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Abstract: Functional data, including one-dimensional curves and higher-dimensional surfaces, have become

increasingly prominent across scientific disciplines. They offer a continuous perspective that captures subtle

dynamics and richer structures compared to discrete representations, thereby preserving essential information

and facilitating more natural modeling of real-world phenomena, especially in sparse or irregularly sampled

settings. A key challenge lies in identifying low-dimensional representations and estimating covariance structures

that capture population statistics effectively. We propose a novel Bayesian framework with a nonparametric

kernel expansion and a sparse prior, enabling direct modeling of measured data and avoiding the artificial biases

from regridding. Our method, Bayesian scalable functional data analysis (BSFDA), automatically selects both

subspace dimensionalities and basis functions, reducing computational overhead through an efficient variational

optimization strategy. We further propose a faster approximate variant that maintains comparable accuracy

but accelerates computations significantly on large-scale datasets. Extensive simulation studies demonstrate

that our framework outperforms conventional techniques in covariance estimation and dimensionality selection,

showing resilience to high dimensionality and irregular sampling. The proposed methodology proves effective for

multidimensional functional data and showcases practical applicability in biomedical and meteorological datasets.

Overall, BSFDA offers an adaptive, continuous, and scalable solution for modern functional data analysis across

diverse scientific domains.

Keywords: functional data analysis; principal component analysis; dimension reduction; sparse bayesian learning;

variational bayesian inference; nonparametric methods; model selection

1. Introduction

The emergence of big data across diverse fields, such as biomedicine, finance, and physical
modeling, has catalyzed the need for advanced analytical methodologies capable of handling complex,
high-dimensional datasets that conventional discrete-data analysis approaches cannot always process
effectively. Such datasets often require analysis that captures and interprets their continuous and
potentially high-dimensional complexities–a central promise of functional data analysis (FDA) [1,2].
Foundational work established FDA’s capacity to treat each observation as an entire function [3], be it
a curve, surface, or higher-dimensional structure, thereby extracting richer insights than conventional
discrete-point analyses. Over the past decade, FDA’s scope has widened significantly to accommodate
high-dimensional and multivariate applications with theoretical and computational advances emerging
across various contexts [4–6].

A pivotal technique within FDA is functional principal component analysis (fPCA), which serves as a
dimension-reduction tool similar to classical PCA and factor analysis. Unlike classical PCA, however,
fPCA operates in principle in an infinite-dimensional function space to capture dominant modes
of variation and reduce complexity [7]. Despite its conceptual elegance, existing fPCA and similar
FDA models often assume that data is observed on a shared, finite grid, often relying on heuristic
imputation or posterior estimation to handle any missing entries [8–18]. This assumption conveniently
facilitates the adoption of established linear algebraic methods, but compromises the integrity of FDA
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by introducing significant information loss and high computational demands in high-dimensional
applications.

Ideally, each function would be represented according to its naturally sampled measurement
points rather than forcing all observations onto a shared grid, thus preserving crucial information and
avoiding the need for heuristic resampling. This point is critical when considering that, given only a
finite number of data points, infinitely many functions can interpolate these points, each reflecting
different inductive biases about smoothness or shape [19]. Conventional smoothing or regridding
methods (e.g., polynomial interpolation) introduce biases that may distort the underlying function’s
actual behavior. In contrast, we will achieve more accurate and unbiased predictions by concurrently
updating the function estimation and the population-level statistics governing the estimation, such as
those encoded in the covariance operator. Such an approach requires directly modeling the function
from its original measurement points rather than imposing artificial grids.

To mitigate these limitations, several studies have proposed alternative strategies. For instance,
[3] developed a nonparametric technique for estimating mean and covariance for functional data
under smoothness assumptions while also discussing a continuous formulation and the necessary
discretization in practical applications. In [20,21], they extended fPCA to sparse and irregular longi-
tudinal designs by smoothing the covariance estimate and then discretizing. Nonetheless, classical
discretization steps often result in significant information loss and computational burdens.

As functional data size and complexity grew, researchers turned to flexible basis expansions,
including sinusoids (Fourier), wavelets, polynomials, and B-splines, for a finite-dimensional repre-
sentation of functional data that is convenient and accurate in computation, avoiding the drawbacks
of explicit approximation and resampling [2,22–26]. For example, [27] utilized basis function ap-
proximations to manage irregular grids. However, a core challenge remains in selecting a suitable
model. For instance, researchers must choose the number and form (e.g., smoothness), along with the
dimensionality of the representational subspace. In approximation, the placement of basis functions
is also essential. Evenly spaced nodes remain popular for their simplicity but may be suboptimal.
Alternative node allocations may be better, like Chebyshev nodes for superior accuracy [28], or sparse
grids to reduce combinatorial growth of computational complexities [29].

Existing studies tend to rely on choosing the hyperparameters manually [7,10,11,30], or cross-
validation [3,25,31,32], which are known to be computationally prohibitive. Others employ approx-
imated cross-validation [22,24] or marginal likelihood [14] but still require exhaustive testing of all
candidate models. Methods with sparse Bayesian priors [8,33,34] for model selection allow model
selection with a single optimization. In [35,36], they use shrinkage or sparse priors for data-adaptive
basis selection to ensure minimal but effective sets of basis functions. Notably, [37] proposed Bayesian
and Akaike information criterion demonstrating state-of-the-art performance in simulation studies for
sparse and dense functional data.

In addition, probabilistic FDA emerges as a sophisticated adaptation of probabilistic methods
tailored to incorporate the flexibility of latent variable models to manage functional data. A Bayesian
latent factor regression model (LFRM) [34], for example, extends conventional regression to accom-
modate complex structures and dependencies in functional data, providing a robust framework to
handle the complexities inherent in functional data. However, these Bayesian approaches are often
limited with the computational demands of Monte Carlo methods in high dimensions [14]. To address
increasingly high-dimensional FDA problems, recent efforts have emphasized scalability. For instance,
[7,30,38,39] introduced FDA for 2D and 3D images with a fixed basis or grid. In [32], they further
reduced complexity in 2D fPCA via tensor product B-splines. And [40] applied a Bayesian framework
with basis expansion, adaptive regularization, and Gibbs sampling to 2D functional data in the form of
EEG studies on children with autism. Further, [41] leverages a parsimonious basis representation and
variational Bayes to achieve computational efficiency, making it suitable for 3-D brain imaging data.

In parallel, the broader field of principal component analysis (PCA) remains a fundamental
and effective tool. Classical PCA, rooted in eigen-decomposition [42], effectively extracts dominant
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modes of variation in many settings but does not inherently accommodate the probabilistic nature of
real-world data and its inherent uncertainties. Thus, [43] introduced probabilistic PCA (PPCA), which
incorporates a probability distribution to manage these uncertainties more effectively. PCA has since
evolved to address missing data, model selection, and complex data types [44–47]. In the context of
functional data, these concepts motivate new approaches that unify probabilistic methodologies, latent
factor models, and kernel expansions for continuous domains [1].

Within Bayesian machine learning, various priors have been proposed for sparse or robust formu-
lations of PCA [48–51]. Specifically, sparse Bayesian learning (SBL) [52–54] with its mechanism automatic
relevance determination (ARD) [55,56] has proven adept at promoting parsimonious solutions [57–61].
SBL has emerged in Bayesian PCA [45,62,63], applying an iterative method to evaluate the relevance
of each component and select the internal dimensionality by disregarding the redundant ones. [64]
applied SBL to optimize the combination of base kernels to enhance model performance. These
methods often exploit variational techniques or accelerated optimization [17,64–70], thereby balancing
model complexity with computational tractability. In functional data contexts, where representations
are infinite-dimensional, SBL offers a compelling framework for advanced FDA methods by efficiently
handling sparse expansions and adaptively adjusting model complexity.

In summary, despite these efforts to advance functional data analysis, several challenges persist.
Existing methods often exhibit limitations in accuracy and efficiency when sampling is sparse, auto-
matic model selection is essential, and dimensionality is high [41]. Concurrently, probabilistic PCA
and SBL frameworks illustrate powerful strategies to incorporate versatility and adaptivity for such
data complexities while their adaptation to FDA is still evolving. These gaps underscore a need for a
robust, flexible, and computationally feasible approach, unifying ideas from FDA, PPCA, and SBL,
that manages the continuous and high-dimensional intricacy of modern datasets.

1.1. Contriubutions

This manuscript proposes a novel Bayesian framework for functional principal component analysis
that leverages nonparametric kernel expansions, sparse Bayesian learning for model selection, and
efficient variational inference (VI). We abbreviate the proposed method as BSFDA (Bayesian Scalable
Functional Data Analysis). BSFDA addresses critical gaps in existing FDA techniques with irregular
sampling, high-dimensional scalability, and selection of both basis functions and principal components.
Specifically, our approach offers:

• Joint selection of optimum latent factors and sparse basis functions: This eliminates constraints
on parametric representation dimensionality, avoids information loss from discretization, and
extends naturally to higher dimensions or non-Euclidean spaces through nonparametric kernel
expansion. It further enhances interpretability by adaptively choosing model complexity without
testing multiple models separately. We achieve these improvements using a Bayesian paradigm
that provides robust and accurate posterior estimates while supporting uncertainty quantification
[1].

• Scalability across domain dimensionality and data size: The proposed method uses VI for
faster computation compared to Markov chain Monte Carlo (MCMC) methods, while still being
accurate. BSFDA reduces overall computation by partitioning the parameters into smaller update
groups, and introducing a slack variable to further subdivide the weighting matrix (which is
part of the kernel structure) into even smaller parts [34], updating fewer blocks at a time and
considering all model options. Introducing a slack variable makes the optimization process
more efficient by separating different variable groups. This approach scales well with data size
and works efficiently even with large, complex datasets. We demonstrate this on the 4D global
oceanic temperature data set (ARGO), which consists of 127 million data points spanning across
the globe for 27 years with depths up to 200 meters [71].
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1.2. Outline

Together, these contributions position our work at the intersection of functional principal compo-
nent analysis [25] and sparse Bayesian learning [52], enabling robust, flexible, and computationally
feasible analysis of high-dimensional functional data. The remainder of this paper is organized as
follows. We first describe the proposed Bayesian functional PCA framework in detail, highlighting the
nonparametric kernel expansions and sparse Bayesian priors. Next, we discuss the variational infer-
ence procedure and the reduced active block updating step, illustrating how these techniques jointly
provide scalability and accuracy. We then present extensive empirical studies demonstrating factor
selection accuracy, covariance operator estimation, and performance in large-scale 4D applications.
Finally, we conclude with a discussion of potential extensions and open directions, emphasizing the
broader implications of our work for large-scale, high-dimensional functional data analysis.

2. Formulation

The aim of the proposed method is the estimation of functions yi : RM 7→ R that are outcomes
of an M-dimensional stochastic process. The observed data are P independent, noisy samples of the
functions {yi}P

i=1 at index {Xi ∈ RNi×M}P
i=1 where Ni is the number of measured samples for the ith

function yi and Xin ∈ RM is the location of the nth measurement in the domain of the sample. The
observations are {Yi}P

i=1, where Yin = yi(Xin) + Ein, where Ein is white Gaussian noise of variance σ2.

2.1. Generative model

We assume that yi is in a class of functions that can be approximated as a weighted summation of
K kernel functions {ϕk}K

k=1:

yi(x) =
K

∑
k=1

wikϕk(x), (1)

where ϕk(x) = K(x, Xin), K is the kernel function, Xin is the k-th location, {wik}K
k=1 are the K co-

efficients of yi. We also assume that the functions span a low dimensional subspace of dimen-
sion J << K. We model this stochastically by assuming that the weights, wi ∈ RK, are given by
wik = ∑J

j=1 ZijWjk + Z̄k, where W ∈ RJ×K are the principal component loadings and Zi ∈ RJ are
standard normal variables. This model is therefore:

Yin =
K

∑
k=1

((
J

∑
j=1

(
ZijWjk

)
+ Z̄k

)
ϕk(Xin)

)
+ Ein = (ZiW + Z̄)Φi·n + Ein, (2)

where Φi·n = [ϕ1(Xin), . . . , ϕK(Xin)]
T are the evaluations of the basis functions at the n-th index of the

i-th sample function.

2.2. Sparse Prior

For effective model selection, we introduce a sparse prior over the coefficients of the basis
functions. The sparse prior in the proposed model is based on automatic relevance detection (ARD)
[62]. ARD evaluates the importance of a feature with a precision parameter estimated from the data.
The model uses {αj}J

j=1 and {βk}K
k=1 for the numbers of components and basis functions, respectively,

while η signifies the overall magnitude of the mean coefficients:

Z̄k ∼ N (0, η−1β−1
k ), ∀k = 1 : K (3)

Wjk ∼ N (0, α−1
j β−1

k ), ∀j = 1 : J, k = 1 : K (4)
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In the model, αj, βk, η, σ−2 are all variables of precision parameters, coming naturally with a conjugate
prior of Gamma distribution. The probabilistic graphical model is depicted in Figure 1. Setting a0, b0

to a small value yields a vague Gamma prior that approximates a noninformative (Jeffreys-type) prior.

𝑌

𝑍 ∼ 𝒩ሺ0, 𝜂ିଵ𝛽ିଵሻ

𝑍 ∼ 𝒩ሺ0, 𝐼ሻ

 𝛼 ∼ Γሺ𝑎, 𝑏ሻ

𝛽 ∼ Γሺ𝑎, 𝑏ሻ

𝑊 ∼ 𝒩ሺ0,𝛼ିଵ𝛽ିଵሻ

𝜎ିଶ ∼ Γሺ𝑎, 𝑏ሻ

P

E ∼ 𝒩ሺ0,𝜎ଶ𝐼ሻ

𝜂 ∼ Γሺ𝑎, 𝑏ሻ

𝜙ሺ⋅ሻ

𝑋

Φ

Full model

Figure 1. Probabilistic graphical model for the full model.

3. Methods

Based on the proposed formulation in Section 1.2, we estimate Pr[Θ|X, Y, a0, b0], the posterior of
the unobserved values Θ = {Z, W, Z̄, σ, α, β, η}. This inference gives the point estimates of Θ and the
posterior predictive distribution of new data. For notational convenience, X, a0, b0 are omitted.

Using Bayes’ theorem, Pr[Θ|Y] = Pr[Y|Θ]Pr[Θ]
Pr[Y] , but the exact posterior distribution is intractable

because the evidence Pr[Y] =
∫

Pr[Θ, Y]dΘ is intractable. Therefore, an approximate inference strategy
is proposed. To facilitate this, we utilize variational inference (VI) [72], choosing a surrogate density
from a parameterized family, denoted as Q, to approximate the posterior. Compared with classical
methods like Markov chain Monte Carlo (MCMC) sampling, VI is typically faster per [72]. In our
experiments, VI is about 85 times faster for the original Bayesian PCA formulation [45] as shown in
Section 12.2 in the supplements.

3.1. Variational Bayesian Inference

Variational inference optimizes Q by maximizing the lower bound L (minimizing the KL diver-
gence between actual and surrogate distributions):

EQ
[

ln
Pr[Θ, Y]
Q(Θ)

]
= −KL(Q(Θ)||Pr[Θ|Y]) + ln Pr[Y] ∝ −KL(Q(Θ)||Pr[Θ|Y]). (5)

The mean-field variational family is used for Q. It simplifies the optimization by assuming
the surrogate posterior distributions are independent, allowing each variable in the posterior to be
optimized independently: QΘ = ∏iQΘi . The posterior for each variable is chosen conjugate, further
simplifying the optimization. Thus, the posteriors of the component scores Z, the weighting matrix W,
and the mean weights Z̄ are normal distributions. Here W is vectorized via vec (W) without altering its
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normality assumption. Meanwhile, the posteriors of the precision variables of noise σ−2, components
α, basis functions β, mean weights η are Gamma distributions:

QZ(Z) = ∏
i
QZi (Zi) = ∏

i
N (Zi|µZi , ΣZi ) (6)

QW(W) = N (vec(W)|µvec (W), Σvec (W)) (7)

QZ̄(Z̄) = N (Z̄|µZ̄, ΣZ̄) (8)

Qσ(σ) = Γ(σ−2|aσ, bσ) (9)

Qα(α) = ∏
j
Qαj = ∏

j
Γ(αj|aαj , bαj) (10)

Qβ(β) = ∏
k
Qβk = ∏

k
Γ(βk|aβk , bβk ) (11)

Qη(η) = Γ(η, |aη , bη) (12)

3.1.1. Update Steps

In mean field approximation using the surrogate posterior QΘ = ∏iQΘi conditioned on observa-
tions Y, the lower bound is maximized with respect to each unknown Θi. With the conjugate prior, the
optimal updates (denoted with "←") make the moments of QΘi equal to the moments conditioned on
the remaining parts of QΘ [72]:

QΘi ←
exp

(
EQ/Θi

[ln(Pr[Y, Θ])]
)

∫
exp

(
EQ/Θi

[ln(Pr[Y, Θ])]
)

dΘi

(13)

From Equation (13), detailed update rules for each variable are presented subsequently, and the
derivations of these formulas are in the supplementary material.

Updates for the parameters of the posterior for the precision of components Qαj , ∀j = 1 : J:

aαj ← a0 +
K
2

, (14)

bαj ← b0 +
1
2

K

∑
k=1

EQ/αj
[W2

jkβk] = b0 +
1
2

K

∑
k=1

((
ΣWjk + µ2

Wjk

) aβk

bβk

)
, (15)

where Equation (14) calculates the corrected degrees of freedom and Equation (15) calculates the
corrected sum of squares. As a0 and b0 approach 0, the expectation of precision αj, which is EQαj

[αj] =
aαj
bαj

, is exactly the inverse of the empirical or sample variance.

Updates for the parameters of the posterior of the precision of the mean weights Qη :

aη ← a0 +
K
2

, (16)

bη ← b0 +
1
2

K

∑
k=1

EQ/η
[Z̄2

k βk] = b0 +
1
2

K

∑
k=1

((
ΣZ̄k + µZ̄

2
k

) aβk

bβk

)
(17)
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Updates for the parameters of the posterior of the precision of basis functionsQβk , ∀k = 1 : K:

aβk ← a0 +
J + 1

2
, (18)

bβk ← b0 +
1
2
EQ/βk

[Z̄2
k η +

J

∑
j=1

W2
jkαj]

= b0 +
1
2

((
ΣZ̄kk + µZ̄

2
k

) aη

bη
+

J

∑
j=1

((
ΣWjk + µ2

Wjk

) aαj

bαj

))
(19)

Updates for the parameters of the posterior of the mean weights QZ̄:

ΣZ̄ ←
(
EQ/Z̄

[
σ−2

P

∑
i=1

Ψi + η diag(β)

])−1

=

(
aσ

bσ

P

∑
i=1

Ψi +
aη

bη
diag(

a
b
)

)−1

, (20)

µZ̄ ←
(
EQ/Z̄

[
σ−2

] P

∑
i=1

(Yi −EQ/Z̄
[ZiW]Φi)ΦT

i

)
ΣZ̄ =

(
aσ

bσ

P

∑
i=1

(Yi − µZi µWΦi)ΦT
i

)
ΣZ̄ (21)

where diag(β) denotes the diagonal matrix with diagonal entries given by β. Equation (20) indicates
that the eigenvectors of ΣZ̄ are solely determined by the sum of Gram matrices ∑P

i=1 Ψi, while the
eigenvalues of ΣZ̄ have a negative correlation with the scale of ∑P

i=1 Ψi, the prior η diag(β) and data-
dependent term σ−2. It is sensible because, for instance, large noise would result in large uncertainty
in Z̄. In Equation (21), the data residuals, excluding component scores, are projected into the K-
dimensional space through the inner product with Φi and summed over all sample functions to
calculate the mean weights.

Updates for the parameters of the posterior of the weights QW :

Σvec (W) ← EQ/W

[
σ−2

P

∑
i=1

(
ΨT

i ⊗ (ZT
i Zi)

)
+ diag(β)⊗ diag(α)

]−1

=

(
aσ

bσ

P

∑
i=1

(
ΨT

i ⊗ (µZi
TµZi + ΣZi )

)
+ diag

( a
b

)
⊗ diag

( c
d

))−1

, (22)

µvec (W) ← EQ/W

[
−σ−2

P

∑
i=1

vec
((

Φi(ΦT
i Z̄T −YT

i )Zi

)T
)T
]

Σvec (W)

= − aσ

bσ

P

∑
i=1

vec
((

Φi(ΦT
i µZ̄

T −YT
i )µZi

)T
)T

Σvec (W) (23)

Equation (22) is similar to Equation (20), because it is correlated with Φi, its prior diag(β)⊗ diag(α)
and data-dependent terms σ−2 and Zi. In Equation (23), the data residual excluding the mean function
is used to estimate the expectation of W.

Updates for the parameters of the posterior of the component scores QZi :

Hijk ← EQ/Zi
[WjΨiWT

k ] = Tr(EQ/Zi
[WT

k Wj]Ψi)

= Tr
((

Σ[Wk ,Wj ]
+ µT

[Wj ]
µ[Wk ]

)
Ψi

)
, ∀j = 1 : K, k = 1 : K, (24)

ΣZi ←
(
EQ/Zi

[σ−2WΨiWT + I]
)−1

= [
aσ

bσ
Hi + I]−1, (25)

µZi ← EQ/Zi
[σ−2(Yi − Z̄Φi)ΦT

i WT ]ΣZi =
aσ

bσ
(Yi − µZ̄Φi)ΦT

i (µW)TΣZi , (26)
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where Hi is a temporary variable denoting the Gram matrix of weighted kernel functions WΦi and
Σ[Wk ,Wj ]

denotes the covariance between WT
k and Wj in Q.

Updates for the parameters of the posterior of the noise Qσ:

aσ ← a0 +
1
2 ∑

i
Ni, (27)

bσ ← b0 +
1
2
EQ/σ

[
∑

i
||Yi − (ZiW + Z̄)Φi||22

]

= b0 +
1
2 ∑

i
(YiYT

i − 2Yi
(
µZi µWΦi

)T − 2Yi(µZ̄Φi)
T + 2µZi µWΨi(µZ̄)

T

+ Tr
((

ΣZ̄ + (µZ̄)
TµZ̄

)
Ψi

)
) +

1
2

vec(HT)
T ∑

i
vec
(

vec(Ψi) vec(ΣZi + µZi
TµZi )

T
)

, (28)

where H is a temporary variable that is updated by

Hj+kM ← EQ/σ

[
vec(WkWj

T)T
]
= vec(Σ[Wk ,Wj ]

+ µT
[Wj ]

µ[Wk ]
)T , ∀j = 1 : K, k = 1 : K (29)

Nearly noninformative (vagor) priors, i.e., with almost zero a0, b0, introduce an inherent identifia-
bility ambiguity in our formulation, specifically, in the product of the precision parameters α, β and η

(Equations 20 and 22). In our model, scaling α and η by a specific factor while inversely scaling β leaves
the product (and hence the lower bound in Equation 5 ) unchanged. This inherent ambiguity can lead
α, β, and η to converge to extreme values, thereby challenging numerical stability during optimization.
To mitigate this issue, we adopt a heuristic constraint to ensure that the smallest values of α and β

remain within one order of magnitude of each other. Specifically, we enforce

∣∣∣∣∣log

(
min(ff)
min(β)

)
10

∣∣∣∣∣ ≤ 1. If an

update to any αj or βk would violate this constraint, that particular update is skipped while the rest
of the parameters remain updated. This strategy does not alter the algorithm’s overall structure but
stabilizes the optimization by curbing unnecessary flexibility in the precision parameters.

3.2. Scalable Update Strategy

The scalability of our algorithm so far is primarily challenged by the need to optimize the
variational lower bound, L over K basis functions. As indicated by Equation (22), time complexity
is O

(
K6) (or, alternatively, O

(
K2P maxi(Ni)

)
, typically dominated by the former), which becomes

prohibitive when K is large. In practice, however, only a small subset of these basis functions is
necessary for an accurate representation–those with non-negligible weights under our sparse prior.

To address this, we focus the updates on the subspace of active basis functions, denoted as K(a),
which comprises only those functions with non-negligible weights. The remaining basis functions,
whose influence is minimal, are held fixed during optimization. Furthermore, the number of active
principal components is noted as J(a) and set equal to K(a), ensuring that the model spans the full
range of possible ranks from 1 to K(a). Consequently, we optimize Q(a) using updates derived w.r.t.
the objective K(a)-dimensional lower bound L(a) as an efficient surrogate of the full updates of Q w.r.t.
the full lower bound L, using only K(a) active basis functions. Meanwhile, the active dimensionality of
the model is adjusted dynamically during optimization by activating or deactivating basis functions
based on their precision parameters. For clarity, variables associated with the active subspace are
annotated with the superscript (a) (e.g., a(a)αj = a0 +

K(a)

2 versus aαj = a0 +
K
2 ).
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3.2.1. Implicit Factorization

For notation clarity, we reorder the rows and columns of our parameter matrices to separate active
components from inactive ones. Specifically, we partition as follows:

Zi =
(

ZiA ZiB

)
, Z̄ =

(
Z̄A Z̄B

)
, α =

(
αA αB

)
, β =

(
βA βB

)
,

W =

(
WA WB
WC WD

)
, Φi =

(
ΦiA
ΦiB,

)
(30)

Here, the subscript A denotes variables belonging to the active subspace (i.e., those corresponding to
K(a) basis functions), while B, C, and D denote the inactive components. Notably, the cross terms WB
and WC involve both active and inactive components; these are updated implicitly, as proved in the
supplements.

Following the strategy in [73], a basis function is deemed inactive if its precision exceeds a high
threshold, i.e. αj > ϵ−1 and βk > ϵ−1 as ϵ→ 0. In the limit, the inactive basis functions decouple from
the active ones, leading to the following mean-field factorization:

QW = QWAQWBQWCQWD (31)

QZ̄ = QZ̄A
QZ̄B

(32)

QZi = QZiAQZiB . (33)

The factorization of α and β was already obtained in Equations (10) and (11). These factorizations
allow us to decouple the update for the active subspace with the proof provided in the supplementary
material.

It implies that only updates for QZiA ,QWA ,QWB ,QWC ,QZ̄A
,QαA ,QβA ,Qσ,Qη are required as

shown in Figure 2. This strategy reduces the computational complexity from O(K6) to O(K(a)6
).

Moreover, the active dimensions K(a) are initialized using a modified, multi-instance version of
relevance vector machine [52], as detailed in Section 11 in the supplementary materials.

𝒬ௐಲ

𝒬ௐಳ𝒬ఉಲ

𝒬ఈಲ

Closed loop

𝒬ௐಲ

𝒬ௐ𝒬ఈಲ

𝒬ఉಲ 𝒬ಲ

𝒬ಳ𝒬ఉಲ

𝒬ఎ

𝒬ௐಲ

𝒬ಲ

𝒬ఙ

𝒬ಲ

𝒬ಲ 𝒬ಲ

𝒬ఈಲ

𝒬ఉಲ

𝒬ఙ𝒬ௐಲ 𝒬ಲ

𝒬ௐಲ 𝒬ఉಲ 𝒬ఎ

𝒬ఙ𝒬ಲ 𝒬ಲ

𝒬ௐಲ 𝒬ಲ

𝒬ఙ

Closed loop Closed loop

Figure 2. Diagrams of variational inference algorithm for all the parameters. The top 3 diagrams each
has a closed loop and a closed form overall transfer function.

3.2.2. Low-dimensional Lower Bound

This section shows how to optimize these active surrogates, e.g., QZ̄A
, using updates of Q(a)

w.r.t. the K(a)-dimensional lower bound L(a), which ultimately optimizes the full lower bound L. To
distinguish between the two, we denote the active surrogate posterior for the full model as QZ̄A

and

that for the reduced K(a)-dimensional model as Q(a)
Z̄A

. The active Gaussian surrogate posteriors are
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shared, e.g., QZ̄A
= Q(a)

Z̄A
= N (Z̄A|µZ̄ A, ΣZ̄ A). This implies updating Q(a) is equivalent to updating

Q, so we set the moments of the active distributions of the full model to match those of the reduced
model. However, the surrogate posterior Gamma distributions differ between the two models. For
example, the update of EQ(a) [αA] depends solely on QWA , whereas EQ[αA] also incorporates a cross
term QWB corresponding to the remaining (K − K(a)) dimensions. This difference is reflected in
how the scale parameters depend on the number of active versus total basis functions, as shown
in Equations (14), (16) and (18). Nonetheless, we prove that in the limit ϵ → 0, the fixed point of
the K(a)-dimensional updates of the complete surrogate Q equals that of the reduced surrogate Q(a).
Consequently, the updates for QαA ,QβA , and Qη are derived directly from the expectations of the

reduced model Q(a)
αA ,Q(a)

βA
,Q(a)

η :

EQ[αA]← EQ(a) [αA]⇔ bαj ←
aαj

a(a)αj

b(a)αj , ∀j ≤ J(a), (34)

EQ[βA]← EQ(a) [βA]⇔ bβk ←
aβk

bβk

b(a)βk
, ∀k ≤ K(a), (35)

EQ[η]← EQ(a) [η]⇔ bη ←
b(a)η

a(a)η

aη (36)

These update Equations (34), (35), (36) prove to optimize L in Theorem 1, 2 in the supplements.

3.2.3. Heuristic for Activating Basis Functions

The proposed method selects a relatively small set of basis functions from a potentially extensive
set of possibilities. The computational costs are kept in check by recognizing that inactive basis
functions do not interact with those active (with non-negligible weights). Due to computational
constraints, we consider functions for activation sequentially rather than all at once. Thus, we propose
Algorithm 1 to introduce unseen basis functions into the active set using a selective strategy akin to
the heuristic approach described in [73].

The algorithm selects the top function, ϕBk, from the inactive basis functions {ϕBk}k by gauging
their correlation with residuals and applying an angle-based threshold τang relative to the subspace of

ϕA. The correlation with residuals for ϕBk is measured by ∑i

(
ΦiBk(Yi −EQ(a) [ZiAWA + Z̄A]ΦiA)

T
)2

.
The angle-based threshold ensures a meaningful distinction from active functions. Next, the current
active surrogate posterior is expanded by a dimension for ˜ϕBk, initiating optimization from the nu-
merical maximum τmax. Post optimization, the function gets retained if it falls below τmax. Otherwise,
the algorithm terminates. Efficiently, in trial optimization, the approach replaces one function with
precision τmax, if present.

Algorithm 1 Search for new basis functions to activate

Sort inactive basis functions {ϕBk}k by correlation with residuals.
Filter through {ϕBk}k, selecting the most correlated one as ϕBk.
Copy current active surrogate Q(a)(Θ) posterior to Qk

(a)′(Θ).
Expand dimension in Qk

(a)′(Θ) for ϕBk.
Optimize Qk

(a)′(Θ) for 3 iterations using mean field approximation.
if expected precision is within threshold then
Q(a)(Θ)← Qk

(a)′(Θ).
end if

4. Faster Variant

To enhance the computational efficiency of our primary algorithm, we introduce a faster variant,
denoted as BSFDAFast. This approach leverages conditional independence among the columns of W,
enabling separate updates and thereby reducing computational complexity. Similar strategies have
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been described in [34,62]. The model is defined with an introduced variable ζi for the coefficient noise
as follows:

θi = ZiW + ζi, (37)

ζik ∼ N (0, ς2
kβ−1

k ). (38)

Similar to before, we assign a conjugate Gamma prior to the precision:

ς−2
k ∼ Γ(a0, b0). (39)

This formulation ensures that the columns of W are conditionally independent, allowing the
variational distribution to factorize as: QW = ∏kQW·k , thereby facilitating separate updates for each

column. Consequently, the time complexity is reduced from O(K(a)6
) to O(K(a)3

).
To align with the original model, it is necessary for ζ and the associated variance parameters ς to

approach zero. Having ς too high would allow the coefficient noise to corrupt the signal, biasing the
model toward underestimating the true signal levels, particularly because this noise operates in the
coefficient space where it introduces smooth, correlated variation (low entropy, like signals) that is
harder to eliminate than high-frequency white noise (maximum entropy). Injecting the same amount of
noise leads to an unbiased estimation of the signals but increases the estimation variance. Conversely,
as ς decreases, the columns of W become dependent, violating the independence assumption inherent
in variational inference. This dependency degrades the approximation quality and slows down the
optimization process. Such dependency issues are well documented in both variational inference and
MCMC literature–with recent efforts addressing them via structured VI [72] or blocked/collapsed
Gibbs sampling [74]. Empirical validations of this noise impact are conducted with both BSFDAFast in
Section 5 and with Bayesian PCA [45,62] in Section 12.2 in the supplements.

To balance the trade-off between optimization speed and accuracy, we adopt a strategy of gradu-
ally decreasing the values of ςk during the optimization iterations. Specifically, we initialize ςk with
a relatively large value and linearly decrease it from 10−2 to 10−5 over the first half of the iterations.
After reaching 10−5, ςk is fixed for the remaining iterations. This gradual reduction ensures that the
algorithm initially maintains efficiency with benefits from minimizing interdependency among the
columns of W to accelerate convergence while later preserving quality of the approximation by pre-
venting the noise from obscuring signal components. We unify the scales by scaling the basis functions
so that Zi is standard normal and W is an identity matrix in initialization. Empirical evaluations
indicate the strategy above is effective in most applications.

By implementing these modifications, BSFDAFast offers a practical solution that substantially
accelerates the algorithm without significant loss in accuracy, making it well-suited for large-scale,
high-dimensional functional data analysis.

5. Results

The proposed method proves its effectiveness through simulations and applications to observed
data sets.

5.1. Simulation Results

In simulations, we evaluate functional data analysis performance in model selection, estimated
covariance accuracy, and extendability to multi-dimensional domains.

The model selection metric is the accuracy in estimating the number of principal components,
which is the dimension of the compact subspace of signal variations. The configuration of the sim-
ulations in this section aligns with that established in [37], covering various scenarios. Simulated
data sets derive from a latent generative model with variables Zi with dimension r for the i-th sam-
ple function and noise corruption with a standard deviation of σ: Yi = ∑r

j=1
(
Zij f j(Xi)

)
+ g(Xi) +
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Ei,Zij ∼ N (0, vj), Ej ∼ N (0, σ2 I), where { f j}r
j=1 represent eigenfunctions, {vj}r

j=1 are the eigenvalues,
g : R 7→ R signifies the mean function. Here, we consider five scenarios.

Scenario 1: Data generated with g = 5(x − 0.6)2, r = 3, v = (0.6, 0.3, 0.1), σ2 = 0.2, f1(x) =

1, f2(x) =
√

2 sin(2πx), f3(x) =
√

2 cos(2πx). Here v3 < σ2, i.e., the noise has a larger variance than
the smallest signal.

Scenario 2: Similar to Scenario 1, but the third eigenfunction is replaced by a function with higher
frequencies f3(x) =

√
2 cos(4πx), and the principal component scores follow a skewed Gaussian mix-

ture model. Specifically, the j-th component score has 1/3 probability of following a N (2
√

vj/3, vj/3)

distribution, and 2/3 probability of following N (−
√

vj/3, vj), for j = 1, 2, 3.

Scenario 3: Data generated with g = 12.5(x − 0.5)2 − 1.25, r = 3, v = (4, 2, 1), σ2 = 0.5,
f1(x) = 1, f2(x) =

√
2 cos(2πx), f3(x) =

√
2 sin(4πx).

Scenario 4: Same as Scenario 3, but the component scores are generated from a Gaussian mixture
model as Scenario 2.

Scenario 5: Data from g = 12.5(x − 0.5)2 − 1.25, r = 6, v = (4, 3.5, 3, 2.5, 2, 1.5), σ2 = 0.5,
f1(x) = 1, f2k(x) =

√
2 sin(2kπx) for k = 1, 2, 3, f2k+1(x) =

√
2 cos(2kπx) for k = 1, 2, j-th component

score obeying N (0, vj).
In each scenario, simulations produced 200 sample functions. We investigated 3 cases with

sparse, medium, and dense sampling by assigning the number of observations per sample function
Ni = {5, 10, 50}. Each case in each scenario is repeated 200 times. The method’s performance was
compared to fpca from [22], AIC and BIC in the 2022 release of pace [20], modified AIC and BIC in [37],
and all the competing methods in [37]. For fpca, we set the candidate numbers of basis functions as
[8,10,15,20], and the candidate dimensions of the process as [2,3,4,5] for Scenario 1-4 and [4,5,6,7,8]
for Scenario 5. The other parameters are all set to the defaults. Due to its consistent overestimation
of the true number of components–likely resulting from interference by correlated noise and less
sparse precision priors–we excluded LFRM[34] from further comparisons (see Section 12.1.1 in the
supplements).

Each estimation chose ten length-scales of functions, which are selected using cross-validation
and k-means clustering. This adaptive strategy allows the algorithm to choose distinct length-scales at
different locations of the definition domain, thereby accommodating varying smoothness character-
istics inherent in complex functional data–a flexibility that is not possible when using a regular grid
that forces a single length-scale across the entire domain [34]. Sparse sampling in Scenario 5 used five
length-scales to avoid over-fitting. Figure 3 shows the length-scales and centers of the selected kernel
basis functions for three different numbers of sample points, Ni, in a random repetition of Scenario
5. The results reveal that the selected length-scales mainly concentrate around 0.07, with a few as
high as 0.35–suggesting that the lower length-scales capture finer, high-frequency variations. The
higher length-scales model the overall, lower-frequency quadratic mean structure and the constant
baseline component. Furthermore, the estimated density functions of the selected length-scales exhibit
consistent patterns across the three sampling densities, and the method selects 9, 11, and 12 basis
functions respectively, demonstrating the algorithm’s adaptive fidelity and complexity based on the
available observations. The supplements showcase the uncertainty evaluation in Figure 12.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 March 2025 doi:10.20944/preprints202503.0658.v1

https://doi.org/10.20944/preprints202503.0658.v1


13 of 51

Kernel Basis Center

Le
ng

th
-s

ca
le

Figure 3. length-scales and centers of selected kernel basis functions in a random repetition for three
different m values in Scenario 5.

Tables 1, 2, 3, 4 and 5 show the results. Results for the first five methods are from [37]. Out of 15
cases, the proposed BSFDA exhibits the highest accuracy in 12. In the other 3 cases, the accuracy of
BSFDA is comparable to the best result and is always above 0.950. BSFDAFast demonstrates perfor-
mance comparable to BSFDA when applied to medium-density and dense datasets with significantly
higher efficiency which we detail in Figure 5 later. However, its efficacy diminishes with sparse data.
This limitation arises because the parameter ς can bias model estimation in scenarios with insufficient
data evidence, leading to an underestimation of signal variance. Consequently, BSFDAFast tends to
underestimate the number of components, particularly those capturing nuanced variations, in the
presence of sparse observations. Nonetheless, with adequate data, BSFDAFast achieves performance
on par with the original model.

Table 1. Proportion of accurate estimations for Scenario 1 (r=3).

Ni AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 0.000 0.580 0.380 0.410 0.735 0.650 0.880 0.645 0.995 0.015

10 0.000 0.980 0.670 0.955 0.985 0.880 0.920 0.645 1.000 0.910

50 0.000 1.000 0.830 1.000 1.000 1.000 1.000 0.890 0.980 0.945

Table 2. Proportion of accurate estimations for Scenario 2 (r=3).

Ni AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 0.005 0.630 0.245 0.375 0.605 0.570 0.620 0.475 1.000 0.040

10 0.000 0.710 0.665 0.570 0.805 0.825 0.850 0.640 1.000 0.995

50 0.000 0.630 0.795 0.955 0.945 1.000 1.000 0.950 1.000 0.950
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Table 3. Proportion of accurate estimations for Scenario 3 (r=3).

Ni AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 0.005 0.720 0.325 0.640 0.590 0.320 0.400 0.450 0.995 0.945

10 0.000 0.580 0.770 0.965 0.665 0.740 0.755 0.440 0.995 1.000

50 0.000 1.000 0.775 1.000 1.000 1.000 1.000 0.765 0.980 0.920

Table 4. Proportion of accurate estimations for Scenario 4 (r=3).

Ni AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 0.015 0.710 0.410 0.640 0.560 0.515 0.575 0.370 1.000 0.975

10 0.000 0.830 0.775 0.920 0.900 0.750 0.760 0.350 0.995 0.990

50 0.000 0.945 0.835 1.000 1.000 1.000 1.000 0.730 0.950 0.935

Table 5. Proportion of accurate estimations for Scenario 5 (r=6).

Ni AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 0.705 0.470 0.090 0.070 0.545 0.425 0.410 0.855 0.925 0.160

10 0.065 0.570 0.525 0.775 0.705 0.575 0.575 0.500 1.000 0.930

50 0.000 0.260 0.590 0.980 0.965 0.870 0.770 0.695 0.995 0.925

5.1.1. Mean Squared Error in Covariance Operator

The mean squared error across Xgrid, a grid of 1000 index points:

|| cov(Xgrid, Xgrid)− ˆcov(Xgrid, Xgrid)||2F
1000× 1000

,

where || · ||F is the Frobenius norm, measure the accuracy of the estimated covariance. The quadratic
measure of error with Frobenius norm for covariance estimators has been used by [75]. Methods
compared include fpca of [22], pace of [20] with AIC and BIC, refund-sc of [21]. Only cases in scenario 5
were used because of the time constraints (e.g., refund-sc takes 6 hours for 20 repetitions with 50 points
in scenario 5). As the most challenging, scenario 5 should provide the most compelling comparison.
The results in Table 6 demonstrate that the proposed method is comparable to the best work in terms
of estimated covariance accuracy. Specifically, dense sampling becomes prohibitive for refund-sc. The
results highlight the benefit of continuous formulations, as seen in both fpca and the proposed method,
over the grid-based optimization in conventional methods. BSFDAFast again performed comparably
well given data was adequate.

Table 6. Mean squared error of covariance ErrorCovFunc for Scenario 5

Ni AIC2022
PACE BIC2022

PACE fpca refund.sc BSFDA BSFDAFast

5 12.373 ± 4.026 12.377 ± 4.031 5.192 ± 6.166 8.833 ± 4.730 5.814 ± 3.535 10.292±12.717

10 10.391 ± 2.521 10.391 ± 2.521 2.098 ± 1.425 5.314 ± 3.501 2.068 ± 1.427 2.656±1.712

50 9.054 ± 1.683 9.054 ± 1.683 1.642 ± 1.240 N/A 1.638 ± 1.247 1.770±1.275
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5.1.2. Multidimensional Functional Data Simulation

A simulation experiment with a four-dimensional index set reveals the proposed method’s advan-
tages for high-dimensional data, where the gridding strategies of previous methods are impractical.
The settings are as follows with a length-scale ls = 0.33:

Zi ∼ N (0, I) ∈ R1×3 (40)

ϕ0(x) = (πl2
s )
−2 exp

(
−1

2

∥∥∥∥ x− [0.5, 0.5, 0.5, 0.5]
ls

∥∥∥∥2

2

)
(41)

ϕ1(x) = (πl2
s )
−2 exp

(
−1

2

∥∥∥∥ x− [0.4, 0.4, 0.4, 0.4]
ls

∥∥∥∥2

2

)
(42)

ϕ2(x) = (πl2
s )
−2 exp

(
−1

2

∥∥∥∥ x− [0.6, 0.6, 0.6, 0.6]
ls

∥∥∥∥2

2

)
(43)

yi(x) = Zi0 ∗
√

0.6 ∗ (ϕ0(x)− ϕ1(x)) + Zi1 ∗
√

0.3 ∗ ϕ1(x) + Zi2 ∗
√

0.4 ∗ ϕ2(x) (44)

The observations include additive noise with a sigma of 4.472e-01. The cross-validation selects a
length-scale of 0.405. The estimated noise sigma is 4.637e-01. The proposed method correctly estimates
the number of principal components as 3 and selected 31 basis functions. As shown in Figure 4, the
eigenfunctions are correctly estimated. In addition, the estimated mean function is zero, which is
accurate.
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Figure 4. Cross-sectional visualization of eigenfunctions (eigenvalues) of the 4D simulation.

Next, we present a convergence comparison between BSFDA and BSFDAFast under four different
schedules for the coefficient noise ςk. Specifically, we compare the default diminishing schedule from
10−2 to 10−5 with three fixed settings: 10−2, 10−3, and 10−5. We evaluate the covariance error and the
discrepancy between the estimated/true dimensionality in one replicate of each sample density in
Scenario 5, and the 4D simulation. For the 4D, we adopt a default initial ςk of 10−3. As illustrated in
Figure 5, BSFDAFast achieves comparable accuracy to BSFDA while converging significantly faster
than BSFDA in terms of both covariance errors and component estimation for medium and densely
sampled data. In the 4D case, BSFDAFast converges in covariance estimation after approximately
10,000 seconds and in dimensionality after around 4,000 seconds, compared to roughly 100,000 seconds
and 13,000 seconds, respectively, for BSFDA. However, for sparse data, BSFDAFast exhibits reduced
estimation accuracy and underestimates the number of components by one. A similar decline in
accuracy is observed in the 4D simulation when data sparsity is high. This limitation arises because
the introduction of coefficient noise ς biases the model towards eliminating signals that are deemed
insignificant. Moreover, when comparing the three fixed-ςk variants of the fast algorithm, a clear
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trade-off emerges: smaller ςk reduce overall error but slow down the optimization due to increased
dependency among variables. These results collectively demonstrate the effectiveness of our chosen ςk
schedule in BSFDAFast, as it balances both efficiency and accuracy.

Figure 5. Convergence plots for Scenario 5 in Yehua and the 4D simulation. The upper row displays
the covariance error against time, while the lower row illustrates the difference between the estimated
and true number of components.

5.2. Results on Public Data Sets

The proposed method’s practicality was validated with 2 application data sets, CD4 and wind
speed measurements.

5.2.1. CD4

CD4 data, a classical form of functional data, received attention in [1,20,22]. CD4 cell counts gauge
the immune system’s response to human immunodeficiency virus (HIV) infection, which leads to a
progressive reduction in CD4 cell counts. The Multicenter AIDS Cohort Study (MACS) [76] provided
the CD4 data. This dataset consists of CD4 percentages from 283 male human subjects that were HIV
positive, each with 1 to 14 repeated measurements over time in years. Subjects were scheduled for
reevaluation at least semiannually. However, missed visits caused a sparse and uneven distribution
of measurements. The proposed method used five length-scales selected from cross-validation and
k-means clustering. Finally, the model selected 9 basis functions. Figure 6 displays the estimated
mean function, eigenfunctions, and curves of the observations. The mean function reflects the overall
decreasing tendency with the progression of the disease. The eigenfunctions are obtained by applying
singular value decomposition of the covariance operator that is discretized (for visualization purposes
only) with a grid of 50 evenly spaced points over the whole timeline. The first eigenfunction is relatively
flat and mainly captures the subject-specific average magnitude of the CD4 counts, consistent with the
finding of [1,20,22]. The second eigenfunction captures the simple linear trend of the variations, as
described in [22]. The third eigenfunction captures the piece-wise linear time trend with a breakpoint
near 2.5 years since baseline. [1,20] found similar eigenfunctions.
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Figure 6. Outcomes from the proposed method applied to MACS CD4 data sets.(top): Estimated curves
for a random selection of 9 sampled functions and mean function; (bottom): Estimated eigenfunctions
(eigenvalues).

5.2.2. Wind Speed

Wind-speed data, collected from 110 locations across Utah’s Salt Lake Valley, varies between 11 to
1440 measurements. The proposed method leverages ten length-scales selected from cross-validation
and k-means clustering. Figure 7 illustrates the estimated mean function, curves of the observations,
eigenfunctions, and covariance. The horizontal axis represents the seconds starting from 12:00 AM
Greenwich Mean Time (GMT) on June 15, 2023, which corresponds to 6:00 PM in Salt Lake City. In
Figure 7a, the estimated mean function depicts two pronounced peaks observed approximately at
8:00 PM and 6:00 AM, as well as two troughs around 12:00 AM and 12:00 PM. This pattern aligns
with the diurnal cycle, particularly highlighting the thermal activities associated with sunset and
sunrise. The peaks during sunset and sunrise are due to the interplay of topographical features, which
result in specific breezes, such as the land breeze near the Great Salt Lake and the distinct mountain
and valley breezes. The troughs, on the other hand, reflect moments when the atmosphere is at its
most stable, with minimal thermal activities disrupting wind patterns. The complexity of the data is
distilled and represented using 12 descriptors with 17 basis functions. As Figure 7b shows, the primary
eigenfunction is relatively level, indicating that the most significant variation is the location-specific
average magnitude. Its profile echoes the influence of sunrise and sunset observed in the mean
function, with elevations around 7:00 PM and 5:00 AM and subdued patterns during other times,
indicative of a similar atmospheric stability. The estimated covariance in Figure 7c highlights variance
peaks around 8 PM and 5 AM, as well as a strong correlation between these periods. This underscores
the effects of location-specific topographic factors on wind speed.
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Figure 7. Outcomes from the proposed method applied to a wind speed data set. (a) Estimated
curves for a random selection of 9 sampled functions and mean function; (b) Estimated eigenfunctions
(eigenvalues) denoted as EF; (c) Estimated covariance.

5.2.3. Modeling Large-Scale, Dynamic, Geospatial Data

Here, we demonstrate the scalability on both the size of the measurements and the dimensionality
of our framework. For this, we apply it to the ARGO dataset, which consists of ocean temperature
measurements from more than 4,000 locations, at multiple depths, and time points [71]. ARGO is a
nearly global observing system for ocean temperature, salinity, and other key variables via autonomous
profiling floats. As of 2019, ARGO has generated over 338 gigabytes of data from 15,231 floats [71].
We focused on high-quality ("research" mode option in the database API) data from 1998 to 2024 for
depths between 0–200 meters in the open-access snapshot of Argo GDAC of November 9, 2024 [77].
The number of measurement points per year varies widely–from 38,931 up to over 11 million, with
127 million in total. Figure 8 illustrates a global map of sea surface temperature measurements from
February 2021, highlighting the dataset’s extensive spatial coverage.
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Figure 8. Temperature measurements in 2021 February near the sea surface in the ARGO dataset.
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In our modeling, each year’s data is treated as a single underlying function of four variables:
latitude, longitude (on the spherical Earth), depth, and intra-annual time (modeled as a periodic
variable). Note that the spatial data lies on a sphere and the time is a circle, assuming the periodicity
of the time of the year. Our approach models these measurements holistically–without resorting
to moving windows or sub-modeling–thereby preserving the continuous nature of the data and
enabling the extraction of meaningful global, seasonal, and depth-dependent trends. Furthermore,
the unique geospatial and temporal structure of Argo data, with spatial coordinates on a sphere and
time exhibiting periodicity, necessitates specialized modeling techniques. Given that our model is
4 dimensional, the 4D kernel is defined as a product of the following kernels, following the design
strategy for climatological data in [19]. The geospatial kernel on the sphere is a radial basis function
(RBF) on geodesic distances. To ensure periodicity, the temporal kernel is an Exp-Sine-Squared

k(x, x′) = exp
(
− 2 sin2(π|x−x′ |)

ls

)
where ls is the length-scale. For depth, we use a Gaussian kernel.

The numeric data (excluding metadata) as input to the model was approximately 4 GB. For
length-scale selection, we used Gaussian process regression on a small subset of 2,000 randomly
selected data in 2016 (medium size of measurements) for a cross validated RMSE which we optimize
with a grid search. The specific length scales were set as follows: geodesic length scale of 2× 103 km,
depth length scale of 70 m, time length scale of 3, and periodicity of 1. For evaluation, we held out
10% of the depth profiles (a single round trip of a buoy from surface to a depth at the same coordinate)
from each year as testing data, following [78]. The total training set contained roughly 114 million
points. Because the sample spacing is typically small relative to the selected length-scales, we apply
agglomerative clustering to 10,000 randomly chosen index points, reducing them to 2,000 candidate
basis functions. These candidate basis functions–precomputed for efficiency–took roughly 1.7 TB of
memory. Computations were performed with 24 threads on a server equipped with 192 Intel® Xeon®

Platinum 8360H CPUs @ 3.00GHz and 3TB RAM. Initialization was conducted using the modified
RVM for 200 iterations for initial basis functions, using a stochastic optimization with a 1,000-batch
size per year. Then BSFDAFast executed for 10,000 iterations, where the heuristic to include new bases
also used a 1,000-batch size per year. With these computational strategies and heuristics, the entire
modeling process was completed in 15 hours.

The proposed approach selected 163 effective basis functions and condensed them into 16 principle
components. The final model occupies merely 50 MB of storage. The interpolation yielded a root mean
square error (RMSE) of 1.95 and an R2 of 94.2% on testing data, reflecting a reasonable balance between
global dimension reduction and fidelity. The estimated white noise level was also 1.95, indicating that
the training data adequately covers the underlying variability in the ARGO observations, and the final
model is reasonably generalizable.

Figure 9 presents 2D visualizations of geospatial interpolations at three depths (in decibars,
roughly meters) and a specific time (May 29, 2021) around 1°S and 30°W, each with three views. We
have picked one measurement as the central point, denoted as the red circle, and selected a narrow
window (±1 decibar, ±1 day) around this center. The cyan and fuchsia circles represent training
and testing data, respectively, within this window. Their sizes indicate distance along the unplotted
dimensions (depth and time here), reflecting variations in these dimensions. The visualizations
show that temperatures are warmer near the equator and decrease with depth. The match between
interpolated values and actual measurements demonstrates consistency in capturing broad spatial and
vertical variations.
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Figure 9. Geodesic interpolation from BSFDAFast vs. actual ARGO global oceanic measurements at 1,
200, and 300 decibars, at 1°S and 30°W on May 29. Measurements are represented by circles, with filling
color indicating temperature. Circle sizes show distance in depth and time from the central point.

Figure 10 complements this by illustrating interpolation in the depth-time slices while holding
the geospatial coordinates fixed, focusing on mixed layer characteristics. The "mixed layer" refers to a
region of nearly uniform temperature, which is crucial for understanding thermodynamic potential and
nutrient cycling [79]. Here, the plot uses a window of 50 km to include actual measurement, and the
circle sizes denote geodesic distance from the chosen center. We plot every fifth measurement vertically
to reduce overlap and improve clarity. Figure 10a uses the same center point, 1°S and 30°W, as in
Figure 9, exhibiting a shallow mixed layer with pronounced vertical gradients. In contrast, Figure 10b
adopts a center at a higher latitude, 49°N and 29°W, where the model reveals a deeper mixed layer.
The temperature there remains relatively stable below the surface. The dominant variations are cyclic
seasonal changes, which are warmer near the surface around September. As is shown, the vertical
sequence of the center and the nearby testing sequence match the interpolation closely. These results
confirm that the mid-latitudes exhibit a stronger seasonal cycle [79], and that BSFDAFast accurately
approximates the actual measurements.
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(a) Shallow mixed layers at 1°S and 30°W.
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(b) Deep mixed layers at 49°N and 29°W.
Figure 10. Depth-time interpolation from BSFDAFast vs. actual ARGO global oceanic measurements
at two sites focusing on mixed layer behaviors. Measurements are represented by circles, with filling
color indicating temperature. Circle sizes show distance in geodesic space from the central point.

To our knowledge, this is the first time the ARGO dataset has been modeled in a full 4-dimensional
principal component model, with the correct domain topology. We incorporate the entire period of
27 years rather than shorter spans (e.g., 2004-2008 or 2007-2016) [78,80,81]. Instead of segmenting the
dataset into localized spatiotemporal windows, we process the entire 4D domain (latitude, longitude,
depth, and intra-annual time) in a single holistic framework. Previous studies were typically tailored
for ARGO datasets and handled each depth, month, or spatial region separately, restricting correlation
estimates to limited windows (e.g., 1000 km and three months) while excluding data with large offsets
[78,81]. In addition, they require repeated on-demand model fitting that can hinder scalability. Our
kernel-based framework, by contrast, is broadly applicable to general functional data, only requiring
kernel definitions for the domain. Although global dimension-reduction inevitably introduces some
residual noise, the kernel-based design is extensible to finer spacing or multiple length scales if higher
precision is needed. Furthermore, inference with our model is simply the evaluation of the active 163
active basis functions weighted by the 16 principal components. Interpolation over a 300×300 grid
only takes about two seconds. By contrast, previous methods with Gaussian process regression require
a weighted sum of all the measured data within a certain window. The parametric representations also
facilitate straightforward derivative and integration calculations, which are essential for investigating
ocean temperature stratification and heat content [78]. In summary, the Argo dataset provides an
ideal testbed for our method, as it captures the dynamic behavior of high-dimensional geospatial data
in a continuous framework. A more comprehensive study of ARGO is beyond this paper’s scope.
Nonetheless, the results here confirm the clear advantages of the proposed method for large-scale,
high-dimensional functional data.

6. Discussion

This paper proposed BSFDA, a novel framework for functional data analysis with irregular
sampling, integrating model selection and scalability in one unique, coherent, and effective algorithm.
Our extensive empirical studies, including both simulations and real world applications, show that
BSFDA offer superior covariance estimation accuracy with remarkable efficiency.

In terms of accuracy, our method excels in model selection, consistently achieving top-tier per-
formance. The accuracy of the covariance operator estimation also rivals that of the best existing
methodologies in the field. This shows that our approach can not only handle large and complex
datasets, but also ensures high accuracy and precision in the results it produces. Our method’s su-
periority compared to existing techniques is expected owing to the inherent iterative nature of data
smoothing and covariance estimation in our approach.
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In terms of scalability, our method demonstrates a linear growth of time complexity with the size
of the dataset, and impressively, the computations are executed in a small, K(a)-dimensional subspace.
This ensures that as the datasets grow larger and more complex, the performance of our model remains
robust and efficient. Additionally, we introduced a faster variant, BSFDAFast, which performs similarly
to BSFDA on medium and dense datasets with significantly reduced computational cost. This leap
in efficiency enabled a full 4-dimensional functional modeling, for the first time, of the large scale
oceanic temperature dataset across 27 years (ARGO) [71]. Although BSFDAFast can underestimate
signal strength under very sparse sampling, the vanilla BSFDA effectively complements and alleviates
this issue.

Looking ahead, it would be interesting to explore how extensions of regular PCA, such as
simplified PCA and robust PCA [42], can be integrated within our proposed framework. These
extensions will enhance the flexibility and robustness of our method, further improving its adaptability
to various data conditions. In addition, we see potential in examining the extensions of functional PCA,
such as time warping, dynamics, and manifold learning [1]. In particular, shape analysis emerges as a
direct application of time warping. Such extensions would push the boundaries of what our proposed
method could achieve, potentially enabling it to handle an even wider array of data structures and
complexities.

In conclusion, our research findings affirm the proposed framework’s effectiveness and adapt-
ability in advanced functional data analysis. Nonetheless, the method’s potential remains broad, and
future work promises to widen its scope and refine its performance. By unifying sparse Bayesian learn-
ing, kernel-based expansions, and efficient variational inference, BSFDA offers a powerful foundation
for large-scale, high-dimensional FDA challenges.

7. System of Notation

Table 7 summarizes the notation used in Section 1.2 and 3.2.3, providing a reference for the
derivations. All vectors in the table are represented as row vectors.

Table 7. Symbol definitions in formulation.

Symbol Meaning

yi The i-th sample function
x ∈ RM One M-dimension index

M Dimension of the index set
K Number of all basis functions
J Number of all components
P Number of sample functions
Ni Number of measurements of the i-th sample function

Xi ∈ RNi×M Index set of the i-th sample function
Yi ∈ RNi Measurement of the i-th sample function
Zi ∈ RJ Component scores of the i-th sample function
Z̄ ∈ RK Coefficients of basis functions in the mean function

Ei ∈ RNi Measurement errors of the i-th sample function
W ∈ RJ×K Weighing matrix of basis functions in the eigenfunctions

Wj· ∈ RK , WT
·k ∈ RJ The j-th row and k-th column of W

K The kernel function
αj The scale parameter of Wj· (j-th component)
βk The scale parameter of W·k (k-th basis function)
σ The standard deviation of measurement errors
η The communal scale parameter of Z̄

{ϕk : RM → R}K
k=1 The union of all the centered kernel functions

Φikj = ϕk(Xij·) ∈ R Value of centered kernel function ϕk at Xij·
θi ∈ RK Coefficients of the i-th sample function
ζi ∈ RK Coefficient noise of the i-th sample function

ςk The scale parameter of k-th coefficient noise
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Table 8 summarizes the notation used in Section 2.2.

Table 8. Notation used in formulating the optimization.

Symbol Meaning

Θ All the latent variables.
Q· The surrogate posterior distribution of variable ·
Q/· The joint surrogate posterior distribution of all variables except ·

µ·, Σ· The mean and covariance of · in Q, e.g. µvec (W) ∈ RJK , Σvec (W) ∈ RJK×JK

a·, b· The shape and rate parameters of Q·, e.g. aβk
, bβk

EQ[·] The expectation of variable · over density Q
L The lower bound of surrogate posterior Q with K basis functions
Ψi Gram matrix of the kernel functions for the i-th sample function, ΦiΦT

i
K(a), K(e) Number of active/effective basis functions
J(a), J(e) Number of active/effective components
Pi Log likelihood of Yi in multi-sample relevance vector machine
Ci Covariance of Yi in multi-sample relevance vector machine
Si Posterior covariance of Zi in multi-sample relevance vector machine
PZi Log likelihood of (Yi, Zi) in multi-sample relevance vector machine

ϵ→ 0 The infinitesimal number
τ· Threshold/tolerance of ·

8. Variational Update Formulae

As defined in Section 1.2, we consider the following priors and conditional distributions:

Pr[Y|Z, W, Z̄, σ] = ∏
i
N
(

Yi|(ZiW + Z̄)Φi, σ2 I
)

(45)

Pr[Z] = ∏
i
N (Zi|0, I) (46)

Pr[W|α, β] = ∏
j,k
N (Wjk|0, α−1

j β−1
k ) (47)

Pr[Z̄] = ∏
k
N (Z̄k|0, η−1β−1

k ) (48)

Pr[σ]Pr[α]Pr[β]Pr[η] = Γ(σ−2|a0, b0)
J

∏
j=1

Γ(αj|a0, b0)
K

∏
k=1

Γ(βk|a0, b0)Γ(η|a0, b0) (49)

For brevity, the joint posterior is shown with the vague Gamma prior parameters a0, b0, and the
observation index X omitted:

Pr[Z, W, Z̄, σ, α, β, η|X, Y, a0, b0] = Pr[Z, W, Z̄, σ, α, β, η|Y]
= Pr[Z, W, Z̄, σ, α, β, η, Y](Pr[Y])−1

∝ Pr[Z, W, Z̄, σ, α, β, η, Y]

= Pr[Y|Z, W, Z̄, σ]Pr[Z]Pr[W|α, β]Pr[Z̄|η, β]Pr[σ]Pr[α]Pr[β]Pr[η] (50)

Derivation of Equations (14) and (15):
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According to Equation (13) and the posterior in Equation (50), the update formulae for the
surrogate distribution Qαj is:

Qαj ←
exp (EQ/αj

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/αj

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dαj

∝ exp (EQ/αj
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])]) ∝ exp (EQ/αj

[ln (Pr[W|α, β]Pr[α])])

∝ exp

(
EQ/αj

[
−1

2

K

∑
k=1

(
− ln (αj) + W2

jkαjβk

)
+
(
(a0 − 1) ln αj − b0αj

)])

∝ exp

((
K
2
+ a0 − 1

)
ln (αj)− αj

(
1
2

K

∑
k=1

EQ/αj

[(
W2

jkβk

)]
+ b0

))
(51)

where we have omitted terms that αj is conditionally independent of. By definition

Qαj = exp
(

ln(Γ(αj|aαj , bαj))
)
= exp

ln

 b
aαj
αj

Γ(aαj)
α

aαj−1

j exp (−bαj αj)


∝ exp

(
(aαj − 1) ln αj − bαj αj

)
(52)

By equating Equations (51) and (52), the updates for Qαj are

aαj ←
K
2
+ a0 (53)

bαj ←
1
2

K

∑
k=1

EQ/αj

[(
W2

jkβk

)]
+ b0 (54)

Derivation of Equations (16) and (17):
According to Equation (13) and the posterior Equation (50), the update formulae for Qη is:

Qη ←
exp (EQ/η

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/η

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dη

∝ exp (EQ/η [ln (Pr[Z, W, Z̄, σ, α, β, η, Y])]) ∝ exp (EQ/η [ln (Pr[Z̄|η, β]Pr[η])])

∝ exp

(
EQ/η

[
−1

2

K

∑
k=1

(
− ln (η) + Z̄2

k ηβk

)
+ ((a0 − 1) ln η − b0η)

])

∝ exp

((
K
2
+ a0 − 1

)
ln (η)− η

(
1
2

K

∑
k=1

EQ/η

[(
Z̄2

k βk

)]
+ b0

))
(55)

where we have omitted terms η is conditionally independent of. By definition

Qη = exp
(
ln(Γ(η|aη , bη))

)
= exp

(
ln
(

bη
aη

Γ(aη)
ηaη−1 exp (−bηη)

))
∝ exp

(
(aη − 1) ln η − bηη

)
(56)
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By equating Equations (55) and (56), the updates for Qη are

aη ←
K
2
+ a0 (57)

bη ←
1
2

K

∑
k=1

EQ/η

[(
Z̄2

k βk

)]
+ b0 (58)

Derivation of Equations (18), (19):
According to Equation (13) and the posterior Equation (50), the update formulae for Qβk is:

Qβk ←
exp (EQ/βk

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/βk

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dβk

∝ exp (EQ/βk
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])

∝ exp (EQ/βk
[ln (Pr[W·k|α, βk]Pr[Z̄k|η, βk]Pr[β])])

∝ exp

(
EQ/βk

[
− 1

2

J

∑
j=1

(
− ln(αjβk) + W2

jkαjβk

)

− 1
2

(
− ln(ηβk) + Z̄2

k ηβk

)
+ (a0 − 1) ln βk − b0βk

])

∝ exp

((
J + 1

2
+ a0 − 1

)
ln (βk)−

βk

(
1
2

(
EQ/βk

[(
Z̄2

k η
)]

+
J

∑
j=1

EQ/βk

[(
W2

jkαj

)])
+ b0

))
(59)

where we have omitted terms that βk in conditionally independent of. By definition

Qβk = exp
(
ln(Γ(βk|aβk , bβk ))

)
= exp

ln

 b
aβk
βk

Γ(aβk )
η

aβk
−1 exp (−bβk η)


∝ exp

(
(aβk − 1) ln η − bβk η

)
(60)

By equating Equations (59) and (60), the updates for Qη are

aβk ←
J + 1

2
+ a0 (61)

bβk ←
1
2

(
EQ/βk

[(
Z̄2

k η
)]

+
J

∑
j=1

EQ/βk

[(
W2

jkαj

)])
+ b0 (62)

Derivation of Equations (20), (21):
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According to Equations (13) and the posterior Equation (50), the update formulae for QZ̄ is:

QZ̄ ←
exp (EQ/Z̄

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/Z̄

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dZ̄

∝ exp (EQ/Z̄
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])

∝ exp (EQ/Z̄
[ln (Pr[Y|Z, W, Z̄, σ]Pr[Z̄|η, β])])

∝ exp

(
EQ/Z̄

[
− 1

2

P

∑
i=1

(
Ni ln(2πσ2) + σ−2||Y− (ZiW + Z̄)Φi||22

)
−

1
2

K

∑
k=1

(
− ln (2πηβk) + Z̄2

k ηβk

)])

∝ exp

(
− 1

2

(
Z̄EQ/Z̄

[
σ−2

P

∑
i=1

Ψi + η diag(β)

]
Z̄T−

2EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiW]Φi)ΦT

i Z̄T

))
(63)

where we have omitted terms that Z̄ is conditionally independent of. By definition

QZ̄ = exp(ln(N (Z̄|µZ̄, ΣZ̄))) = exp
(
−1

2

(
ln |2πΣZ̄|+ (Z̄− µZ̄)ΣZ̄

−1(Z̄− µZ̄)
T
))

∝ exp
(
−1

2

(
Z̄ΣZ̄

−1Z̄T − 2µZ̄ΣZ̄
−1Z̄T

))
(64)

By equating Equations (63) and (64), the updates for QZ̄ are

ΣZ̄ ←
(
EQ/Z̄

[
σ−2

P

∑
i=1

(Ψi) + η diag(β)

])−1

(65)

µZ̄ ←
(
EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiW]Φi)ΦT

i

)
ΣZ̄ (66)

Derivation of Equations (22), (23):
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According to Equation (13) and the posterior Equation (50), the update formulae for QW is:

QW ←
exp (EQ/W

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/W

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dW

∝ exp (EQ/W
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])

∝ exp (EQ/W
[ln (Pr[Y|Z, W, Z̄, σ]Pr[W|α, β])])

∝ exp

(
EQ/W

[
−1

2

P

∑
i=1

(
Ni ln(2πσ2) + σ−2||Y− (ZiW + Z̄)Φi||22

)])

exp

(
EQ/W

[
− 1

2

(
ln |2π(diag(β)⊗ diag(α))−1|+

vec(W)T(diag(β)⊗ diag(α)) vec(W)

)])

∝ exp

(
EQ/W

[
−1

2

(
σ−2

P

∑
i=1

(
−2YiΦT

i WTZT
i + 2ZiWΨiZ̄T + ZiWΨiWTZT

i

))])

exp
(
EQ/W

[
−1

2

(
vec(W)T(diag(β)⊗ diag(α)) vec(W)

)])
∝ exp

(
−1

2
EQ/W

[
−2σ−2

P

∑
i=1

vec
((

Φi(ΦT
i Z̄T −YT

i )Zi

)T
)T
]

vec(W)

)

exp

(
−1

2
vec(W)TEQ/W

[
σ−2

P

∑
i=1

(
Ψ⊗ (ZT

i Zi)
)
+ (diag(β)⊗ diag(α))

]
vec(W)

)
(67)

where we have omitted terms that W is conditionally independent of. By definition

QW = exp
(

ln(N (vec(W)|µvec (W), Σvec (W)))
)

= exp

(
− 1

2

(
ln |2πΣvec (W)|+

(vec(W)T − µvec (W))Σvec (W)
−1(vec(W)T − µvec (W))

T

))

∝ exp
(
−1

2

(
vec(W)TΣvec (W)

−1 vec(W)− 2µvec (W)Σvec (W)
−1 vec(W)

))
(68)

By equating Equations (67) and (68), the updates for QW are

Σvec (W) ← EQ/W

[
σ−2

P

∑
i=1

(
Ψ⊗ (ZT

i Zi)
)
+ (diag(β)⊗ diag(α))

]−1

µvec (W) ← EQ/W

[
−σ−2

P

∑
i=1

vec
((

Φi(ΦT
i Z̄T −YT

i )Zi

)T
)T
]

Σvec (W) (69)

Derivation of Equations (24), (25) and (26):
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According to Equation (13) and the posterior Equation (50), the update formulae for QZi is:

QZi ←
exp (EQ/Zi

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/Zi

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dZi

∝ exp (EQ/Zi
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])

∝ exp (EQ/Zi
[ln (Pr[Yi|Zi, W, Z̄, σ]Pr[Zi])])

∝ exp
(
EQ/Zi

[
−1

2

(
Ni ln(2πσ2) + σ−2||Y− (ZiW + Z̄)Φi||22 + J ln(2π) + ZiZT

i

)])
∝ exp

(
−1

2

(
ZiEQ/Zi

[
σ−2WΨiWT + I

]
ZT

i − 2EQ/Zi

[
σ−2(Yi − ZiΦi)ΦT

i WT
]

ZT
i

))
(70)

where we have omitted terms that Zi is conditionally independent of. By definition

QZi = exp
(
ln(N (Zi|µZi , ΣZi ))

)
= exp

(
−1

2

(
ln |2πΣZi |+ (Zi − µZi )ΣZi

−1(Zi − µZi )
T
))

∝ exp
(
−1

2

(
ZiΣZi

−1ZT
i − 2µZi ΣZi

−1ZT
i

))
(71)

By equating Equations (70) and (71), the updates for QZ̄ are

ΣZi ←
(
EQ/Zi

[σ−2WΨiWT + I]
)−1

(72)

µZi ← EQ/Zi
[σ−2(Yi − Z̄Φi)ΦT

i WT ]ΣZi (73)

Derivation of Equations (27), (28) and (29):
According to Equation (13) and the posterior Equation (50), the update formulae for Qσ is:

Qσ ←
exp (EQ/σ

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/σ

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dσ

∝ exp (EQ/σ
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])

∝ exp (EQ/σ
[ln (Pr[Yi|Zi, W, Z̄, σ]Pr[σ])])

∝ exp

(
EQ/σ

[
−1

2

P

∑
i=1

(
Ni ln(2πσ2) + σ−2||Y− (ZiW + Z̄)Φi||22

)])
exp

(
EQ/σ

[(
(a0 − 1) ln σ−2 − b0σ−2

)])
∝ exp

((
a0 +

1
2 ∑

i
Ni − 1

)
ln (σ−2)−

σ−2

(
b0 +

1
2
EQ/σ

[∑
i
||Yi − (ZiW + Z̄)Φi||22]

))
(74)

where we have omitted terms that σ is conditionally independent of. By definition

Qσ = exp
(

ln(Γ(σ−2|aσ, bσ))
)
= exp

(
ln
(

bσ
aσ

Γ(aσ)
(σ−2)

aσ−1
exp (−bσσ−2)

))
∝ exp

(
(aσ − 1) ln σ−2 − bσσ−2

)
(75)
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By equating Equations (74) and (75), the updates for Qσ are

aσ ← a0 +
1
2 ∑

i
Ni (76)

bσ ← b0 +
1
2
EQ/σ

[
∑

i
||Yi − (ZiW + Z̄)Φi||22

]
(77)

9. Scalable Update for BSFDA

9.1. Implicit Factorization

We initialize the inactive precision parameters as:

EQαj
[αj] = ϵ−1, ∀j > J(a) (78)

EQβk
[βk] = ϵ−1, ∀k > K(a) (79)

Under these settings and subsequent variational updates (using Equations (78) and (79)), in the
limit as ϵ→ 0, the surrogate distributions satisfy:

µZi B
= 0, ΣZi B = ϵI(J−J(a)), ΣZi [A,B] =

(
ΣZi [B,A]

)T
= 0 (80)

µZ̄B = 0, ΣZ̄ [B,B] = ϵI(K−K(a)), ΣZ̄ [A,B] = ΣZ̄
T
[B,A] = 0 (81)

µvec (W)B
= 0, µvec (W)C

= 0, µvec (W)D
= 0, Σvec (W)[B,B]

= ϵI(K
(a) J−K(a) J(a)),

Σvec (W)[C,C]
= ϵI(J(a)K−J(a)K(a)), Σvec (W)[D,D]

= ϵI(JK+J(a)K(a)−JK(a)−J(a)K),

Σvec (W)[x,y]
= 0, ∀(x, y) /∈ {(A, A), (B, B), (C, C), (D, D)} (82)

For convenience, we initialize Q with the above properties.

Lemma 1. If Qαj [αj] = ϵ, ∀j ≥ J(a) and Qβk [βk] = ϵ, ∀k ≥ K(a), then the variational distribution over W
factorizes as QW = QWAQWBQWCQWD in the limit as ϵ→ 0.

Proof. We express the distribution as

QW = N (vec(W)|µvec (W), Σvec (W))

= exp
(
−1

2

(
ln |2πΣvec (W)|+ µvec (W)Σvec (W)

−1µvec (W)
T
))

,

The factorization holds if the off-diagonal block matrices in Σvec (W), e.g. Σ[WA ,WB ]
, are all zero, i.e.,

the blocks are mutually independent. Initially, this is ensured by the definition for the initial status
in Equation (82). Thus, we only need to show the statement remains true after QW is updated,
i.e., after Equation (22) is applied with the inactive scale parameters Qαj [αj] and Qβk [βk] fixed at
ϵ. First we regard Σ[WABC ]

, i.e., the covariance of the union of WA, WB, WC after vectorization, as
one block. By the block matrix inversion formula, we get Σ[WABC ,WD ] ∝ ϵ2 → 0 and consequently
QW = QWABCQWD . Next, apply block matrix inversion formula to Σ[WABC ]

in Equation (22) and we get
(Σ[WB ,WA ]

, Σ[WB ,WC ]
, Σ[WC ,WA ]

, Σ[WC ,WB ]
) ∝ ϵ→ 0, yielding the desired factorization.

Lemma 2. If Qβk [βk] = ϵ, ∀k ≥ K(a), then the implicit factorization QZ̄ = QZ̄A
QZ̄B

holds in the limit as
ϵ→ 0.
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Proof. It is similar to the proof for Lemma 1. BecauseQZ̄ = N (µZ̄, ΣZ̄), we only need the off-diagonal
block is zero, i.e., ΣZ̄ [A,B] = 0. Initially, it is ensured by definition for the initial status in Equation (81).
QZ̄ is updated by Equation (20), Applying block matrix inversion formula with the inactive Qβk [βk],
we get ΣZ̄ [A,B] ∝ ϵ→ 0, establishing the factorization.

Lemma 3. If j ≥ J(a) or k ≥ K(a), then EQ/Zi
[Wkj′Wjk′ ] ∝ O(ϵ), ∀j′ = 1 : J, k′ = 1 : K in the limit as

ϵ→ 0.

Proof. For initial status, apparently the largest EQ/Zi
[Wkj′Wjk′ ] is EQ/Zi

[W2
kj′ ] = ϵ. Because either

Qαj [αj] = ϵ or Qβk [βk] = ϵ, after updates from Equations (22) and (23) are applied, EQ/Zi
[Wkj′Wjk′ ] =

Σ[Wkj′ ,Wjk′ ]
+ µvec (W)kj′

µvec (W) jk′
∝ O(ϵ) by Woodbury matrix identity.

Lemma 4. If EQαj
[αj] =

aαj
bαj

= ϵ−1, ∀j ≥ J(a), then the implicit factorization QZi = QZiAQZiB holds in the

limit as ϵ→ 0.

Proof. It is similar to the proof for Lemma 1. Because QZi = N (µZi , ΣZi ), only ΣZi [A,B] = 0 is
needed. Initially, it is ensured by definition for the initial status Equation (80). QZ is updated by
Equations (24) and (25). In Equation (24), when j ≥ J(a) or k ≥ K(a), Cijk = Tr(EQ/Zi

[WT
k·Wj·]Ψi) =

∑(j′ ,k′)

(
EQ/Zi

[Wkj′Wjk′ ](Ψi)k′ j′

)
∝ O(ϵ) → 0 applying Lemma 3. Applying block matrix inversion

formula to Equation (25), ΣZi [AB] ∝ O(ϵ)→ 0, , thus proving the implicit factorization

9.2. Scale Parameters

Here we state the theorems that justify we can use updating rules for Q(a)
αj based on L(a) to

update Qαj (and similarly, Q(a)
βk for Qβk , Q(a)

η for Qη) and it does maximize L ultimately.

Lemma 5. ∀Wjk ∈ WB ∪WC, i.e., either (j > J(a)) or (k > K(a)), after updating QWB and QWC by

Equations (22) and (23), EQ[W2
jk] =

bαj bβk
aαj aβk

.

Proof. According to Equations (78) and (79), if (j > J(a)) or (k > K(a)), either EQ[αj] = ϵ−1 or
EQ[βk] = ϵ−1 respectively.
In the limit as ϵ→ 0, using Equation (22) and block matrix inversion formula we get

ΣWjk ← lim
ϵ→0

(EQ/W
[diag(β)⊗ diag(α) + σ−2 ∑

i

(
(Ψi)⊗ (ZT

i Zi)
)
]

)−1


[j+kM,j+kM]

= lim
ϵ→0

((
EQ/W

[αjβk]
)−1

+O(ϵ2)

)
=
(
EQ/W

[αjβk]
)−1

=
bαj bβk

aαj aβk

(83)

In the limit as ϵ→ 0 and using Equation (23)

µWjk ← lim
ϵ→0

(
− aσ

bσ
∑

i
vec
((

Φi(µZ̄Φi −Yi)
TµZi

)T
)T

Σvec (W)

)
[1,j+kM]

=

(
− aσ

bσ
∑

i
vec
((

Φi(µZ̄Φi −Yi)
TµZi

)T
)T
)(

Σvec (W)

)
·(j+kM)

∈ O(ϵ) (84)
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Equation (84) uses the fact that elements in
(

Σvec (W)

)
·(j+kM)

are all O(ϵ) based on block matrix

inversion formula. Thus,

lim
ϵ→0

EQ[W2
jk] = lim

ϵ→0

(
ΣWjk + (µWjk )

2
)
= lim

ϵ→0

(
ΣWjk +O(ϵ

2)
)

= lim
ϵ→0

(
bαj bβk

aαj aβk

+O(ϵ2)

)
=

bαj bβk

aαj aβk

(85)

Lemma 6. ∀k > K(a), after updating QZ̄B
by Equations (20) and (21), EQ[Z̄2

k ] =
bη

aη
ϵ.

Proof. If k > K(a), EQ[βk] = ϵ−1.
Then using Equation (20) and block matrix inversion formula we get

ΣZ̄kk ← lim
ϵ→0

(EQ/Z̄

[
P

∑
i=1

(
σ−2Ψi

)
+ η diag(β)

])−1


kk

= lim
ϵ→0

( P

∑
i=1

(
aσ

bσ
Ψi

)
+

aη

bη
diag(

a
b
)

)−1


kk

= lim
ϵ→0

(
bηbβk

aηaβk

+O(ϵ2)

)
=

bηbβk

aηaβk

(86)

Using Equation (21)

µZ̄k ← lim
ϵ→0

((
EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiW]Φi)ΦT

i

)
ΣZ̄

)
1k

= lim
ϵ→0

((
aσ

bσ

P

∑
i=1

(Y− µZi µWΦi)ΦT
i

)
ΣZ̄

)
1k

= lim
ϵ→0

(
aσ

bσ

P

∑
i=1

(Y− µZi µWΦi)ΦT
i

)
ΣZ̄ ·k ∈ O(ϵ) (87)

Equation (87) uses the fact that elements in ΣZ̄ ·k are all ∈ O(ϵ).

EQ[Z̄2
k ] = lim

ϵ→0

(
ΣZ̄kk + µZ̄

2
k

)
= lim

ϵ→0

(
ΣZ̄kk +O(ϵ

2)
)

= lim
ϵ→0

(
bηbβk

aηaβk

+O(ϵ2)

)
= lim

ϵ→0

(
bη

aη
ϵ +O(ϵ2)

)
=

bη

aη
ϵ (88)

Theorem 1. ∀j ≤ J(a), updates of Qαj and QWB will converge at EQαj
[αj] = E

Q(a)
αj
[αj] given EQβk

[βk] =

E
Q(a)

βk

[βk], ∀k ≤ K(a), a0 = b0 = 0 and conditions in Equations (80)-(79) are satisfied in the limit as ϵ→ 0.
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Proof. Assume Q(a)
αj has just been updated using Equations (14), (15), i.e., ∀j ≤ J(a)

a(a)αj = a0 +
K(a)

2
(89)

b(a)αj = b0 +
1
2

K(a)

∑
k=1

E
Q(a)

/αj

[W2
jkβk]

= b0 +
1
2

K(a)

∑
k=1

(ΣWjk + µ2
Wjk

) a(a)βk

b(a)βk

 (90)

The updates for Qα derived from L are

bαj ← b0 +
1
2

K

∑
k=1

((
ΣWjk + µ2

Wjk

) aβk

bβk

)

= b0 +
1
2

K(a)

∑
k=1

((
ΣWjk + µ2

Wjk

) aβk

bβk

)

+
1
2

K

∑
k=K(a)+1

((
ΣWjk + µ2

Wjk

) aβk

bβk

)

= b(a)αj +
1
2

K

∑
k=K(a)+1

((
ΣWjk + µ2

Wjk

) aβk

bβk

)
(91)

It involves Wjk, k > K(a) and therefore they need to be kepted updated. Apply Theorem 5 for
Equation (91) and we can get

bαj ← b(a)αj +
1
2

K

∑
k=K(a)+1

((
bαj bβk

aαj aβk

)
aβk

bβk

)

= b(a)αj +
1
2
(K− K(a))

bαj

aαj

(92)

Applying Equation (92) in an iterative manner, we will get a sequence of updates for aαj . Solving

bαj = b(a)αj +
1
2
(K− K(a))

bαj

K
2

(93)

⇒ bαj = (1− 1
2
(K− K(a))

2
K
)−1b(a)αj =

K
K(a)

b(a)αj (94)

Thus, we can get that the sequence will converge at

bαj ←
K

K(a)
b(a)αj (95)

As a result, EQαj
[αj] =

aαj
bαj

=
a(a)αj

b(a)αj

= E
Q(a)

αj
[αj].

Theorem 2. ∀k ≤ K(a), updates of Qβk and QWC will converge at EQβk
[βk] = E

Q(a)
βk

[βk] given EQαj
[αj] =

E
Q(a)

αj
[αj], ∀j ≤ J(a), a0 = b0 = 0 and conditions in Equations (80)-(79) are satisfied in the limit as ϵ→ 0.
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Proof. Assume Q(a)
βk

has just been updated using Equations (18) and (19), i.e.,

a(a)βk
= a0 +

K(a) + 1
2

(96)

b(a)βk
← b0 +

1
2
E
Q(a)

/βk

[Z̄2
k +

J(a)

∑
j=1

W2
jkαj]

= b0 +
1
2

(ΣZ̄kk + µZ̄
2
k

)
+

J(a)

∑
j=1

(ΣWjk + µ2
Wjk

) a(a)αj

b(a)αj

 (97)

The updates for Qβk derived from L is

bβk ← b0 +
1
2

((
ΣZ̄kk + µZ̄

2
k

)
+

J

∑
j=1

((
ΣWjk + µ2

Wjk

) aαj

bαj

))

= b0 +
1
2

(ΣZ̄kk + µZ̄
2
k

)
+

J(a)

∑
j=1

((
ΣWjk + µ2

Wjk

) aαj

bαj

)
+

1
2

 J

∑
j=J(a)+1

((
ΣWjk + µ2

Wjk

) aαj

bαj

)
= b(a)βk

+
1
2

 J

∑
j=J(a)+1

((
ΣWjk + µ2

Wjk

) aαj

bαj

) (98)

It involves Wjk, j > J(a) and therefore they need to be kepted updated. Apply Theorem 5 for Equa-
tion (98) and we can get

bβk ← b(a)βk
+

1
2

J

∑
j=J(a)+1

((
bβk bαj

aβk aαj

)
aαj

bαj

)
(99)

⇒ = b(a)βk
+

1
2
(K− K(a))

bβk

aβk

(100)

Applying Equation (100) in an iterative manner, we will get a sequence of bβk . Solving

bβk = b(a)βk
+

1
2
(K− K(a))

bβk
K+1

2
(101)

bβk = (1− 1
2
(K− K(a))

2
K + 1

)−1b(a)βk
=

K + 1
K(a) + 1

b(a)βk
(102)

Thus, we can get that the sequence will converge at

bβk ←
K + 1

K(a) + 1
b(a)βk

(103)

As a result, EQ[βk] =
aβk
bβk

=
a(a)βk

b(a)βk

= EQ(a) [βk].

Theorem 3. Updates of Qη and QZ̄B
will converge at EQη

[η] = E
Q(a)

η
[η] given EQβk

[βk] = E
Q(a)

βk

[βk], ∀k ≤

K(a), a0 = b0 = 0 and conditions in Equations (80)-(79) are satisfied in the limit as ϵ→ 0.
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Proof. Assume Q(a)
η has just been updated using Equations (16) and (17), i.e.,

a(a)η ← a0 +
K(a)

2
(104)

bη
(a) ← b0 +

1
2

K(a)

∑
k=1

EQ/η
[Z̄2

k βk]

= b0 +
1
2

K(a)

∑
k=1

(ΣZ̄k + µZ̄
2
k

) a(a)βk

b(a)βk

 (105)

The updates for Qη derived from L is

bη ← b0 +
1
2

K

∑
k=1

((
ΣZ̄k + µZ̄

2
k

) aβk

bβk

)

= b0 +
1
2

K(a)

∑
k=1

((
ΣZ̄k + µZ̄

2
k

) aβk

bβk

)
+

1
2

K

∑
k=K(a)+1

((
ΣZ̄k + µZ̄

2
k

) aβk

bβk

)

= bη
(a) +

1
2

K

∑
k=K(a)+1

((
ΣZ̄k + µZ̄

2
k

) aβk

bβk

)
(106)

It involves Z̄k, k > K(a) and therefore they need to be kept updated. Apply Lemma 6 for Equation (106)
and we can get

bη ← bη
(a) +

1
2

K

∑
k=K(a)+1

((
bηbβk

aηaβk

)
aβk

bβk

)
(107)

= bη
(a) +

1
2
(K− K(a))

bη

aη
(108)

Applying Equation (108) in an iterative manner, we will get a sequence of updates for bη . Solving

bη = bη
(a) +

1
2
(K− K(a))

bη

K
2

(109)

bη = (1− 1
2
(K− K(a))

2
K
)−1bη

(a) =
K

K(a)
bη

(a) (110)

Thus, we can get that the sequence will converge at

bη ←
K

K(a)
bη

(a) (111)

As a result, EQ[η] =
bη

aη
=

bη
(a)

a(a)η

= EQ(a) [η].

In practice, due to limitations in numerical representation, we restrict values so that the active
precision parameter estimates would not really go to infinity:

EQαj
[αj] ≤ τmax, ∀j ≤ J(a) (112)

EQβk
[βk] ≤ τmax, ∀k ≤ K(a) (113)
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9.3. Weights and Noise

Here is how to update QZA ,QZ̄A
,QWA ,Qσ in a scalable manner, using computation in the K(a)

dimension subspace only.

Theorem 4. L and L(a) share the same update rule for ZiA, i.e.,

HiAjk ← EQ/Zi
[WAjΦiAΦT

iAWT
Ak] = Tr(EQ/Zi

[WT
AkWAj]ΦiAΦT

iA)

= Tr
((

Σ[WAk ,WAj ]
+ µT

[WAj ]
µ[WAk ]

)
ΦiAΦT

iA

)
, ∀j = 1 : J(a), k = 1 : K(a) (114)

ΣZi A ←
(
EQ/Zi

[σ−2WAΦiAΦT
iAWT

A + I]
)−1

= [
aσ

bσ
HiA + I]−1 (115)

µiA ← EQ/Zi
[σ−2(Yi − Z̄ΦiA)ΦT

iAWT
A]ΣZi A =

aσ

bσ
(Yi − µZ̄ AΦiA)ΦT

iA(µWA)
TΣZi A (116)

Proof. Apply Lemma 3 to Equation (24) we get

HiAjk ← Tr
((

Σ[WAk ,WAj ]
+ µT

[WAj ]
µ[WAk ]

)
ΦiAΦT

iA

)
+O(ϵ)

→ Tr
((

Σ[WAk ,WAj ]
+ µT

[WAj ]
µ[WAk ]

)
ΦiAΦT

iA

)
, ∀j = 1 : J(a), k = 1 : K(a) (117)

Apply block matrix inversion formula to Equation (25) we get

ΣZi A ←
(
EQ/Zi

[σ−2WAΦiAΦT
iAWT

A + I]
)−1

+O(ϵ2)

→
(
EQ/Zi

[σ−2WAΦiAΦT
iAWT

A + I]
)−1

= [
aσ

bσ
HiA + I]−1 (118)

Apply block matrix multiplication and Theorem 5 to Equation (26) conditioned on Equation (81) we
get

µiA ← EQ/Zi
[σ−2(Yi − Z̄ΦiA)ΦT

iAWT
A]ΣZi A +O(ϵ)

→ aσ

bσ
(Yi − µZ̄ AΦiA)ΦT

iA(µWA)
TΣZi A (119)

Theorem 5. L and L(a) share the same update rule for Z̄A, i.e.,

ΣZ̄ A ←
(
EQ/Z̄

[
P

∑
i=1

(
σ−2ΦiAΦT

iA

)
+ η diag(βA)

])−1

=

(
P

∑
i=1

(
aσ

bσ
ΦiAΦT

iA

)
+

aη

bη
diag(

aA
bA

)

)−1

(120)

µZ̄ A ←
(
EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiAWA]ΦiA)ΦiA

)
ΣZ̄ A

=

(
aσ

bσ

P

∑
i=1

(Y− µiAµWA ΦiA)ΦiA

)
ΣZ̄ A (121)
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Proof. Apply block matrix inversion formula to Equation (20) conditioned on EQ/Z̄
[βk] = ϵ−1, ∀k >

K(a) and we get

ΣZ̄ A ←
(
EQ/Z̄

[
P

∑
i=1

(
σ−2ΦiAΦT

iA

)
+ η diag(βA)

])−1

+O(ϵ)

→
(
EQ/Z̄

[
P

∑
i=1

(
σ−2ΦiAΦT

iA

)
+ η diag(βA)

])−1

(122)

Apply block matrix multiplication and Theorem 5 to Equation (21) conditioned on Equation (80) we
get

µZ̄ A ←
(
EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiAWA]ΦiA)ΦiA

)
ΣZ̄ A +O(ϵ)

→
(
EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiAWA]ΦiA)ΦiA

)
ΣZ̄ A (123)

Theorem 6. L and L(a) share the same update rule for WA, i.e.,

Σvec (W) ← EQ/W

[
σ−2

P

∑
i=1

(
(ΦT

iAΦiA)⊗ (ZT
iAZiA)

)
+ diag(βA)⊗ diag(αA)

]−1

=

(
aσ

bσ

P

∑
i=1

(
(ΦT

iAΦiA)⊗ (µT
iAµiA + ΣZi A)

)
+ diag

(
aA
bA

)
⊗ diag

(
cA
dA

))−1

(124)

µvec (W) ← EQ/W

[
−σ−2

P

∑
i=1

vec
((

ΦiA(ΦT
iAZ̄T

A −YT
i )ZiA

)T
)T
]

Σvec (W)A

= − aσ

bσ

P

∑
i=1

vec
((

ΦiA(ΦT
iAµZ̄

T
A −YT

i )µiA

)T
)T

Σvec (W)A
(125)

Proof. Apply block matrix inversion formula to Equation (22) conditioned on EQ/Z̄
[βk] = ϵ−1, ∀k >

K(a) and EQ/Z̄
[αj] = ϵ−1, ∀j > J(a), we get

Σvec (W) ← EQ/W

[
σ−2

P

∑
i=1

(
(ΦT

iAΦiA)⊗ (ZT
iAZiA)

)
+ diag(βA)⊗ diag(αA)

]−1

+O(ϵ)

→ EQ/W

[
σ−2

P

∑
i=1

(
(ΦT

iAΦiA)⊗ (ZT
iAZiA)

)
+ diag(βA)⊗ diag(αA)

]−1

(126)

Apply block matrix multiplication and Theorem 5 to Equation (23) conditioned on Equation (80) and
Equation (81), we get

µvec (W) ← EQ/W

[
−σ−2

P

∑
i=1

vec
((

ΦiA(ΦT
iAZ̄T

A −YT
i )ZiA

)T
)T
]

Σvec (W)A
+O(ϵ)

→ EQ/W

[
−σ−2

P

∑
i=1

vec
((

ΦiA(ΦT
iAZ̄T

A −YT
i )ZiA

)T
)T
]

Σvec (W)A
(127)
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Theorem 7. L and L(a) share the same update rule for σ, i.e.,

aσ ← a0 +
1
2 ∑

i
Ni (128)

bσ ← b0 +
1
2
EQ/σ

[
∑

i
||Yi − (ZiAWA + Z̄A)ΦiA||22

]

= b0 +
1
2 ∑

i
(YiYT

i − 2Yi
(
µiAµWA ΦiA

)T − 2Yi(µZ̄ AΦiA)
T + 2µiAµWA ΦiAΦT

iA(µZ̄ A)
T

+ Tr
((

ΣZ̄ A + (µZ̄ A)
TµZ̄ A

)
ΦiAΦT

iA

)
)

+
1
2

vec(GT
A)

T ∑
i

vec
(

vec(ΦiAΦT
iA) vec(ΣZi A + µT

iAµiA)
T
)

, (129)

where

GA(j+kM) ← EQ/σ

[
vec(WAkWT

Aj)
T
]

= vec(Σ[WAk ,WAj ]
+ µvec (W)

T
[WAj ]

µvec (W)[WAk ]
)T , ∀j = 1 : K(a), k = 1 : K(a) (130)

Proof. Apply block matrix multiplication and Theorem 5 to Equation (28) conditioned on Equa-
tions (80) and (81), we get

bσ ← b0 +
1
2
EQ/σ

[
∑

i
||Yi − (ZiAWA + Z̄A)ΦiA||22

]
+O(ϵ)

→ b0 +
1
2
EQ/σ

[
∑

i
||Yi − (ZiAWA + Z̄A)ΦiA||22

]
(131)

We show QZiA ,QWA ,QZ̄iA
,Qσ share the same update formulas as those derived from the low-

dimensional lower bound: Q(a)
ZiA ,Q(a)

WA ,Q(a)
Z̄iA

,Q(a)
σ. Thus, in practice, if suffices to update

Q(a); we can then increase K(a) by including new basis functions. This process proves to implicitly
maximizes L with Q.

9.4. Low-dimensional Lower Bound

We now have updating formulas for the parameters in the active subspace. QZiA is updated
by Equations (114), (115) and (116). QWA is updated by Equations (124) and (125). QZ̄A

is updated
by Equations (120) and (121). QαA ,QβA ,Qη are updated by Theorem 1, 2 and 3, with the compan-
ion of implicit updates of QWB ,QWC . Qσ is updated by Equations (130), (128) and (129). All the
updating rules are identical to those derived from the low-dimensional lower bound L(a) with K(a)

basis functions. Therefore, in practice all we need is to optimize L(a), with time complexity of

O
(

K(a)2
max

(
K(a)4

, P maxi(Ni)
))

, as described in Theorem 8, and then check if a new basis function
should be included in the model.

For numerical stability, we scale ϕ, b such that mink(EQβ
[βk]) = mink(

ck
dk
) = 1 at the beginning of

Algorithm 2.

Theorem 8. The lower bound L can be optimized using Algorithm 2 with time complexity of

O
(

K(a)2
max

(
K(a)4

, P maxi(Ni)
))

.

Proof. It is a consequence of Theorems 1, 2, 3, 4, 5, 6, 7.
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Algorithm 2 Variational inference

Require: µZi , ΣZi , µvec (W), Σvec (W), µZ̄, ΣZ̄, aσ, bσ, aαj , bαj , aβk , bβk , ∀i, j, k ▷ Multi sample RVM
while True doL(a) ← lowerbound(Q(a))

Update Q(a) with respect to all parameters using mean field approximation
if lowerbound(Q(a))−L(a) < τcon then ▷ Insignificant increase

Search for new basis functions using Algorithm 1
if not found then ▷ Converged

break
end if

end if
Remove dimensions associated with the precision of the maximum values

end while
Get rid of dimensions associated with αj ≥ minj(αj)τeff and βk ≥ mink(βk)τeff

10. Scalable Update for BSFDAFast

For brevity, we denote the covariance of ζi as S, i.e., ζi ∼ N (0, S). S is diagonal and Skk = ς2
kβ−1

k .
The variational update formulas are as follows:

Σθi ← EQ/θi

[
ΦiΦT

i σ−2 + S−1
]−1

(132)

µθi ← EQ/θi

[(
(Yi − Z̄Φi)ΦT

i σ−2 + ZiWS−1
)]

Σθi (133)

ΣZi ← EQ/Zi

[
WS−1WT + I

]−1
(134)

µZi ← EQ/Zi

[
θiS−1WT

]
ΣZi (135)

aςk ← a0 +
P
2

(136)

bςk ← EQ/ςk

[
b0 +

1
2 ∑

i
(θik − ZiW·k)2βk

]
(137)

ΣW·k ← EQ/W·k

[
ς−2

k βk ∑
i

ZT
i Zi + βk diag(α)

]−1

(138)

µW·k ← EQ/W·k

[
ς−2

k βk ∑
i
(θikZi)

]
ΣW·k (139)

aβk ← a0 +
1 + K + P

2
(140)

bβk ← EQ/βk

[
b0 +

1
2

[
Z̄2

k η + ∑
j
(W2

jkαj) + ∑
i
(θik − ZiW·k)2ς−2

k

]]
(141)

ΣZ̄ ← EQ/Z̄

[
σ−2 ∑

i
(ΦiΦT

i ) + η diag(β)

]−1

(142)

µZ̄ ← EQ/Z̄

[
σ−2 ∑

i

[
(Yi − θiΦi)ΦT

i

]]
ΣZ̄ (143)

aσ−2 ← a0 +
1
2 ∑

i
Ni (144)

bσ−2 ← EQ/σ

[
b0 +

1
2 ∑

i
||Yi − (Z̄ + θi)Φi||22

]
(145)

Notably, the columns of W becomes conditionally independent with the introduction of the slack
variable θ, akin to the strategy described in [34,62]. Then the surrogate posterior of W factorizes over
the columns, thereby requiring calculating the covariance of each column separately instead of the
entire W at once. Thus, the computational complexity is significantly reduced. This factorization is
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introduced on top of the existing factorizations, thus the low-dimensional optimization strategy of
BSFDA also applies to BSFDAFast.

11. Fast Initialization

In order to efficiently obtain a good initialization for the unknowns to be estimated, e.g. Z, Z̄, β

and σ, we approximate the model so that we can adopt a fast strategy maximizing marginal likelihood
using direct differentiation that is similar to [73]. This initial β serves to select the K(a) basis functions
to start with.

We introduce Z̃ for easier marginalization:

Yi = Z̃iΦi + Ei (146)

Z̃ik =
Zik√

βk
+ Z̄k ∼ N (Z̄k, β−1

k ) (147)

Z̄k ∼ N (0, β−1
k ) (148)

βk ∼ Γ(βk|a0, b0), σ−2 ∼ Γ(σ−2|a0, b0) (149)

Ei ∼ N (0, σ2 I) (150)

The approximated probabilistic graphical model is shown in Figure 11.

𝑌

𝑍 ∼ 𝒩ሺ0,𝛽ିଵሻ

𝑍 ∼ 𝒩ሺ𝑍 ,𝛽ିଵሻ 

𝛽 ∼ Γሺ𝑎, 𝑏ሻ

𝜎ିଶ ∼ Γሺ𝑎, 𝑏ሻ

P

E ∼ 𝒩ሺ0,𝜎ଶ𝐼ሻ

𝜙ሺ⋅ሻ

𝑋

Φ

Simplified model

Figure 11. Probabilistic graphical model for the simplified model.

11.1. Maximum Likelihood Estimation

We apply maximum likelihood estimation for point estimates of Z̄, β, σ.

Z̄∗, β∗, σ∗ ← arg min
Z̄,β,σ
P , (151)

where P = − ln Pr[Y|Z̄, β, σ]. Conditioned on these estimates, we can calculate the expectation of Z.
Optimization of β, Z̄
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We set the differentiation to zero, i.e., ∂P
∂βk

= 0, and get:

βk ←
{

θk, if θk > 0

∞, otherwise
(152)

where

θk =

(
∑P

i=1 s2
ik

∑P
i=1(q

2
ik − sik)

)
(153)

qik = ΦikC−1
i/k

(Y− Z̄Φi)
T (154)

sik = ΦikC−1
i/k

ΦT
ik (155)

Ci/k
= Ci −ΦT

ikβ−1
k Φik (156)

Ci = ΦT
i diag(β−1)Φi + σ2 I =

K

∑
k=1

ΦT
ikβ−1

k Φik + σ2 I (157)

We differentiate P with respect to Z̄ and zero the derivative, i.e., ∂P
Z̄ = 0, to get:

Z̄ ←
P

∑
i=1

(
YiC−1

i ΦT
i

)( P

∑
i=1

(ΦiC−1
i ΦT

i )

)−1

(158)

We approximate Equation (158) by Z̄A ← ∑P
i=1

(
YiC−1

i ΦT
iA

)(
∑P

i=1(ΦiAC−1
i ΦT

iA)
)−1

and Z̄B ← 0. This
way we can apply the update with only the active basis functions.

Optimization of σ:
We use EM to optimize σ. In E step:

EQZ̃
[Z̃i]← σ−2(Yi − Z̄Φi)ΦT

i Si (159)

EQZ̃
[Z̃T

i Z̃i]← Si +EQZ̃
[Z̃i]

TEQZ̃
[Z̃i], (160)

where Si = (Ψiσ
−2 + diag(β))−1.

In M step

σ−2 ←
∑P

i=1 EQZ̃

[
||Yi − (Z̃i + Z̄)Φi||22

]
∑P

i=1 Ni

=
∑P

i=1(Yi − Z̄Φi)(Yi − Z̄Φi − 2ΦT
i EQZ̃

[
Z̃i
]T
)T + Tr(EQZ̃

[
Z̃T

i Z̃i
]
Ψi)

∑P
i=1 Ni

(161)

The optimization iterates between the E-step Equations (159) and (160), and the M-step Equa-
tion (161).

In practice, we need only EQZ̃ [Z̃iA],EQZ̃ [Z̃
T
iAZ̃iA],SiA, and they can be calculated using the K(a)

active basis functions. Thus, similar to [73], all the computations can be operated with only the active
basis functions and thus it computationally efficient. This is described in Algorithm 3.

P = − ln Pr[Y|Z̄, β, σ] = −
P

∑
i=1

ln Pr[Yi|Z̄, β, σ] =
P

∑
i=1
Pi (162)

Pi =
∫

Pr[Yi|Z̃i, Z̄, β, σ]Pr[Z̃i|Z̄, β]dZ̃i = EZ̃i∼N (Z̄,β)[Pr[Yi|Z̃i, σ]] = N (Yi|Z̄Φi, Ci) (163)

Pr[Yi|Z̃i, Z̄, β, σ] = N (Yi|(Z̃i + Z̄)Φi, σ2 I) (164)
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Algorithm 3 Multi-sample relevance vector machine

while P is not converged do
k← a random number that satisfies CosSim(ϕk, ϕA) ≤ τsim ▷ O(K(a)3

)
sik ← ΦikC−1

i/k
ΦT

ik, ∀i ▷ Sparsity factor. O
(

P max(K(a)3
, maxi(Ni)

2)
)

qik ← ΦikC−1
i/k

(Y− Z̄AΦiA)
T , ∀i ▷ Quality factor. O

(
P maxi(Ni)max(K(a), maxi(Ni))

)
θk ←

(
∑P

i=1 s2
ik

∑P
i=1(q

2
ik−sik)

)
if θ > 0 then

βk ← θk ▷ Precision is finite
else

βk ← ∞ ▷ Precision is infinite and the dimension is removed
end if
ΦiA ← All Φik that has βk < ∞, ∀i
Ci = ∑βk<∞ ΦT

ikβ−1
k Φik + σ2 I, ∀i

Z̄A ← ∑P
i=1

(
YiC−1

i ΦT
iA

)(
∑P

i=1(ΦiAC−1
i ΦT

iA)
)−1

▷ O
(

PK(a) max
(

K(a), maxi(Ni)
)2
)

SiA ← (ΦiAΦT
iAσ−2 + diag(βA))

−1, ∀i
EQZ̃ [Z̃iA]← σ−2(Yi − Z̄AΦiA)ΦT

iASiA, ∀i ▷ O(PK(a)2
maxi(Ni))

EQZ̃ [Z̃
T
iAZ̃iA]← SiA +EQZ̃

[Z̃iA]
TEQZ̃

[Z̃iA], ∀i

σ←
∑P

i=1(Yi−Z̄AΦiA)(Yi−Z̄AΦiA−2ΦT
iAEQZ̃

[Z̃iA]
T
)T+Tr(EQZ̃

[Z̃T
iA Z̃iA]ΦiAΦT

iA)

∑P
i=1 Niend while

We apply Sylvester’s determinant theorem to Equation (157) and get

|Ci| = |Ci/k
||I + β−1

k ΦT
ikC
−1
i/k

Φik| (165)

We apply Woodbury matrix identity to Equation (157) and get

C−1
i = C−1

i/k
− C−1

i/k
ΦT

ik(βk + ΦikC−1
i/k

ΦT
ik)
−1ΦikC−1

i/k
(166)

We first expand Pi

Pi = ln Pr[Yi|Z̄, σ, β]

= −1
2 ∑

i
ln |2πCi|+ (Yi − Z̄Φi)C−1

i (Yi − Z̄Φi)
T

= −1
2
(Ni ln(2π) + ln |Ci/k |+ ln |I + β−1

k ΦikC−1
i/k

ΦT
ik|+ (Yi − Z̄Φi)C−1

i (Yi − Z̄Φi)
T

− (βk + ΦikC−1
i/k

ΦT
ik)
−1||ΦikC−1

i/k
(Y− Z̄Φi)

T ||22)

= Pi/k
+

1
2
(ln βk − ln |βk + sik|+

q2
ik

βk + sik
) (167)

where we plug in Equations (165) and (166) and define qik, sik in a similar way to [73]. The sparsity
factor sik can be seen to be a measure of the extent that the basis function ϕk overlaps those already
present in the model under the measurements at index set Xi. The quality factor qik is a measure of
the alignment with the error of the model at Xi with that basis function excluded. Because we are
representing the mean functions using only the active basis functions, i.e., Z̄k = 0 when βk = ∞,
Equation (154) only uses the K active basis functions. Similarly, Equation (155) only uses the K active
basis functions.

For computational efficiency, we can compute sik, qik using Sik = ΦikC−1
i ΦT

ik, Qik = ΦikC−1
i (Y−

Z̄Φi)
T in a similar way to [73] as follows
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sik = ΦikC−1
i/k

ΦT
ik = Sik + ΦikC−1

i/k
ΦT

ik(βk + ΦikC−1
i/k

ΦT
ik)
−1ΦikC−1

i/k
ΦT

ik

= Sik + sik(βk + sik)
−1sik ⇌ sik =

βk + sik
βk

Sik (168)

⇒ sik ← (1− 1
βk

Sik)
−1Sik =

βkSik
βk − Sik

(169)

qik = ΦikC−1
i/k

(Y− Z̄Φi)
T

= Qik + ΦikC−1
i/k

ΦT
ik(βk + ΦikC−1

i/k
ΦT

ik)
−1ΦikC−1

i/k
(Y− Z̄Φi)

T

= Qik + sik(βk + sik)
−1qik (170)

⇒ qik ←
βk + sik

βk
Qik =

βkQik
βk − Sik

(171)

11.2. Optimization of β, Z̄

Derivation of Equation (152):
We differentiate P with respect to βk

∂P
∂βk

=
P

∑
i=1

1
2

(
β−1

k − |βk + sik|−1 − q2
ik(βk + sik)

2
)

=
1
2

β−1
k

P

∑
i=1

(
(βk + sik)

−2(βk(sik − q2
ik) + s2

ik)
)

(172)

We further adopt the approximation s1k ≈ s2k ≈ . . . ≈ sPk. Because sik is a discrete measure of
the overlapping between the basis functions, it should remain invariant with respect to different
sampling grid Xi given the number of measurements is adequate and similar. Alternatively, the
Expectation maximization scheme can also be applied and is guaranteed to increase the likelihood P
in each iteration until convergence. However, we opt for this gradient descent with approximations
for its advantage in speed to obtain a reasonable initialization. This way we set the approximated
differentiation to zero

∂P
∂βk
≈ 1

2
β−1

k (βk + s1k)
−2

P

∑
i=1

(
(βk(sik − q2

ik) + s2
ik)
)
= 0 (173)

⇒ βk ← θk =

(
∑P

i=1 s2
ik

∑P
i=1(q

2
ik − sik)

)
(174)

Because βk is a scale parameter, we need βk > 0. Consequently, the optimal value for βk to
maximize P dependents on the sign of θk. When θk > 0, the maximum of P is achieved at βk = θk.

On the other hand when θk ≤ 0, P is monotonically increasing with respect to βk and therefore
we should have βk ← ∞ in order to maximize P .

More intuitively, Equation (174) can be regarded as a weighted summation of the estimation of βk
using each individual sample function and it automatically assigns more weights to those with more
measurements. Therefore, this optimization strategy is supposed to provide reasonable estimates even
when the sampled functions have different numbers of measurements.

Derivation of Equation (158):
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We differentiate P with respect to Z̄ and zero the derivative to get

∂P
Z̄

= −1
2

P

∑
i=1

(
−2YiCiΦT

i + 2Z̄ΦiC−1
i ΦT

)
= 0 (175)

⇒ Z̄ ←
P

∑
i=1

(
YiC−1

i ΦT
i

)( P

∑
i=1

(ΦiC−1
i ΦT

i )

)−1

(176)

11.3. Optimization of σ

Derivation of Equations (159) and (160):
We use the Expectation maximization strategy with latent variables Z̃i. It is similar to that used in

[52]. It introduces a surrogate function, the log likelihood for the complete data EQZ̃
[PZ̃], that is easier

to optimize and in theory the process ultimately maximizes P .
For the E-step, we calculate the posterior of Z̃i.

ln Pr[Z̃i|Yi, Z̄, σ, β] = ln
Pr[Yi|Z̃i, Z̄, σ, β]Pr[Z̃i|β]

Pr[Yi|Z̄, σ, β]
(177)

∝ −1
2

(
Z̃i(Ψiσ

−2 + diag(β))Z̃T
i − 2σ−2(YI − Z̄Φi)ΦT

i Z̃T
i

)
(178)

Therefore,

EQZ̃
[Z̃i]← σ−2(Yi − Z̄Φi)ΦT

i Si (179)

EQZ̃
[Z̃T

i Z̃i]← Si +EQZ̃
[Z̃i]

TEQZ̃
[Z̃i] (180)

where

Si = (Ψiσ
−2 + diag(β))−1 (181)

Derivation of Equation (161):
In M-step, we need to maximum EQZ̃

[PZ̃] conditioned on QZ̃ with respect to σ−2,

PZ̃ =
P

∑
i=1

ln Pr[Yi, Z̃i|Z̄, σ, β] =
P

∑
i=1

ln(Pr[Yi|Z̃i, Z̄, σ]Pr[Z̃i|β])

= −1
2

P

∑
i=1

(
Ni ln(2πσ−2) + σ−2||Yi − (Z̃i + Z̄)Φi||22+

K

∑
k=1

ln(2πβ−1
k ) + Tr(Z̃i diag(β)Z̃T

i )

)
(182)

We differentiate EQZ̃
[PZ̃] with respect to σ−2 and set to 0

∂EQZ̃
[PZ̃]

∂σ−2 = EQZ̃

[
−1

2

P

∑
i=1

(
Niσ

−2 − σ−4||Yi − (Z̃i + Z̄)Φi||22
)]

= 0 (183)

⇒ σ−2 ←
∑P

i=1 EQZ̃

[
||Yi − (Z̃i + Z̄)Φi||22

]
∑P

i=1 Ni

=
∑P

i=1(Yi − Z̄Φi)(Yi − Z̄Φi − 2ΦT
i EQZ̃

[
Z̃i
]T
)T + Tr(EQZ̃

[
Z̃T

i Z̃i
]
Ψi)

∑P
i=1 Ni

(184)
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12. Experiments

12.1. Benchmark Simulation

Figure 12 presents the application of the proposed BSFDA to the simulation benchmark (Scenario
1) outlined in [37]. While prior analyses have utilized this benchmark, the current experimental
configuration is specifically adapted to highlight the method’s capacity for uncertainty quantification.
The experimental design consists of 20 functional observations, each sampled at either 3 points (with
a 20% probability) or 10 points (with an 80% probability), determined via random assignment. The
number of sampled functions is decreased from 200 to 20 to underscore the effect and estimation
of uncertainties. The actual white noise standard deviation is 0.4472, while the estimated standard
deviation is 0.4839. The component number is also correctly estimated as 3. The figure depicts the
true underlying function, the discrete observational data, and the corresponding functional estimates,
accompanied by their respective 95% truncated uncertainty intervals.

Notably, the uncertainty associated with sparsely sampled functions exhibits substantial inflation
in regions devoid of observations. In contrast, in sampled regions, the uncertainty aligns closely with
that of densely sampled functions, approximating twice the standard deviation of the white noise.
Additionally, the uncertainty bounds for the estimated mean function are presented, demonstrating
reduced variability relative to individual function estimates.

 

True Mean
Estimated Mean

Figure 12. Application of the proposed BSFDA to the simulation benchmark from [37], illustrating the
true mean function (blue), observed measurements from two functions sampled at different densities
(light blue for sparse, orange for dense), and the corresponding functional estimates with 95% truncated
uncertainty intervals.

Table 9. Distributions of the estimated component number r̂ for Scenario 1 (r=3).

Ni r̂ AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 ≤ 1 0.000 0.000 0.155 0.005 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.008 0.405 0.335 0.565 0.215 0.000 0.000 0.000 0.000 0.985
=3 0.000 0.580 0.380 0.410 0.735 0.650 0.880 0.645 0.995 0.015
=4 0.121 0.010 0.115 0.010 0.045 0.335 0.120 0.235 0.005 0.000
≥ 5 0.870 0.005 0.015 0.010 0.005 0.015 0.000 0.120 0.000 0.000

10 ≤ 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.005 0.040 0.040 0.005 0.000 0.000 0.000 0.000 0.075
=3 0.000 0.980 0.670 0.955 0.985 0.880 0.920 0.645 1.000 0.910
=4 0.000 0.015 0.255 0.000 0.010 0.120 0.080 0.235 0.000 0.015
≥ 5 1.000 0.000 0.035 0.005 0.000 0.000 0.000 0.120 0.000 0.000

50 ≤ 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=3 0.000 1.000 0.830 1.000 1.000 1.000 1.000 0.890 0.980 0.945
=4 0.000 0.000 0.150 0.000 0.000 0.000 0.000 0.060 0.020 0.050
≥ 5 1.000 0.000 0.020 0.000 0.000 0.000 0.000 0.050 0.000 0.005
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Table 10. Distributions of the estimated component number r̂ for Scenario 2 (r=3).

Ni r̂ AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 ≤ 1 0.000 0.000 0.230 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.205 0.395 0.000 0.140 0.050 0.075 0.000 0.000 0.960
=3 0.005 0.630 0.245 0.375 0.605 0.570 0.620 0.475 1.000 0.040
=4 0.125 0.155 0.110 0.440 0.210 0.345 0.275 0.350 0.000 0.000
≥ 5 0.870 0.010 0.020 0.185 0.045 0.035 0.030 0.175 0.000 0.000

10 ≤ 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.170 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=3 0.000 0.710 0.665 0.570 0.805 0.825 0.850 0.640 1.000 0.995
=4 0.005 0.260 0.135 0.355 0.185 0.175 0.150 0.235 0.000 0.005
≥ 5 0.995 0.030 0.030 0.075 0.010 0.000 0.000 0.125 0.000 0.000

50 ≤ 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=3 0.000 0.630 0.795 0.955 0.945 1.000 1.000 0.950 1.000 0.950
=4 0.000 0.320 0.185 0.045 0.055 0.000 0.000 0.020 0.000 0.050
≥ 5 1.000 0.050 0.020 0.000 0.000 0.000 0.000 0.030 0.000 0.000

Table 11. Distributions of the estimated component number r̂ for Scenario 3 (r=3).

Ni r̂ AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 ≤ 1 0.000 0.000 0.335 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.025 0.035 0.260 0.220 0.005 0.000 0.005 0.000 0.000 0.025
=3 0.005 0.720 0.325 0.640 0.590 0.320 0.400 0.450 0.995 0.945
=4 0.130 0.170 0.080 0.075 0.280 0.640 0.565 0.360 0.005 0.030
≥ 5 0.840 0.075 0.000 0.065 0.125 0.030 0.030 0.190 0.000 0.000

10 ≤ 1 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.015 0.000 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=3 0.000 0.580 0.770 0.965 0.665 0.740 0.755 0.440 0.995 1.000
=4 0.000 0.400 0.145 0.030 0.320 0.260 0.245 0.380 0.005 0.000
≥ 5 0.985 0.020 0.045 0.005 0.015 0.000 0.000 0.180 0.000 0.000

50 ≤ 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000
=3 0.000 1.000 0.775 1.000 1.000 1.000 1.000 0.765 0.980 0.920
=4 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.110 0.005 0.050
≥ 5 1.000 0.000 0.025 0.000 0.000 0.000 0.000 0.125 0.000 0.030

Table 12. Distributions of the estimated component number r̂ for Scenario 4 (r=3).

Ni r̂ AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 ≤ 1 0.000 0.000 0.315 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.015 0.020 0.180 0.160 0.015 0.000 0.000 0.000 0.000 0.000
=3 0.015 0.710 0.410 0.640 0.560 0.515 0.575 0.370 1.000 0.975
=4 0.145 0.185 0.070 0.095 0.260 0.450 0.390 0.515 0.000 0.025
≥ 5 0.825 0.085 0.025 0.105 0.165 0.035 0.035 0.115 0.000 0.000

10 ≤ 1 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=3 0.000 0.830 0.775 0.920 0.900 0.750 0.760 0.350 0.995 0.990
=4 0.000 0.150 0.190 0.045 0.085 0.250 0.240 0.380 0.005 0.010
≥ 5 1.000 0.020 0.020 0.035 0.015 0.000 0.000 0.270 0.000 0.000

50 ≤ 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000
=3 0.000 0.945 0.835 1.000 1.000 1.000 1.000 0.730 0.950 0.935
=4 0.000 0.055 0.140 0.000 0.000 0.000 0.000 0.160 0.040 0.055
≥ 5 1.000 0.000 0.025 0.000 0.000 0.000 0.000 0.110 0.000 0.010
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Table 13. Distributions of the estimated component number r̂ for Scenario 5 (r=6).

Ni r̂ AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 ≤ 4 0.005 0.165 0.835 0.580 0.060 0.000 0.000 0.010 0.000 0.060
=5 0.005 0.330 0.020 0.345 0.335 0.575 0.590 0.010 0.075 0.515
=6 0.705 0.470 0.090 0.070 0.545 0.425 0.410 0.855 0.925 0.160
=7 0.245 0.035 0.050 0.005 0.060 0.000 0.000 0.115 0.000 0.160
≥ 8 0.040 0.000 0.005 0.000 0.000 0.000 0.000 0.010 0.000 0.105

10 ≤ 4 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=5 0.000 0.000 0.030 0.145 0.000 0.425 0.425 0.000 0.000 0.000
=6 0.065 0.570 0.525 0.775 0.705 0.575 0.575 0.500 1.000 0.930
=7 0.475 0.280 0.165 0.020 0.185 0.000 0.000 0.405 0.000 0.035
≥ 8 0.455 0.150 0.030 0.060 0.110 0.000 0.000 0.095 0.000 0.035

50 ≤ 4 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=5 0.065 0.000 0.000 0.000 0.000 0.130 0.130 0.005 0.000 0.000
=6 0.000 0.260 0.590 0.980 0.965 0.870 0.770 0.695 0.995 0.925
=7 0.000 0.405 0.325 0.010 0.035 0.000 0.000 0.250 0.005 0.045
≥ 8 0.935 0.335 0.080 0.010 0.000 0.000 0.000 0.050 0.000 0.030

12.1.1. Performance of LFRM

To compare the latent factor regression model (LFRM) [34] as a dimension reduction model to
ours, Bayesian scalable functional data analysis (BSFDA), we set the covariates in LFRM to zero, thus
assigning standard Gaussian priors to the latent variables, analogous to our approach. We followed
the simulation benchmark in [37] for selecting the number of components, focusing on Scenario 1 with
50 measurements per function (the densest data). Because LFRM does not estimate a mean function,
we omitted the mean from the simulation run here.

The following hyperparameters of LFRM need to be determined:

• Gamma prior for white noise and correlated noise
• Length-scale
• Number of basis functions
• Number of iterations

LFRM, with its default white-noise prior, correctly identified the white-noise variance (true value
0.2) in all tests. We thus retained that default. We tested different Gamma priors for correlated noise:
the default prior, a noninformative-like (vagor) prior (same mean but 100 times the variance), and a
low noise prior (same variance but 100 times the mean). We maintained the number of locations for
basis functions at 10, which is the default setting. For length-scale in LFRM, we first used the best
estimate from our cross-validation (CV). We then tried all 10 CV-selected length scales, producing 100
basis functions in total. However, this required substantial time, so we performed only two repeated
runs for that setting. We kept LFRM’s default of 5000 burn-in iterations (25,000 total) with thinning at
intervals of 5, verifying convergence through trace plots in line with [34]. Meanwhile, BSFDA was run
200 times as in Section 5, LFRM (10 length scales) 2 times, and all other settings 10 times.

Across repeated trials, LFRM consistently overestimated the true number of components (which
is 3). Specifically:

• Standard LFRM estimated 10–14 components.
• LFRM with 10 length-scales estimated 6–8 components.
• LFRM with a low correlated-noise prior estimated 8–15 components.
• LFRM with a noninformative-like correlated-noise prior estimated 10–14 components.

In contrast, our method BSFDA produced a clear gap in the distribution of the precision parame-
ters, effectively separating effective dimensions from redundant ones.

Several factors may explain LFRM’s performance:

• Correlated noise interference: The correlated noise can obscure the true signal.
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• Prior specification: LFRM’s precision parameter prior are potentially less noninformative and
not as sparse as those sparse Bayesian learning priors [52] in BSFDA.

• Element-wise vs. Column-wise Precision: The element-wise precision parameters in LFRM
might compensate in a way that reduces overall sparsity.

12.2. Variational Inference v.s. MCMC

We conducted experiments using both Gibbs sampling (MCMC) and mean-field approximation
(Variational Inference) for the Bayesian PCA simulation [45,62] under varying noise levels. In our
experiments, "satisfactory estimation" is defined as the point when the 4th smallest precision (i.e.,
the inverse of variance) is at least 100 times smaller than the 5th–indicating that the four true signal
dimensions (with variances [5, 4, 3, 2]) have been correctly identified. For computational tractability, we
capped VI at 200,000 iterations (approximately 200 seconds) and MCMC sampling at 20,000 iterations
(about 20 minutes), with a burn-in period of 200 iterations and thinning set to 10.

Figure 13 illustrates the runtime for VI and MCMC to identify the correct components. Our key
findings are as follows:

1. When the noise level is close to the signal, neither MCMC or VI found the true dimension in the
limited iterations (probably never will), because the data is heavily polluted.

2. As the noise level decreases toward zero, the number of iterations (and runtime) required for
satisfactory estimation increases dramatically; VI begins to fail around a noise level of 1× 10−4,
and MCMC sampling around 1× 10−3, within the set time constraints.

3. Across the 10 noise levels (about 3× 10−3 to 2× 10−1) where both successfully identified the
correct dimensionality, VI consistently completes much faster than MCMC sampling. VI is
approximately 20 times faster. 85.57 ± 50.24 in average, in the range of 32.46 to 189.12.
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Figure 13. Time for variational inference and MCMC to identify the correct components in Bayesian
PCA.

These results indicate that both MCMC sampling and VI become slower as noise decreases due to
strong dependencies in the posterior. We hypothesize it is because both MCMC and VI suffer from the
dependency introduced by low noise, which is a known long-standing issue with ongoing research
methods, e.g., structured VI [72], or blocked/collapsed Gibbs sampler [74]. But both MCMC and VI
work well provided there are sufficient iterations. This behavior suggests that the dependency induced
by very low noise levels creates an optimization challenge rather than a fundamental modeling issue.

In summary: (1) VI is significantly faster than MCMC, (2) both methods slow down as the noise
level decreases, and (3) both fail to recover the correct components when the noise is excessively high.
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