banner pubs
Notice: Undefined index: sciint in /web/websites/www/htdocs/components/com_joombib/views/pubs/tmpl/default.php on line 39

SCI Publications

2016


J. Beckvermit, T. Harman, C. Wight, M. Berzins. “Physical Mechanisms of DDT in an Array of PBX 9501 Cylinders Initiation Mechanisms of DDT,” SCI Institute, April, 2016.

ABSTRACT

The Deflagration to Detonation Transition (DDT) in large arrays (100s) of explosive devices is investigated using large-scale computer simulations running the Uintah Computational Framework. Our particular interest is understanding the fundamental physical mechanisms by which convective deflagration of cylindrical PBX 9501 devices can transition to a fully-developed detonation in transportation accidents. The simulations reveal two dominant mechanisms, inertial confinement and Impact to Detonation Transition. In this study we examined the role of physical spacing of the cylinders and how it influenced the initiation of DDT.



M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey, Q. Meng, J. Schmidt,, C. Wight. “Extending the Uintah Framework through the Petascale Modeling of Detonation in Arrays of High Explosive Devices,” In SIAM Journal on Scientific Computing (Accepted), 2016.

ABSTRACT

The Uintah framework for solving a broad class of fluid-structure interaction problems uses a layered taskgraph approach that decouples the problem specification as a set of tasks from the adaptove runtime system that executes these tasks. Uintah has been developed by using a problem-driven approach that dates back to its inception. Using this approach it is possible to improve the performance of the problem-independent software components to enable the solution of broad classes of problems as well as the driving problem itself. This process is illustrated by a motivating problem that is the computational modeling of the hazards posed by thousands of explosive devices during a Deflagration to Detonation Transition (DDT) that occurred on Highway 6 in Utah. In order to solve this complex fluid-structure interaction problem at the required scale, algorithmic and data structure improvements were needed in a code that already appeared to work well at scale. These transformations enabled scalable runs for our target problem and provided the capability to model the transition to detonation. The performance improvements achieved are shown and the solution to the target problem provides insight as to why the detonation happened, as well as to a possible remediation strategy.



A. Humphrey, D. Sunderland, T. Harman, M. Berzins. “Radiative Heat Transfer Calculation on 16384 GPUs Using a Reverse Monte Carlo Ray Tracing Approach with Adaptive Mesh Refinement,” In Accepted - The 17th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2016), 2016.

ABSTRACT

Modeling thermal radiation is computationally challenging in parallel due to its all-to-all physical and resulting computational connectivity, and is also the dominant mode of heat transfer in practical applications such as next-generation clean coal boilers, being modeled by the Uintah framework. However, a direct all-to-all treatment of radiation is prohibitively expensive on large computers systems whether homogeneous or heterogeneous. DOE Titan and the planned DOE Summit and Sierra machines are examples of current and emerging GPUbased heterogeneous systems where the increased processing capability of GPUs over CPUs exacerbates this problem. These systems require that computational frameworks like Uintah leverage an arbitrary number of on-node GPUs, while simultaneously utilizing thousands of GPUs within a single simulation. We show that radiative heat transfer problems can be made to scale within Uintah on heterogeneous systems through a combination of reverse Monte Carlo ray tracing (RMCRT) techniques combined with AMR, to reduce the amount of global communication. In particular, significant Uintah infrastructure changes, including a novel lock and contention-free, thread-scalable data structure for managing MPI communication requests and improved memory allocation strategies were necessary to achieve excellent strong scaling results to 16384 GPUs on Titan.



P. Muralidharan, J. Fishbaugh, E. Y. Kim, H. J. Johnson, J. S. Paulsen, G. Gerig, P. T. Fletcher. “Bayesian Covariate Selection in Mixed Effects Models for Longitudinal Shape Analysis,” International Symposium on Biomedical Imaging (ISBI), 2016.

ABSTRACT

The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, in response to biological processes, including growth, aging, or disease. In many imaging studies, it is also critical to understand how these shape changes are affected by other factors, such as sex, disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on modeling age-related shape changes, but have not included the ability to handle covariates. In this paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous relationships between longitudinal shape data and multiple predictors or covariates to the model. Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that lets us automatically select which covariates are most relevant to the model based on observed data. We evaluate our proposed model and inference procedure on a longitudinal study of Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional longitudinal shape model to putamen shapes.



E. Wong, S. Palande, Bei Wang, B. Zielinski, J. Anderson, P. T. Fletcher. “Kernel Partial Least Squares Regression for Relating Functional Brain Network Topology to Clinical Measures of Behavior,” International Symposium on Biomedical Imaging (ISBI), 2016.

ABSTRACT

In this paper we present a novel method for analyzing the relationship between functional brain networks and behavioral phenotypes. Drawing from topological data analysis, we first extract topological features using persistent homology from functional brain networks that are derived from correlations in resting-state fMRI. Rather than fixing a discrete network topology by thresholding the connectivity matrix, these topological features capture the network organization across all continuous threshold values. We then propose to use a kernel partial least squares (kPLS) regression to statistically quantify the relationship between these topological features and behavior measures. The kPLS also provides an elegant way to combine multiple image features by using linear combinations of multiple kernels. In our experiments we test the ability of our proposed brain network analysis to predict autism severity from rs-fMRI. We show that combining correlations with topological features gives better prediction of autism severity than using correlations alone.


2015


K.K. Aras, W. Good, J. Tate, B.M. Burton, D.H. Brooks, J. Coll-Font, O. Doessel, W. Schulze, D. Patyogaylo, L. Wang, P. Van Dam,, R.S. MacLeod. “Experimental Data and Geometric Analysis Repository: EDGAR,” In Journal of Electrocardiology, 2015.

ABSTRACT

Introduction
The "Experimental Data and Geometric Analysis Repository", or EDGAR is an Internet-based archive of curated data that are freely distributed to the international research community for the application and validation of electrocardiographic imaging (ECGI) techniques. The EDGAR project is a collaborative effort by the Consortium for ECG Imaging (CEI, ecg-imaging.org), and focused on two specific aims. One aim is to host an online repository that provides access to a wide spectrum of data, and the second aim is to provide a standard information format for the exchange of these diverse datasets.

Methods
The EDGAR system is composed of two interrelated components: 1) a metadata model, which includes a set of descriptive parameters and information, time signals from both the cardiac source and body-surface, and extensive geometric information, including images, geometric models, and measure locations used during the data acquisition/generation; and 2) a web interface. This web interface provides efficient, search, browsing, and retrieval of data from the repository.

Results
An aggregation of experimental, clinical and simulation data from various centers is being made available through the EDGAR project including experimental data from animal studies provided by the University of Utah (USA), clinical data from multiple human subjects provided by the Charles University Hospital (Czech Republic), and computer simulation data provided by the Karlsruhe Institute of Technology (Germany).

Conclusions
It is our hope that EDGAR will serve as a communal forum for sharing and distribution of cardiac electrophysiology data and geometric models for use in ECGI research.



J. Bennett, F. Vivodtzev, V. Pascucci (Eds.). “Topological and Statistical Methods for Complex Data,” Subtitled “Tackling Large-Scale, High-Dimensional, and Multivariate Data Spaces,” Mathematics and Visualization, 2015.
ISBN: 978-3-662-44899-1

ABSTRACT

This book contains papers presented at the Workshop on the Analysis of Large-scale,
High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp,
France, June 2013. It features the work of some of the most prominent and recognized
leaders in the field who examine challenges as well as detail solutions to the analysis of
extreme scale data.
The book presents new methods that leverage the mutual strengths of both topological
and statistical techniques to support the management, analysis, and visualization
of complex data. It covers both theory and application and provides readers with an
overview of important key concepts and the latest research trends.
Coverage in the book includes multi-variate and/or high-dimensional analysis techniques,
feature-based statistical methods, combinatorial algorithms, scalable statistics algorithms,
scalar and vector field topology, and multi-scale representations. In addition, the book
details algorithms that are broadly applicable and can be used by application scientists to
glean insight from a wide range of complex data sets.



J. Bennett, R. Clay, G. Baker, M. Gamell, D. Hollman, S. Knight, H. Kolla, G. Sjaardema, N. Slattengren, K. Teranishi, J. Wilke, M. Bettencourt, S. Bova, K. Franko, P. Lin, R. Grant, S. Hammond, S. Olivier. “ASC ATDM Level 2 Milestone #5325,” Subtitled “Asynchronous Many-Task Runtime System Analysis and Assessment for Next Generation Platforms,” 2015.

ABSTRACT

This report provides in-depth information and analysis to help create a technical road map for developing nextgeneration programming models and runtime systems that support Advanced Simulation and Computing (ASC) workload requirements. The focus herein is on asynchronous many-task (AMT) model and runtime systems, which are of great interest in the context of "exascale" computing, as they hold the promise to address key issues associated with future extreme-scale computer architectures. This report includes a thorough qualitative and quantitative examination of three best-of-class AMT runtime systems—Charm++, Legion, and Uintah, all of which are in use as part of the ASC Predictive Science Academic Alliance Program II (PSAAP-II) Centers. The studies focus on each of the runtimes' programmability, performance, and mutability. Through the experiments and analysis presented, several overarching findings emerge. From a performance perspective, AMT runtimes show tremendous potential for addressing extremescale challenges. Empirical studies show an AMT runtime can mitigate performance heterogeneity inherent to the machine itself and that Message Passing Interface (MPI) and AMT runtimes perform comparably under balanced conditions. From a programmability and mutability perspective however, none of the runtimes in this study are currently ready for use in developing production-ready Sandia ASC applications. The report concludes by recommending a codesign path forward, wherein application, programming model, and runtime system developers work together to define requirements and solutions. Such a requirements-driven co-design approach benefits the high-performance computing (HPC) community as a whole, with widespread community engagement mitigating risk for both application developers and runtime system developers.



J. Bennett, R. Clay, G. Baker, M. Gamell, D. Hollman, S. Knight, H. Kolla, G. Sjaardema, N. Slattengren, K. Teranishi, J. Wilke, M. Bettencourt, S. Bova, K. Franko, P. Lin, R. Grant, S. Hammond, S. Olivier, L. Kale, N. Jain, E. Mikida, A. Aiken, M. Bauer, W. Lee, E. Slaughter, S. Treichler, M. Berzins, T. Harman, A. Humphrey, J. Schmidt, D. Sunderland, P. McCormick, S. Gutierrez, M. Schulz, A. Bhatele, D. Boehme, P. Bremer, T. Gamblin. “ASC ATDM level 2 milestone #5325: Asynchronous many-task runtime system analysis and assessment for next generation platforms,” Sandia National Laboratories, 2015.

ABSTRACT

This report provides in-depth information and analysis to help create a technical road map for developing nextgeneration programming models and runtime systems that support Advanced Simulation and Computing (ASC) workload requirements. The focus herein is on asynchronous many-task (AMT) model and runtime systems, which are of great interest in the context of "exascale" computing, as they hold the promise to address key issues associated with future extreme-scale computer architectures. This report includes a thorough qualitative and quantitative examination of three best-of-class AMT runtime systems—Charm++, Legion, and Uintah, all of which are in use as part of the ASC Predictive Science Academic Alliance Program II (PSAAP-II) Centers. The studies focus on each of the runtimes' programmability, performance, and mutability. Through the experiments and analysis presented, several overarching findings emerge. From a performance perspective, AMT runtimes show tremendous potential for addressing extremescale challenges. Empirical studies show an AMT runtime can mitigate performance heterogeneity inherent to the machine itself and that Message Passing Interface (MPI) and AMT runtimes perform comparably under balanced conditions. From a programmability and mutability perspective however, none of the runtimes in this study are currently ready for use in developing production-ready Sandia ASC applications. The report concludes by recommending a codesign path forward, wherein application, programming model, and runtime system developers work together to define requirements and solutions. Such a requirements-driven co-design approach benefits the high-performance computing (HPC) community as a whole, with widespread community engagement mitigating risk for both application developers and runtime system developers.



H. Bhatia, Bei Wang, G. Norgard, V. Pascucci, P. T. Bremer. “Local, Smooth, and Consistent Jacobi Set Simplification,” In Computational Geometry: Theory and Applications (CGTA), Vol. 48, No. 4, pp. 311-332. 2015.

ABSTRACT

The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lack fine-grained control over the process, and heavily restrict the type of simplifications possible.

This paper introduces the theoretical foundations of a new simplification framework for Jacobi sets. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some userdefined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth-death points (a birth-death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).



P. T. Bremer, D. Maljovec, A. Saha, Bei Wang, J. Gaffney, B. K. Spears, V. Pascucci. “ND2AV: N-Dimensional Data Analysis and Visualization -- Analysis for the National Ignition Campaign,” In Computing and Visualization in Science, 2015.

ABSTRACT

One of the biggest challenges in high-energy physics is to analyze a complex mix of experimental and simulation data to gain new insights into the underlying physics. Currently, this analysis relies primarily on the intuition of trained experts often using nothing more sophisticated than default scatter plots. Many advanced analysis techniques are not easily accessible to scientists and not flexible enough to explore the potentially interesting hypotheses in an intuitive manner. Furthermore, results from individual techniques are often difficult to integrate, leading to a confusing patchwork of analysis snippets too cumbersome for data exploration. This paper presents a case study on how a combination of techniques from statistics, machine learning, topology, and visualization can have a significant impact in the field of inertial confinement fusion. We present the ND2AV: N-Dimensional Data Analysis and Visualization framework, a user-friendly tool aimed at exploiting the intuition and current work flow of the target users. The system integrates traditional analysis approaches such as dimension reduction and clustering with state-of-the-art techniques such as neighborhood graphs and topological analysis, and custom capabilities such as defining combined metrics on the fly. All components are linked into an interactive environment that enables an intuitive exploration of a wide variety of hypotheses while relating the results to concepts familiar to the users, such as scatter plots. ND2AV uses a modular design providing easy extensibility and customization for different applications. ND2AV is being actively used in the National Ignition Campaign and has already led to a number of unexpected discoveries.



H. Carr, Z. Geng, J. Tierny, A. Chattophadhyay,, A. Knoll. “Fiber Surfaces: Generalizing Isosurfaces to Bivariate Data,” In Computer Graphics Forum, Vol. 34, No. 3, pp. 241-250. 2015.

ABSTRACT

Scientific visualization has many effective methods for examining and exploring scalar and vector fields, but rather fewer for multi-variate fields. We report the first general purpose approach for the interactive extraction of geometric separating surfaces in bivariate fields. This method is based on fiber surfaces: surfaces constructed from sets of fibers, the multivariate analogues of isolines. We show simple methods for fiber surface definition and extraction. In particular, we show a simple and efficient fiber surface extraction algorithm based on Marching Cubes. We also show how to construct fiber surfaces interactively with geometric primitives in the range of the function. We then extend this to build user interfaces that generate parameterized families of fiber surfaces with respect to arbitrary polylines and polygons. In the special case of isovalue-gradient plots, fiber surfaces capture features geometrically for quantitative analysis that have previously only been analysed visually and qualitatively using multi-dimensional transfer functions in volume rendering. We also demonstrate fiber surface extraction on a variety of bivariate data



CIBC. Note: Data Sets: NCRR Center for Integrative Biomedical Computing (CIBC) data set archive. Download from: http://www.sci.utah.edu/cibc/software.html, 2015.



CIBC. Note: Cleaver: A MultiMaterial Tetrahedral Meshing Library and Application. Scientific Computing and Imaging Institute (SCI), Download from: http://www.sci.utah.edu/cibc/software.html, 2015.



C.C. Conlin, J.L. Zhang, F. Rousset, C. Vachet, Y. Zhao, K.A. Morton, K. Carlston, G. Gerig, V.S. Lee. “Performance of an Efficient Image-registration Algorithm in Processing MR Renography Data,” In J Magnetic Resonance Imaging, July, 2015.
DOI: 10.1002/jmri.25000

ABSTRACT

PURPOSE:
To evaluate the performance of an edge-based registration technique in correcting for respiratory motion artifacts in magnetic resonance renographic (MRR) data and to examine the efficiency of a semiautomatic software package in processing renographic data from a cohort of clinical patients.

MATERIALS AND METHODS:
The developed software incorporates an image-registration algorithm based on the generalized Hough transform of edge maps. It was used to estimate glomerular filtration rate (GFR), renal plasma flow (RPF), and mean transit time (MTT) from 36 patients who underwent free-breathing MRR at 3T using saturation-recovery turbo-FLASH. The processing time required for each patient was recorded. Renal parameter estimates and model-fitting residues from the software were compared to those from a previously reported technique. Interreader variability in the software was quantified by the standard deviation of parameter estimates among three readers. GFR estimates from our software were also compared to a reference standard from nuclear medicine.

RESULTS:
The time taken to process one patient's data with the software averaged 12 ± 4 minutes. The applied image registration effectively reduced motion artifacts in dynamic images by providing renal tracer-retention curves with significantly smaller fitting residues (P < 0.01) than unregistered data or data registered by the previously reported technique. Interreader variability was less than 10% for all parameters. GFR estimates from the proposed method showed greater concordance with reference values (P < 0.05).

CONCLUSION:
These results suggest that the proposed software can process MRR data efficiently and accurately. Its incorporated registration technique based on the generalized Hough transform effectively reduces respiratory motion artifacts in free-breathing renographic acquisitions. J. Magn. Reson. Imaging 2015.



S. Durrleman, T.P. Fletcher, G. Gerig, M. Niethammer, X. Pennec (Eds.). “Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data,” In Proceedings of the Third International Workshop, STIA 2014, Image Processing, Computer Vision, Pattern Recognition, and Graphics, Vol. 8682, Springer LNCS, 2015.
ISBN: 978-3-319-14905-9

ABSTRACT

This book constitutes the thoroughly refereed post-conference proceedings of the Third
International Workshop on Spatio-temporal Image Analysis for Longitudinal and Time-
Series Image Data, STIA 2014, held in conjunction with MICCAI 2014 in Boston, MA, USA, in
September 2014.

The 7 papers presented in this volume were carefully reviewed and selected from 15
submissions. They are organized in topical sections named: longitudinal registration and
shape modeling, longitudinal modeling, reconstruction from longitudinal data, and 4D
image processing.



T. Etiene, R.M. Kirby, C. Silva. “An Introduction to Verification of Visualization Techniques,” Morgan & Claypool Publishers, 2015.



SCI Institute. Note: FluoRender: An interactive rendering tool for confocal microscopy data visualization. Scientific Computing and Imaging Institute (SCI) Download from: http://www.fluorender.org, 2015.



Note: FusionView: Problem Solving Environment for MHD Visualization. Scientific Computing and Imaging Institute (SCI), Download from: http://www.scirun.org, 2015.



Y. Gao, L. Zhu, J. Cates, R. S. MacLeod, S. Bouix,, A. Tannenbaum. “A Kalman Filtering Perspective for Multiatlas Segmentation,” In SIAM J. Imaging Sciences, Vol. 8, No. 2, pp. 1007-1029. 2015.
DOI: 10.1137/130933423

ABSTRACT

In multiatlas segmentation, one typically registers several atlases to the novel image, and their respective segmented label images are transformed and fused to form the final segmentation. In this work, we provide a new dynamical system perspective for multiatlas segmentation, inspired by the following fact: The transformation that aligns the current atlas to the novel image can be not only computed by direct registration but also inferred from the transformation that aligns the previous atlas to the image together with the transformation between the two atlases. This process is similar to the global positioning system on a vehicle, which gets position by inquiring from the satellite and by employing the previous location and velocity—neither answer in isolation being perfect. To solve this problem, a dynamical system scheme is crucial to combine the two pieces of information; for example, a Kalman filtering scheme is used. Accordingly, in this work, a Kalman multiatlas segmentation is proposed to stabilize the global/affine registration step. The contributions of this work are twofold. First, it provides a new dynamical systematic perspective for standard independent multiatlas registrations, and it is solved by Kalman filtering. Second, with very little extra computation, it can be combined with most existing multiatlas segmentation schemes for better registration/segmentation accuracy.