common case, e.g. in the gray matter of the brain.

HARDI techniques overcome this disadvantage of DTI. They
measure far more directional diffusion gradients, sixty to a few
hundred, and apply higher-order methods to measure the local wa-
ter diffusivity more accurately [GJZJ12, JGJJ11]. These data are
noisy and have an indirect relationship to fiber orientations. They
require further processing before they can be interpreted or vi-
sualized. Tuch et al. [TRW∗02] assume that voxels contain two
fiber directions and fit a mixture of two Gaussians. Q-ball imag-
ing [Tuc04] reconstructs the diffusion ODF using the Funk-Radon
transform. The fiber ODF is related to the diffusion ODF through
a spherical convolution with the white-matter response function.
Once this response has been calibrated based on a region with a
single fiber direction, spherical deconvolution computes the fiber
ODF [TCGC04]. The diffusion orientation transform [ÖSV∗06] of-
fers another way to estimate the fiber ODF.

A truncated SH basis serves as compact representation of the
ODFs. Due to symmetry in the data, odd bands of the basis can
be omitted. Even bands of the SH basis span the same space
as homogeneous polynomials, which are commonly represented
by 3× . . .× 3 symmetric tensors [ÖM03, DAFD06]. Tikhonov
regularization with the Laplace-Beltrami operator makes the co-
efficients more robust to noise [DAFD06]. Applying a different
Tikhonov regularization iteratively to force negative distribution
values towards zero allows for robust reconstructions of fiber ODFs
up to band k = 12 [TCC07]. That corresponds to 91 coefficients per
voxel, which need to be visualized in a meaningful way.

One option is to use tractography for fiber tracking [BPP∗00].
The resulting visualizations show connections in an intuitive fash-
ion. However, these techniques are prone to ambiguities in the data,
susceptible to initialization issues, sensitive to the principal flow
direction and computationally expensive. Thus, it is useful to vi-
sualize the fiber ODF for a subset of all voxels more directly, at
least for validation of tractography results [vPP∗11]. The most es-
tablished approach is to start with a sphere and to scale each point
on its surface in proportion to the value of the ODF for this di-
rection vector [HMH∗06]. The result is an SH glyph. Schultz and
Kindlmann [SK10] explored the application of the higher-order
maximum enhancing (HOME) glyphs [SWS09] as alternative to
SH glyphs. HOME glyphs convey the ODF’s shape and crossings
well but their visualization relies on triangulation, which can lead
to difficult tradeoffs between accuracy and efficiency of the render-
ing (see below).

Rendering of SH glyphs has received some attention since they
are such an important tool for visualizing HARDI data. The most
obvious approach to render them is to deform a densely tesse-
lated sphere, e.g. by using a compute shader to generate vertex
buffers [PDG21]. However, insufficient tesselation leads to an in-
correct rendition of angular maxima. Smooth and reliable results
call for more than a thousand triangles [PPv∗09, PDG21], so this
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approach does not scale well when rendering many glyphs (Fig. 1).
Peeters et al. [PPv∗09] instead embrace a ray casting approach.
They construct a conservative bounding sphere around the SH
glyph and determine the segment of the ray within this sphere. Then
they perform ray marching along this segment. Once a point inside
the glyph has been found, the intersection position is refined using
bisection. They implement this method on the GPU using rasteri-
zation to trigger the necessary fragment shader invocations. Their
method has also been combined with DTI visualization based on a
semi-automatic classification of glyphs [PPv∗11].

The inner loop for ray marching in the method of Peeters
et al. [PPv∗09] is costly, because it has to evaluate the ODF from
scratch for every single sample. van Almsick et al. [vPP∗11] make
this approach more efficient by performing some precomputation
outside of this loop. Per camera position, they use Wigner matri-
ces to transform the SH coefficients to a coordinate frame where
the camera is on the z-axis. In this coordinate frame, they are able
to construct a polynomial of degree k representing the ODF along
the ray. Then ray marching samples only evaluate this polynomial
and relate its value to the current distance to the glyph center. In-
stead of bisection, van Almsick et al. rely on regula falsi and they
use a bounding cylinder instead of a bounding sphere. This ap-
proach yields a considerable speedup but introduces a preprocess-
ing step that depends on the camera position and has only been
described in detail for truncation at band k = 4. The quality of both
of these methods depends chiefly on the number of ray marching
samples. Low values lead to low accuracy of intersection points and
missed intersections but high values increase the rendering time.
Our method is far more accurate, can process any ray, including
secondary rays for shadows, without additional preprocessing, sup-
ports truncation up to band k = 10 and uses a tight AABB.

Jiao et al. [JPGJ12] propose a volume-based technique to visual-
ize uncertainty in HARDI data. They create a small volume for each
glyph that encodes the shape inclusion probability (SIP) function
for the possible glyph surface locations. Although this approach
conveys the uncertainty in fiber ODFs well, computing and storing
the SIP volume for each glyph is a compute and memory inten-
sive process. Our proposed ray-glyph intersection method robustly
finds all intersections with the glyph along the ray, which enables
us to use a more efficient form of volume rendering to convey un-
certainty.

3. Ray-Glyph Intersection Test

The core of our method is our novel intersection test, which finds all
intersections between an arbitrary ray and an SH glyph. To derive
it, we first have to interpret the SH basis as homogeneous poly-
nomials (Sec. 3.1). With this interpretation, we derive polynomials
whose roots correspond to ray-glyph intersections (Sec. 3.2). To
ensure good numerical stability, we do not solve for the ray param-
eter of intersections directly but apply a coordinate transform first
(Sec. 3.3). Then we figure out how to compute coefficients of the
resulting polynomial (Sec. 3.4) and compute roots using an itera-
tive solver (Sec. 3.5). In Sec. 4, we use this intersection test for ray
tracing.

3.1. Homogenizing Spherical Harmonics

The SH basis functions are commonly written in terms of spherical
coordinates θ,ϕ. This formulation relies heavily on trigonometric
functions, especially sine and cosine. We take a different approach:
A point on the unit sphere S2 is given by its Cartesian coordinates
(x,y,z)T ∈ S2. Then the SH basis functions turn out to be trivariate
polynomials in the variables x,y,z [Slo13].

As an example, we consider SH bands 0, 2 and 4. Looking at
polynomial expressions for these basis functions [Slo13], we find
that they are linear combinations of the following monomials:

Degree 0: 1.

Degree 2: x2, xy, xz, y2, yz, z2.

Degree 4: x4, x3y, x3z, x2y2, x2yz, x2z2,xy3, xy2z,xyz2, xz3,

y4, y3z, y2z2, yz3, z4.

We have grouped these monomials according to their degree, i.e.
the sum of all exponents. A polynomial is called homogeneous
of degree k if all of its monomials are of degree k. For our
next steps, we would like to have a homogeneous basis. Prior
work accomplishes that by transitioning to a basis of monomi-
als [ÖM03, DAFD06]. We prefer to use a modified SH basis since
monomial basis functions such as x4 are prone to numerical inac-
curacies. As the name indicates, the SH basis functions are spher-
ical. Their values away from the unit sphere are usually irrelevant.
Thus, we homogenize the SH basis functions in a way that leaves
their values on the unit sphere unchanged but changes the values
elsewhere.

Consider the polynomial

x2 + y2 + z2.

It is homogeneous of degree 2 and its value on the unit sphere
is exactly one. If we multiply any monomial by this polynomial,
its degree increases by 2 but its values on the unit sphere do not
change. Thus, we can multiply each monomial of degree 2 within a
polynomial by x2 + y2 + z2 without changing its values on the unit
sphere. Similarly, we can multiply each monomial of degree 0 by
(x2 +y2 + z2)2 without changing its values on the unit sphere. That
gives us polynomials, which are homogeneous of degree 4, such as

xy(x2 + y2 + z2) = x3y+ xy3 + xyz2.

Through this procedure, we obtain a version of the SH basis func-
tions in bands 0, 2 and 4, which is homogeneous of degree 4. Then
we combine the 1+5+9 = 15 basis functions into a single vector-
valued function

Y(x,y,z) ∈ R15.

Appendix A provides explicit expressions for this basis.

The example above uses SH bands 0, 2 and 4 but the underly-
ing idea and our derivations are more general. If we consider all
even SH bands up to band k, where k is even, these basis functions
can be written as homogeneous polynomials of degree k. Similarly,
odd bands up to band k can be written as homogeneous polynomi-
als of degree k. Either way, we get

(k+2
2
)
=

(k+1)(k+2)
2 basis func-

tions. However, we cannot mix odd and even bands because then
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we would have to work with
√

x2 + y2 + z2, which is no longer a
polynomial. Our implementation supports k∈{2,4, . . . ,12} but has
stability issues for k ≥ 10 (see Sec. 5.2).

3.2. Intersections as Polynomial Roots

Now we are interested in an SH glyph. The glyph is characterized
by SH coefficients b ∈ R(

k+2
2 ) and its center position. For conve-

nience, we work in a coordinate frame where the center is the
origin. Let p := (x,y,z)T ∈ R3 be a point on the glyph. With our
vector-valued basis function, the corresponding linear combination
of SH basis functions is simply

bTY
(

p
‖p‖

)
.

Then by definition of the glyph

‖p‖=
∣∣∣∣bTY

(
p
‖p‖

)∣∣∣∣ . (1)

Although Y consists of polynomials, this is not a polynomial
equation. The norm ‖p‖ uses a square root and we also have a divi-
sion and take an absolute value. This is where the homogenization
comes in handy. Consider what happens, when we scale the inputs
of a monomial xiy jzk−i− j of degree k by a factor λ ∈ R:

(λx)i(λy) j(λz)k−i− j = λ
kxiy jzk−i− j.

The factor λ can be pulled out with an exponent k. Since that is true
for each monomial in a homogeneous polynomial, it is also true for
the polynomial as a whole.

With this insight, we are ready to turn Eq. 1 into a polynomial
equation:

‖p‖=
∣∣∣∣bTY

(
p
‖p‖

)∣∣∣∣
⇔ ‖p‖2 =

(
bTY

(
p
‖p‖

))2

(2)

⇔ ‖p‖2 =

(
1
‖p‖k bTY(p)

)2

⇔ ‖p‖2k+2 = (bTY(p))2

⇔ (bTY(p))2−‖p‖2k+2 = 0 (3)

Thanks to the homogeneity of Y, we were able to pull the nor-
malization out of the basis evaluation. In Eq. 3, (bTY(p))2 and
‖p‖2k+2 are homogeneous polynomials of degree 2k and 2k + 2,
respectively (because ‖p‖ has an even exponent).†

A ray originating at o ∈ R3 and with direction d ∈ S2 passes

† For odd degree k, it is more efficient to work with two polynomials of
half the degree:

‖p‖ =±bTY
(

p
‖p‖

)
⇔ ‖p‖k+1 =±bTY(p)

Figure 2: A cross-section of an SH glyph with k = 4 and a ray that
has 10 distinct intersections with this glyph. Since a polynomial
cannot have more real roots than its degree, a degree-10 polyno-
mial is necessary for SH bands 0, 2 and 4. The coordinate frame is
as described in Sec. 3.3.

through points o+ td where t > 0 is the ray parameter. Thus, the
sought-after intersections satisfy

(bTY(o+ td))2−‖o+ td‖2k+2 = 0. (4)

Since o+ td depends linearly on t and all monomials have degree
2k+2 or less, this is a polynomial equation in t of degree 2k+2 or
less. For k = 4, Fig. 2 illustrates that it is actually necessary to work
with a polynomial of degree 2k+2 = 10 to solve this problem.

van Almsick et al. [vPP∗11] construct a polynomial that is
closely related to bTY(o + td). However, their construction re-
quires a costly rotation of SH coefficients. Besides, their ap-
proach has no counterpart for Eq. 3. In the end, they solve a non-
polynomial equation using ray marching.

3.3. Coordinate Transform

To make our approach useful, we have to compute polynomial coef-
ficients of Eq. 4 in some form and then find its roots. It is ill-advised
to consider these two problems separately. We could write the poly-
nomial in the basis 1, t, t2, . . . , t2k+2 and feed these coefficients to
a root finding algorithm but that tends to be numerically unstable:
When the ray origin is far from the glyph, all roots will be relatively
close to t =−dTo where the ray comes closest to the glyph center
(i.e. ‖o+ td‖ is minimal). Computing many closely spaced roots is
difficult in presence of roundoff error (see Fig. 3a and Numerical
Recipes chap. 9.5 [PTVF07]).

To overcome this problem, we use a different coordinate frame.
It is spanned by the ray direction d and the orthonormal vector

e :=
o−dTod
‖o−dTod‖

.

These vectors span the plane containing the entire ray and the glyph
center at the origin (Fig. 2). The coordinates of a point on the ray
in this coordinate frame are(

u
v

)
:=
(

dT(o+ td)
eT(o+ td)

)
=

(
dTo+ t

eTo

)
.
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(a) Solving for t (b) Solving for u,v

Figure 3: Computing roots in terms of the ray parameter t directly,
causes serious numerical instabilities. A different coordinate frame
resolves these problems. Both images use single-precision arith-
metic.

Since we have added dTo to the ray parameter t, the point of closest
approach now corresponds to u = 0 and the relative differences of
roots are larger.

In this coordinate frame, we want to solve the pair of equations

v = eTo, (bTY(ud+ ve))2−‖ud+ ve‖2k+2 = 0.

To homogenize this equation, we multiply v2 onto the left term and
(eTo)2 onto the right term:

f (u,v) := v2(bTY(ud+ ve))2− (eTo)2‖ud+ ve‖2k+2 = 0. (5)

In this manner, we have retained all original solutions where v =
eTo but f (u,v) is now a homogeneous polynomial of degree 2k+2.
That means we can find coefficients f0, . . . , f2k+2 such that

f (u,v) =
2k+2

∑
i=0

fiu
iv2k+2−i. (6)

Constructing the polynomial in this changed coordinate frame gives
a much more stable solution (Fig. 3b).

3.4. Computing Polynomial Coefficients

Now that we know what polynomial we want to solve, it is time to
compute its coefficients. Among the factors in Eq. 5

g(u,v) := bTY(ud+ ve)

is the most difficult to handle. It is homogeneous of degree k, i.e.
given by coefficients g0, . . . ,gk ∈ R via

g(u,v) =
k

∑
i=0

giu
ivk−i. (7)

We can uniquely determine all k + 1 coefficients if we know the
value of this polynomial at k + 1 different points. For each l ∈
{0, . . . ,k}, we choose the point

ul := cos
(

l
π

k+1

)
, vl := sin

(
l

π

k+1

)
.

This choice is convenient, because it means that ‖uld+ vle‖ = 1.
Therefore, we do not actually need a homogenized SH basis Y for
this approach to work. We just have to evaluate the common SH
basis at k+1 points on the unit sphere to infer its values anywhere
along the ray. This simplification is made possible by the homoge-
nization of f (u,v) in Eq. 5.

To obtain the polynomial coefficients, we solve the system of
linear equations

g(ul ,vl) =
k

∑
i=0

giu
i
lv

k−i
l .

The solution can be written in terms of a Vandermonde matrix as
follows:

V := (ui
lv

k−i
l )k

l,i=0 ∈ R(k+1)×(k+1),

(g0, . . . ,gk)
T =V−1(g(u0,v0), . . . ,g(uk,vk))

T ∈ Rk+1.

The Vandermonde matrix V only depends on the degree k and thus
its inverse can be precomputed.

Next, we are interested in coefficients s0, . . . ,s2k ∈ R of the
square s(u,v) := g2(u,v). They satisfy

s(u,v) =
2k

∑
i=0

siu
iv2k−i =

k

∑
i=0

k

∑
j=0

gig ju
i+ jv2k−i− j . (8)

Thus, a double loop suffices to accumulate all these coefficients.
For the polynomial ‖ud+ve‖2k+2, we exploit that d,e are orthonor-
mal and use the binomial theorem:

‖ud+ ve‖2k+2 = (u2 + v2)k+1 =
k+1

∑
i=0

(
k+1

i

)
u2iv2(k+1−i).

Now we are ready to assemble the coefficients f0, . . . , f2k+2 ∈ R:

f (u,v) =
2k+2

∑
i=0

fiu
iv2k+2−i = v2s(u,v)− (eTo)2‖ud+ ve‖2k+2

=
2k

∑
i=0

siu
iv2k+2−i− (eTo)2

k+1

∑
i=0

(
k+1

i

)
u2iv2(k+1−i). (9)

3.5. Polynomial Root Finding

Now we have reduced the intersection test to polynomial root find-
ing. Most root finding algorithms expect dehomogenized polyno-
mials, so we work with the dehomogenized f (u) := f (u,1). Our
goal is to find all real roots of this polynomial. Complex roots are ir-
relevant, we care about polynomials with degrees ranging from six
to 26 and we only need moderate accuracy but want robust behav-
ior in single-precision arithmetic and fast execution on GPUs. The
bracketed Newton bisection of Yuksel [Yuk22] matches these re-
quirements well. First it computes all real roots of the derivative of
the polynomial. Between these roots, the polynomial is monotonic
and a combination of Newton’s method with bisection works well.
The method operates recursively on derivatives until the quadratic
formula is applicable.

This root finder works most efficiently when it is provided with a
reasonably tight interval containing relevant roots. We could obtain
those using our AABB computation (Sec. 4.2) but it is more conve-
nient to keep these two problems separated. Instead, we recall that
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roots (u,v) satisfy Eq. 5 and exploit that g(u,v) is homogeneous:

v2g2(u,v) = (eTo)2(u2 + v2)k+1

⇔ v2g2
(

(u,v)√
u2 + v2

)
= (eTo)2(u2 + v2)

v=1⇔ u2 =
1

(eTo)2 g2
(

(u,1)√
u2 +12

)
−1. (10)

In the last step, we assume v = 1 since that matches how we de-
homogenized f (u). Thus, we can attain an upper bound for roots
u from an upper bound for the polynomial g at points on the unit
circle S1. Appendix B derives the following upper bound:

max
(u,v)∈S1

|g(u,v)| ≤
k

∑
i=0
|gi| max

(u,v)∈S1
|uivk−i|=

k

∑
i=0
|gi|
√

ii(k− i)k−i

kk .

Prior work uses a similar approach for bounding sphere computa-
tion [PPv∗09] but doing it per ray gives tighter bounds. If we only
care about roots within a certain interval, we can tighten the bounds
accordingly.

We set the error tolerance for Newton bisection to ε := 2 ·
10−4umax, where umax > 0 is the bound on u derived in Eq. 10.
Typically, errors will be much lower than ε [Yuk22]. We also
limit the number of iterations of Newton bisection to 90 to avoid
endless loops. With single-precision arithmetic and degree k ≤ 8,
we sometimes observe numerical instabilities for rays pointing di-
rectly at the glyph center. When viewing a single glyph up close at
3840× 2160, that may manifest in a few incorrect pixels near the
glyph center. In this boundary case, the polynomial f (u) has roots
with high multiplicity, which is challenging for the solver [Yuk22].
Though, these artifacts are hard to spot and overall the method
works reliably and efficiently. As an alternative for k = 4, we
tried computing all roots, including complex ones, using Laguerre’s
method (chap. 9.5.3 [PTVF07]). That also works well but is ca.
2.7 times slower since it computes more roots and relies on com-
plex arithmetic heavily. For k≥ 10, numerical issues become more
serious (see Sec. 5.2).

We have completed our intersection procedure now. Algorithm 1
summarizes all steps.

4. Ray Tracing Spherical Harmonics Glyphs

We now have the means to figure out whether and where a ray in-
tersects an SH glyph. To render glyphs, we need proper shading.
Therefore, we derive a simple formula to compute surface nor-
mals (Sec. 4.1). This formula for the normals also enables us to
compute nearly exact AABBs as bounding volumes for ray tracing
(Sec. 4.2). Finally, we exploit that our method produces all inter-
sections for arbitrary rays to implement sophisticated shading with
shadows and uncertainty visualization (Sec. 4.3).

4.1. Computing Normals

Eq. 2 characterizes our glyph as implicit surface. It is well-known
that the gradient of the implicit function at an intersection p ∈ R3

provides a normal vector. We use the chain rule and the quotient

Algorithm 1 Computes all intersections of an SH glyph and a ray.
Input: SH coefficients b ∈ R(

k+2
2 ) of degree k ∈ N, ray origin

o ∈ R3 (relative to the glyph center) and normalized ray direc-
tion d ∈ S2.
Output: Ray parameters t for all ray-glyph intersections.

e :=
o−dTod
‖o−dTod‖

.

ul := cos
(

l
π

k+1

)
, vl := sin

(
l

π

k+1

)
for l ∈ {0, . . . ,k}.

(gi)
k
i=0 :=V−1(bTY(uld+ vle))

k
l=0 where V := (ui

lv
k−i
l )k

l,i=0.

gmax :=
k

∑
i=0
|gi|
√

ii(k− i)k−i

kk .

If |gmax|< |eTo|: Return no intersections.

umax :=

√
g2

max

(eTo)2 −1

Compute s0, . . . ,s2k ∈ R using Eq. 8.
Compute f0, . . . , f2k+2 ∈ R using Eq. 9.
Compute all roots u0, . . . ,un−1 of ∑

2k+2
i=0 fiui in [−umax,umax].

For l ∈ {0, . . . ,n−1}: Output tl := uleTo−dTo.

rule to compute the non-normalized normal:

nT(p) :=
1
2

∂

∂p

(
pTp−

(
bTY

(
p
‖p‖

))2
)

=pT−bTY
(

p
‖p‖

)
bTY′

(
p
‖p‖

)
pTpI−ppT√

pTp
3 , (11)

where Y′(p) ∈ R(
k+2

2 )×3 denotes the Jacobian matrix of the SH ba-
sis Y(p) and I ∈ R3×3 is the identity matrix. Since we start from
Eq. 2 instead of Eq. 3, the homogenization of the SH basis is ir-
relevant for this derivation. Therefore, the normal n(p) will also
be correct when Y′(p) is the Jacobian of an inhomogeneous SH
basis. Homogenization only changes components of the deriva-
tives, which are normal to the unit sphere at p

‖p‖ , but the ma-

trix pTpI−ppT ∈ R3×3 eliminates such components. Prior work
has similar formulas [PPv∗09, vPP∗11] that give the same result,
though ours is simpler.

4.2. Computing Bounding Boxes

There are two major ways to make rendering of implicit surfaces
faster: One can make the ray intersection test itself faster, or one
can ensure that it is executed less frequently. We want to render
many SH glyphs. Therefore, we enclose every single one of them
in an AABB. These AABBs in turn are stored in a bounding volume
hierarchy. We only execute the intersection test when a ray traverses
the AABB of an SH glyph. Smaller AABBs mean fewer tests and
faster rendering. Prior work uses crude upper bounds to construct
bounding spheres [PPv∗09] or bounding cylinders [vPP∗11]. We
instead strive to compute nearly exact AABBs.

Without loss of generality, we seek the extent of the AABB along

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

26



C. Peters, T. Patel, W. Usher & C. R. Johnson / Ray Tracing Spherical Harmonics Glyphs

the z-axis. Otherwise, we permute the axes. Our SH glyphs are
point symmetric: If p ∈ R3 is on the glyph, so is −p. Thus, we
only care about the absolute value of the extent. Since our glyph is
smooth, this maximal extent must be realized by a point p ∈ R3 on
the glyph where the AABB is tangential to the glyph, i.e.

‖p‖=
∣∣∣∣bTY

(
p
‖p‖

)∣∣∣∣ and nx(p) = ny(p) = 0.

Together, these three equations characterize the tangent point p. To
make them easier to solve, we eliminate the first equation by using
it to homogenize the formula for computation of the normal vector:

ñ(p) := bTY
(

p
‖p‖

)
p
‖p‖ −

pTpI−ppT

‖p‖2 Y′T
(

p
‖p‖

)
b.

For points p on the glyph, n(p) = ñ(p), but ñ(p) is homogeneous
of degree zero: For all non-zero λ ∈ R, ñ(p) = ñ(λp). Thus, we
discard the first equation and instead keep pz fixed while solv-
ing ñx(p) = ñy(p) = 0 for px,py only. We do so using Newton’s
method. If pi ∈ R3 is our current estimate for p, our next estimate
is (

pi+1,x
pi+1,y

)
:=
(

pi,x
pi,y

)
−

 ∂ñx
∂px

(pi)
∂ñx
∂py

(pi)
∂ñy
∂px

(pi)
∂ñy
∂py

(pi)

−1(
ñx(pi)
ñy(pi)

)
.

The complete formulas for these partial derivatives of ñ(p) can be
found in our supplemental code. They use the Hessian matrix of
bTY(p), which is about as easy to compute as the Jacobian ma-
trix. Upon convergence, the z-coordinate of the point on the glyph
bTY

(
pi
‖pi‖

)
pi
‖pi‖ is a candidate for the sought-after extent.

If the initialization to Newton’s method is sufficiently close to a
solution, the method converges quadratically (chap. 9.4 [PTVF07]).
However, it will not always converge and not every solution is
the global maximum that we seek. We overcome this problem
with an extensive search for good initializations. For degree k, we
take N := k · 256 spherical Fibonacci points in the upper hemi-
sphere [KISS15], i.e. point l ∈ {0, . . . ,N−1} is given by

zl := 1− 2l +1
2N

, ϕl :=
4πl√
5+1

, pl :=


√

1− z2
l cosϕl√

1− z2
l sinϕl

zl

 .

For each of these direction vectors, we compute the correspond-
ing point on the glyph bTY(pl)pl . If it has the largest absolute z-
coordinate encountered thus far, we remember the point. In the end,
the best candidate becomes the initialization to Newton’s method,
which we run for exactly five iterations. If it leads to a point on
the glyph with an even larger absolute z-coordinate, we use that.
Otherwise, we stick to the one found previously.

We run this method for all three axes in a single pass. Since it
is not guaranteed to find a large enough AABB, we subdued it to
extensive testing for degrees k ∈ {2,4, . . . ,12}. Per degree, we gen-
erated 100,000 vectors b∈ [−1,1]15 uniformly at random and com-
puted an AABB. Then we compared this AABB to one found by
sampling at a million points. Very seldomly, our AABB was smaller
than the ground truth but never by more than 1.9% for k ≤ 8 or
3.07% for k ≥ 10. Consequently, we use our method for computa-

(a) No shadows (b) Hard shadows (c) Soft shadows

Figure 4: Shadows make it easier to understand spatial relations
between different parts of the glyph. Soft shadows provide addi-
tional cues about distances and are less distracting than perfectly
hard shadows.

tion of a tight AABB and then scale it up by 2.5% for k≤ 8 or 3.5%
for k≥ 10 to be reasonably sure that we never miss an intersection.

4.3. Shading and Uncertainty Visualization

To complete our method, we need to implement shading for the
glyphs. We compute a base color for each point on the glyph by
interpreting the absolute entries of p

‖p‖ as sRGB triple [vPP∗11].
Then we utilize the dielectric glTF BRDF with roughness 0.45. Ad-
ditionally, we use constant ambient lighting to avoid pitch black
surfaces.

Unlike prior work [vPP∗11], our intersection test naturally sup-
ports arbitrary ray origins. Thus, we can trace secondary rays to
render self-shadowing of a glyph. Fig. 4 shows how shadows aid
the understanding of spatial relationships. In Fig. 4b, we trace a
single deterministic shadow ray towards a directional light. The re-
sulting hard shadows are somewhat distracting and fail to convey
the distance of shadow casters. Fig. 4c resolves this problem us-
ing soft shadows. The size of their smooth penumbra regions pro-
vides visual cues about the magnitude of angles between fiber pop-
ulations. We render them using Monte Carlo integration with 16
random shadow rays towards a spherical light. To avoid noise in
places where the light is partially below the horizon, we sample the
spherical light proportional to the cosine term from the rendering
equation [PD19].

In presence of uncertainty in the data, each SH coefficient is as-
sociated with a standard deviation. Jiao et al. [JPGJ12] convey this
uncertainty using volume rendering. This approach is powerful but
also has considerable overhead. We propose a more efficient alter-
native. We assume that the region of uncertainty can be approxi-
mated by a second SH glyph. Then we visualize this region using
an efficient form of volume rendering (Fig. 5). We compute all in-
tersections up to the first opaque surface for the second glyph. From
the intersections we can compute the distance d ≥ 0 that the ray
travels through the glyph. Then we treat it as homogeneous volume
with constant emission. The transmittance is T := exp(−σd) where
σ > 0 is a user-defined extinction parameter. Finally, we use alpha
blending with opacity α := 1−T to blend the current color with a
constant emission color (we use the sRGB triple ( 1

2 ,
1
2 ,

1
2 )).
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Figure 5: We visualize uncertainty by rendering two SH glyphs. An
opaque glyph visualizes the mean. The other glyph is rendered as
homogeneous volume with constant absorption and gray emission
to visualize uncertainty.

5. Results

We now present additional results of our method, compare it to
prior work in terms of quality (Sec. 5.1), validate it for truncation
up to band k = 12 (Sec. 5.2) and discuss its run time (Sec. 5.3).
Our evaluation uses a diffusion dataset [SCAD22] with 60 diffu-
sion gradient directions, which is an undersampling of the humane
connectome project of aging dataset performed on 3T MR scan-
ners [HSA∗18]. For postprocessing, we use MRtrix3‡ with spher-
ical deconvolution [TCGC04] to compute SH coefficients. All fig-
ures except Fig. 2 and Fig. 7 show glyphs from this dataset using
SH bands 0, 2 and 4.

We were unable to obtain data with known uncertainty. To eval-
uate this part of our rendering method, we generate a second set of
SH coefficients from the first set: The SH coefficient for the con-
stant component Y 0

0 is multiplied by 1.7 such that positive parts of
the glyph grow. Additionally, each SH coefficient is contaminated
with noise by multiplying it by a Gaussian random variable with
mean 1 and standard deviation 0.05.

We have implemented our method on GPUs using Vulkan and
the VK_KHR_ray_query extension in a compute shader. Of course,
rasterizing the AABBs is a viable alternative. Additionally, we im-
plemented the ray marching method of van Almsick et al. [vPP∗11]
for k = 4 in the same framework. The implementation follows the
description in the paper closely. However, we use ray tracing in-
stead of rasterization and need an AABB. To this end, we use ei-
ther our tight AABBs or construct an AABB enclosing a bound-
ing cylinder around the z-axis with the method of van Almsick et
al. [vPP∗11]. Either way, the shader performs an early out when
there is no intersection with the camera-aligned bounding cylinder.

5.1. Quality Comparisons

van Almsick et al. rely on ray marching and propose to partition
the ray segment in the cylinder into ca. 100 segments [vPP∗11].
Fig. 6 demonstrates that this parameter choice leads to inaccurate

‡ https://github.com/jdtournier/mrtrix3

(a) Ray marching with 100 steps [vPP∗11]

(b) Our method

Figure 6: Ray marching with 100 steps [vPP∗11] resolves small
features poorly, leads to incorrect normals at silhouettes and
causes banding. Our method is far more accurate.

results. Most notably, smaller lobes of the glyph suffer from un-
dersampling. They appear smaller than they should be and have
jagged silhouettes (orange inset). Additionally, incorrect hit points
lead to incorrect normals. That results in black outlines at silhou-
ettes (green inset). Also note that smooth surfaces suffer from slight
banding artifacts (blue inset). Our method is more accurate and has
none of these artifacts. Using 200 ray marching steps, the artifacts
become negligible.

It is also noteworthy that van Almsick et al. rely on a preprocess-
ing step that depends on the camera position. They assume that all
rays originate at the camera, which makes sense with rasterization.
In our ray tracing framework, it is compelling to use secondary
rays, which clashes with this preprocessing approach. Our method
naturally supports such secondary rays and we use them for soft
shadows (Fig. 4).

Fig. 1 shows an overview of one slice of our test dataset with
19,600 glyphs. Every single glyph is rendered with full accuracy.
The cost of such a rendering scales primarily with the number of
pixels that are covered by a glyph. The only computation that is
done per glyph is our AABB computation (Sec. 4.2) and construc-
tion of a bounding volume hierarchy. An approach based on trian-
gulated glyphs would have to process upwards of thousand trian-
gles per glyph in each frame to get smooth results [PDG21].

5.2. Higher Bands

We derived our method to support glyphs of arbitrary degree k ∈
2N. Fig. 7 shows results with truncation at bands up to and includ-
ing band 12. For k≤ 8 the renderings are accurate. At k = 10, there
are minor numerical issues resulting in a few incorrect pixels (mag-
nified inset). At k = 12, these numerical issues become more se-
vere. Most of the glyph is still rendered accurately but the artifacts
are quite distracting. We expect that they could be alleviated using
double-precision arithmetic. Note that we could not generate mean-
ingful data for k ≥ 10 from our dataset with 60 diffusion gradient

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

28

https://github.com/jdtournier/mrtrix3
https://github.com/jdtournier/mrtrix3


C. Peters, T. Patel, W. Usher & C. R. Johnson / Ray Tracing Spherical Harmonics Glyphs

(a) k = 2, 0.39 ms (b) k = 4, 0.91 ms (c) k = 6, 1.49 ms

(d) k = 8, 4.42 ms (e) k = 10, 6.86 ms (f) k = 12, 14.18 ms

Figure 7: Renderings of a single glyph at resolution 14402 using
truncation at different bands k. Using more bands results in more
detailed shapes while increasing the frame time.

directions [TCGC04] as we do not use super resolution [TCC07].
The coefficients for band 10 and 12 are not measured but synthe-
sized using zero-mean Gaussian noise so that we can still demon-
strate our rendering algorithm.

5.3. Run Time

We measure timings of our GPU implementation on a system with
an Intel Arc A770 GPU with 16 GB VRAM running Windows.
Compared to the method of van Almsick et al. for k = 4, our
method has three key differences that are relevant for timings: We
use tighter AABBs, we do not have a preprocessing step to rotate
SH coefficients and we do not rely on ray marching.

To analyze the impact of the AABBs, we try all techniques using
either our tight AABB or an AABB enclosing a bounding cylinder
around the z-axis [vPP∗11]. Our implementation of the method of
van Almsick et al. does not actually use a preprocess. Instead, we
rotate the SH coefficients as part of the intersection test. That makes
it as flexible as our method but more costly. To produce data that
are more representative of the original approach, we also measure
timings where we simply skip this step of the algorithm. Results are
incorrect but the timings are representative of the original method
with camera-specific preprocessing. Finally, we vary the maximal
number of ray marching steps. At 100 steps there are clear artifacts
(Fig. 6), at 200 steps the quality is closer to our method.

The timings in Tab. 1 show that our method outperforms ray
marching. Ray marching with 200 steps and per-ray rotation with
the bounding cylinder has previously been the method of choice
for something that is as flexible and nearly as accurate as our ap-
proach. Our method with our AABB is 3.8 times faster. The cost of
rotating SH coefficients relative to the cost of ray marching is not
as big as one might expect. With identical bounding volumes, only

Table 1: Frame times for ray tracing the scene in Fig. 1 at a res-
olution of 1920× 1080 using different methods. We either use a
bounding cylinder around the z-axis as described by van Almsick
et al. [vPP∗11] or our tight AABBs.

Method Time

C
yl

in
de

r Ray marching (100 steps) [vPP∗11] 1.55 ms
Ray marching (no rotation, 100 steps) [vPP∗11] 1.13 ms

Ray marching (200 steps) [vPP∗11] 2.23 ms
Ray marching (no rotation, 200 steps) [vPP∗11] 1.80 ms

Ours 0.95 ms

O
ur

A
A

B
B

Ray marching (100 steps) [vPP∗11] 0.73 ms
Ray marching (no rotation, 100 steps) [vPP∗11] 0.59 ms

Ray marching (200 steps) [vPP∗11] 1.07 ms
Ray marching (no rotation, 200 steps) [vPP∗11] 0.89 ms

Ours 0.59 ms
Ours with uncertainty 1.93 ms

Ours with uncertainty and hard shadows 2.00 ms
Ours with uncertainty and soft shadows 4.02 ms

100 steps and without rotation, ray marching performs similar to
our method but is less accurate, less flexible and more complicated
to implement.

Adding our uncertainty visualization more than triples the cost,
presumably because the uncertainty glyphs cover more pixels than
the opaque glyphs. The overhead of a single shadow ray for hard
shadows is low but soft shadows with 16 rays double the cost again.
Nonetheless, a frame time of 4 ms is still clearly fast enough for
real-time rendering.

Fig. 7 reports total frame times for rendering a single glyph us-
ing our method with truncation at different bands k. For these ex-
periments, we simply execute the intersection test for each pixel.
The timings scale roughly in proportion to k3, which is to be ex-
pected based on the nesting of loops in the method for polynomial
root finding. The choice k = 8 is common in practical applications.
With a frame time of 4.42 ms, it is clearly fast enough for real-time
rendering and there is still headroom to add soft shadows or un-
certainty visualization. Even at k = 12 our method gives real-time
frame rates (albeit with some artifacts).

Our method for AABB computation is GPU friendly but for sim-
plicity we wrote a single-threaded implementation in C. We mea-
sure timings using an Intel Core i7-11700KF and 64 GB RAM. The
AABB computation takes 29 microseconds per glyph for k = 4.
Thus, the data set in Fig. 1 with 19,600 glyphs including uncer-
tainty is processed in a bit more than a second. The bulk of the
work is the evaluation of the SH basis in the extensive search for an
initialization. Therefore, we expect this cost to scale linearly with
the number of basis function evaluations, which is

(k+2
2
)
N.

6. Conclusions

Our intersection test is a simple self-contained algorithm without
preprocessing. It reduces the problem to its core, namely polyno-
mial root finding, where excellent solution strategies are available.
The technique is accurate, numerically stable and is guaranteed to
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find all intersections. We hope our work will help to make high-
quality SH glyphs more widely available as a visualization tool for
HARDI or other data. Furthermore, we provide a foundation for
developing interactive uncertainty visualization techniques through
a combination of surface and volume rendering. All of these con-
tributions are enabled by homogenization of the SH basis and we
hope that others may find this method useful for future work.

Appendix A: The Homogeneous Spherical Harmonics Basis

For reference, we provide the version of the SH basis, which
has been used for k = 4 in this paper. It follows the conventions
of Descouteaux et al. [DAFD07], which differ from the ones of
Sloan [Slo13]. The homogenized version, which is used for deriva-
tions but not needed in an implementation, uses r := x2 + y2 + z2.
Otherwise, it is valid to set r := 1. The basis functions are:

Y 0
0 :=

r2

2
√

π
Y−2

2 :=

√
15

16π
(x2− y2)r

Y−1
2 :=

√
15
4π

xzr Y 0
2 :=

√
5

16π
(3z2− r)r

Y 1
2 :=−

√
15
4π

yzr Y 2
2 :=

√
15
4π

xyr

Y−4
4 :=

3
16

√
35
π
(x4−6x2y2 + y4) Y−3

4 :=
3
8

√
70
π

x(x2−3y2)z

Y−2
4 :=

3
8

√
5
π
(x2− y2)(7z2− r) Y−1

4 :=
3
8

√
10
π

xz(7z2−3r)

Y 0
4 :=

3
16
√

π
(35z4−30z2r+3r2)

Y 1
4 :=−3

8

√
10
π

yz(7z2−3r) Y 2
4 :=

3
4

√
5
π

xy(7z2− r)

Y 3
4 :=

3
8

√
70
π
(y2−3x2)yz Y 4

4 :=
3
4

√
35
π

xy(x2− y2)

For our basis Y(x,y,z)∈R15, we stack all bands into a single vector
in the order in which they are listed above. To evaluate the SH basis
and its first and second derivatives, we have used a code generator
much like the one described by Sloan [Slo13]. Evaluation code up
to band 12 can be found in our supplemental.

Appendix B: Computing Bounding Circles

For even k ∈ N, we seek the maximum

max
(u,v)∈S1

|uivk−i|= max
(u,v)∈R2\{0}

∣∣∣∣∣ uivk−i

(u2 + v2)
k
2

∣∣∣∣∣= sup
u∈R

∣∣∣∣∣ ui

(u2 +1)
k
2

∣∣∣∣∣ .
We use the quotient rule to identify real critical points:

∂

∂u
ui

(u2 +1)
k
2

= 0

⇔ iui−1(u2 +1)
k
2 = kui+1(u2 +1)

k
2−1

⇔ ui−1 = 0 ∨ i(u2 +1) = ku2

⇔ ui−1 = 0 ∨ u =±
√

i
k− i

The value at the second candidate for a critical point is√
i

k−i

i

(
i

k−i +1
) k

2

=

√√√√√√
(

i
k−i

)i

(
k

k−i

)k =

√
ii(k− i)k−i

kk .

It is easy to verify that this value is always greater or equal to the
values for u = 0, u→∞ and u→−∞, which are 0 or 1 depending
on i. Thus, this critical point constitutes the global maximum.
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