
Lessons Learned and Scalability Achieved when
Porting Uintah to DOE Exascale Systems ⋆

John K. Holmen1[0000−0002−5934−2641], Marta Garćıa2[0000−0002−9495−5443],
Allen Sanderson3, Abhishek Bagusetty2[0000−0002−9642−921X], and Martin

Berzins3[0000−0002−5419−0634]

1 Oak Ridge National Laboratory, Oak Ridge TN, USA holmenjk@ornl.gov
2 Argonne National Laboratory, Lemont IL, USA {mgarcia,abagusetty}@anl.gov

3 University of Utah, Salt Lake City UT, USA {allen,mb}@sci.utah.edu

Abstract. A key challenge faced when preparing codes for Department
of Energy (DOE) exascale systems was designing scalable applications for
systems featuring hardware and software not yet available at leadership-
class scale. With such systems now available, it is important to evaluate
scalability of the resulting software solutions on these target systems. One
such code designed with the exascale DOE Aurora and DOE Frontier sys-
tems in mind is the Uintah Computational Framework, an open-source
asynchronous many-task (AMT) runtime system. To prepare for exas-
cale, Uintah adopted a portable MPI+X hybrid parallelism approach
using the Kokkos performance portability library (i.e., MPI+Kokkos).
This paper complements recent work with additional details and an eval-
uation of the resulting approach on Aurora and Frontier. Results are
shown for a challenging benchmark demonstrating interoperability of 3
portable codes essential to Uintah-related combustion research. These
results demonstrate single-source portability across Aurora and Fron-
tier with scaling characteristics shown to 3,072 Aurora nodes and 9,216
Frontier nodes. In addition to showing results run to new scales on new
systems, this paper also discusses lessons learned through efforts prepar-
ing Uintah for exascale systems.

Keywords: Asynchronous Many-Task Runtime System, Exascale, Per-
formance Portability, Parallelism and Concurrency, Portability, Software
Engineering

⋆ Notice of copyright: This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting the ar-
ticle for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).



2 J.K. Holmen et al.

1 Introduction

A key challenge developers faced when preparing large-scale simulation codes for
Department of Energy (DOE) exascale systems was designing scalable applica-
tions for systems featuring hardware and software not yet available at leadership-
class scale. Specifically, the exascale DOE Aurora and DOE Frontier systems
include Intel- and AMD-based graphics processing units (GPUs), respectively,
while heterogeneous petascale high-performance computing (HPC) systems pri-
marily featured NVIDIA-based GPUs. With Frontier in production and Aurora
nearing production, it is important for developers to evaluate the scalability
of resulting solutions on target systems. One such code designed with Aurora
and Frontier in mind is the Uintah Computational Framework, an open-source
asynchronous many-task (AMT) runtime system.

Uintah’s preparation for exascale began in earnest in 2014 by the University
of Utah’s Carbon Capture Multidisciplinary Simulation Center and their par-
ticipation in the National Nuclear Security Administration’s Predictive Science
Academic Alliance Program (PSAAP) II initiative. Since, development has con-
tinued through participation in the Argonne Leadership Computing Facility’s
Aurora Early Science Program (ESP) as a simulation project. Through these
efforts, Uintah adopted a portable MPI+X hybrid parallelism approach using
the Kokkos performance portability library (i.e., MPI+Kokkos). The resulting
approach has allowed Uintah to run in a performance portable manner across
several major HPC systems and DOE exascale testbeds.

The work presented here extends two recent evaluations of this approach
on systems featuring AMD-, Intel-, and NVIDIA-based GPUs. Work in [15]
evaluated large-scale use of the approach on the DOE Summit and National
Science Foundation (NSF) Frontera systems using two exascale target bench-
marks. Work in [10] evaluated single-node performance of the approach on DOE
exascale testbeds using an intermediate benchmark. This paper builds on these
prior works by evaluating large-scale use of the approach on Aurora and Fron-
tier using the more complex of the two benchmarks used in [15]. In doing so,
this paper documents Uintah’s first efforts to scale across Intel- and AMD-based
GPU nodes. In addition to showing results run to new scales on new systems,
this paper also discusses lessons learned through efforts preparing Uintah for
exascale systems.

To demonstrate task scheduling capabilities, MPI+Kokkos is used to make
portable use of Intel- and AMD-based GPUs across the DOE Aurora and DOE
Frontier systems, respectively. On Aurora, the approach is shown to scale to
36,864 Intel Data Center GPU Max Series Stacks using MPI+Kokkos with the
Kokkos::SYCL backend. On Frontier, the approach is shown to scale to 73,728
AMD MI250X Graphics Compute Dies (GCD) using MPI+Kokkos with the
Kokkos::HIP backend. Note, Stacks and GCDs refer to logical GPUs, which
there are 2 of on each vendor’s physical GPU. This portable scalability has been
achieved with a challenging single-source benchmark demonstrating interoper-
ability of 3 portable codes essential to Uintah-related combustion research.



Lessons Learned for Uintah at Exascale 3

The remainder of this paper is structured as follows. Section 2 provides an
overview of the Uintah Computational Framework and its MPI+X task sched-
ulers. Section 3 describes experiment setup and presents results gathered on the
DOE Aurora and DOE Frontier systems. Section 4 describes lessons learned
when preparing Uintah for exascale systems. Section 5 describes related work
and Section 6 concludes this paper and discusses future work.

2 The Uintah Computational Framework

The Uintah Computational Framework is an open-source asynchronous many-
task runtime system that has been widely ported. Uintah’s application codes
target large-scale simulation of fluid-structure interaction problems across di-
verse HPC systems. Examples of such systems include the DOE Titan, NSF
Stampede, and DOE Mira systems [24]. A more detailed description of Uintah
and its broad support for HPC systems can be found in a recent paper [15].

With emphasis on maintaining broad support, portability has been a primary
focus for Uintah and its users. For this reason, Uintah was an early adopter of
Kokkos [26]. Initial efforts improved portability of tasks themselves [11]. When
adopted widely in application code, Kokkos was adopted through a Uintah-
specific intermediate portability layer [12] to preserve legacy code and ease main-
tenance. More recent efforts improved portability of task scheduling infrastruc-
ture, specifically Uintah’s heterogeneous MPI+Kokkos task scheduler [10].

Uintah’s task schedulers have made scalability possible across some of the
world’s largest systems. These schedulers coordinate the selection and execution
of tasks while also handling aspects such as communication and host-to-device
data transfers. Uintah’s heterogeneous MPI+Kokkos task scheduler is based on
a production-grade MPI+PThreads+CUDA task scheduler and supports execu-
tion of portable tasks across diverse systems. A more detailed description and
history of Uintah’s MPI+X task schedulers can be found in a recent paper [14].

At the core of Uintah’s MPI+X task scheduler is the task executor logic
driving task selection and execution. This logic is continuously executed by
one-to-many task executors in a given MPI process until all tasks have been
processed. Uintah’s initial MPI+X task scheduler used PThreads for task ex-
ecutors. However, this posed challenges during initial Kokkos adoption due to
issues encountered when mixing PThreads and OpenMP threads. Uintah’s ini-
tial MPI+Kokkos task scheduler [13] used Kokkos::OpenMP::partition master
for task executors. However, partition master functionality was eventually dep-
recated in Kokkos. A visual representation and more complete description of
task executor logic can be found in a recent paper [15].

As a part of this work, Uintah’s MPI+Kokkos task scheduler has been sim-
plified to make direct use of OpenMP for task executors. This scheduler was then
merged into Uintah’s master branch to replace Uintah’s MPI+PThreads+CUDA
task scheduler with a portable alternative. Figure 1 shows how OpenMP is used
to parallelize task executor logic contained in RunTasks as well as general task
scheduling capabilities. Tasks can be executed as legacy serial tasks or portable



4 J.K. Holmen et al.

Fig. 1. Uintah’s MPI+Kokkos task scheduling capabilities.

tasks using Kokkos backends. How and where a task is executed depends on
compile-time and run-time parameters. In each task, developers provide macro-
based tags to indicate which backend(s) a task supports. At compile-time, tags
and the Kokkos build configuration are used to compile tasks for a given backend.
At run-time, command-line options are used to indicate which Kokkos execution
policy and related parameters are used. This approach has been demonstrated
at large-scale on the NSF Frontera [15], DOE Lassen [14], and DOE Summit [15]
systems as well as at the single-node scale on the DOE Crusher, DOE Polaris,
and DOE Sunspot exascale testbeds [10]. A more detailed description of how
Uintah manages multiple backends can be found in recent paper [12].

3 Experiments

Experiments discussed in this section used a modified Burns and Christon bench-
mark designed for recent experiments on the DOE Summit and NSF Frontera
systems [15]. This benchmark is one of Uintah’s exascale target benchmarks
and stresses the interoperability of 3 portable codes central to Uintah-related
combustion research: (1) Uintah’s ARCHES turbulent combustion simulation
component, (2) Uintah’s standalone linear solver using Lawrence Livermore Na-
tional Laboratory’s (LLNL) hypre, and (3) Uintah’s standalone reverse Monte-
Carlo tracing (RMCRT) radiation model. A key feature making this an impor-
tant problem for evaluating Uintah’s infrastructure at scale are the complex
hand-offs between codes due to shared data dependencies. More details on this
problem can be found in a recent paper [15].

Simulations were performed on the exascale DOE Aurora and DOE Fron-
tier systems. Aurora and Frontier are No. 2 and No. 1, respectively, on June
2024’s TOP500 list4 with HPL scores of 1.012 EFlop/s and 1.206 EFlop/s, re-
spectively. Aurora5 is maintained at the Argonne Leadership Computing Facility
and is comprised of 10,624 HPE Cray EX nodes, each with two 52-core Intel Xeon
CPU Max 9470 processors and six Intel Data Center GPU Max 1550 GPUs, each

4 https://top500.org/lists/top500/2024/06/
5 https://www.alcf.anl.gov/aurora



Lessons Learned for Uintah at Exascale 5

Table 1. Loop execution policy experiments.a

System Nodes Stacks MDRange MDRange Range Range Team
2,2,2 4,4,4 16 32

Aurorab 12 144 241 (-) 189 (-) 187 (-) 201 (-) 204 (-)
24 288 132 (91.6%) 88.3 (107%) 94.3 (98.9%) 101 (99.3%) 111 (91.8%)
48 576 56.7 (107%) 40.9 (116%) 40.0 (116%) 43.9 (114%) 41.3 (123%)
96 1152 27.2 (111%) 25.4 (93.0%) 21.7 (107%) 21.7 (115%) 22.2 (114%)

aMean time per timestep reported in seconds (strong-scaling efficiency).
bThis work was done on a pre-production supercomputer with

early versions of the Aurora software development kit.

with 2 Stacks. Each Aurora compute node has 512 GB of DDR5 memory and 64
GB of high-bandwidth memory per CPU and 128 GB of high-bandwidth mem-
ory (HBM2E) per GPU. Frontier6 is maintained at the Oak Ridge Leadership
Computing Facility and is comprised of 9,408 HPE Cray EX235a nodes, each
with one 64-core AMD EPYC 7A53 CPU and four AMD MI250X GPUs, each
with 2 Graphics Compute Dies (GCDs). Each Frontier compute node has 512 GB
of DDR4 memory on the CPU and 64 GB of high-bandwidth memory (HBM2E)
per GCD. Compute nodes on both Aurora and Frontier are interconnected via
HPE’s Slingshot 11 interconnect.

Simulations were launched using 1 MPI process per logical GPU (i.e., Stack
on Aurora, GCD on Frontier). On Aurora, simulations used MPI+Kokkos with
the Kokkos::SYCL backend to target Intel-based GPUs. On Frontier, simulations
used MPI+Kokkos with the Kokkos::HIP backend to target AMD-based GPUs.
For Sections 3.1 and 3.3, Uintah master branch commit 3002edc, Kokkos release
tag 4.3.01, and hypre release tag v2.31.0 were used. For Section 3.2, Uintah
master branch commit 28bb54a, Kokkos release tag 4.2.01, and hypre release
tag v2.31.0 were used. Section 3.1 used various Kokkos loop execution policies.
Sections 3.2 and 3.3 use the MDRange policy with a tile size of [4,4,4].

The simulation domain for this problem is a 2-level mesh decomposed into
a collection of patches. Patches are distributed across MPI processes and corre-
spond to the collection of cells executed by a loop. The base problem provides
each logical GPU with thirty-two 643 fine mesh patches and four 323 coarse mesh
patches using a mesh refinement ratio of 4. The problem was configured to cast
100 rays per cell. Results have been averaged over 7 consecutive timesteps.

3.1 Parameter Tuning Studies

Parameter tuning studies explored the impact of Kokkos execution policy type
on time-to-solution and strong-scaling efficiency. These policies are used to man-
age how Kokkos parallel patterns are executed. Experiments used the MDRange
policy with a tile size of [2,2,2] and [4,4,4], Range policy with a chunk size of
16 and 32, and Team policy. Table 1 shows strong-scaling results using 5 config-
urations across Aurora nodes for the modified Burns and Christon benchmark
problem on a 2-level structured adaptive mesh refinement grid. For each pol-
6 https://www.olcf.ornl.gov/frontier



6 J.K. Holmen et al.

icy, the base problem was strong-scaled from 12 to 96 Aurora compute nodes.
Results show that time-to-solution improvements are achievable. However, the
impact on strong-scaling efficiency is unclear due to atypical scaling of this prob-
lem on Aurora nodes (e.g., superlinear scaling). This unexpected behaviour is
attributed to per-timestep variability and under investigation. Note, Aurora was
a pre-production system with early versions of the Aurora software development
kit at the time of submission. For remaining experiments discussed here, the
MDRange policy with a tile size of [4,4,4] was used.

3.2 Feasibility Studies

Feasibility studies explored the impact of a fixed mesh refinement ratio on weak-
scaling efficiency to gauge suitability of the problem for full-system runs. Ex-
periments used a fixed refinement ratio (RR) of 4 when weak-scaling the base
problem to larger node counts. Table 2 shows strong-scaling results using 3 prob-
lem sizes weak-scaled across Frontier nodes for the modified Burns and Christon
benchmark problem on a 2-level structured adaptive mesh refinement grid. L0

Table 2. Fixed mesh refinement ratio experiments.a

L0: 96 - 323 L0: 576 - 323 L0: 6144 - 323

System Nodes GCDs L1: 768 - 643 Nodes GCDs L1: 4608 - 643 Nodes GCDs L1: 49.1K - 643

RR:4 RR:4 RR:4

Frontier 3 24 94.0 (-) 18 144 165 (-) 192 1536 - (-)
6 48 47.5 (98.9%) 36 288 82.6 (100%) 384 3072 - (-)
12 96 24.4 (96.3%) 72 576 41.6 (99.2%) 768 6144 - (-)
24 192 12.5 (94.0%) 144 1152 21.3 (96.7%) 1536 12288 385 (-)
aMean time per timestep reported in seconds (strong-scaling efficiency).

and L1 correspond to coarse and fine mesh patch counts and sizes, respectively,
and RR corresponds to refinement ratio. When weak-scaled, the 18- and 192-
node problems provide per-device work equivalent to the base problem due to the
fixed refinement ratio. Results show that good strong-scaling efficiency is achiev-
able. However when comparing time-to-solution across a given row, the problem
is shown to weak-scale poorly (e.g., 1.76x and 18.1x increases when weak-scaling
from 3 to 18 and 144 to 1,536 nodes, respectively). Such increases are problem-
atic given limited system access. For this reason, runs with the largest problem
were not completed and the problem was not weak-scaled further to reach the
full-system. Note, this result is not unexpected due to communication costs re-
lated to the global all-to-all nature of radiation. One solution for full-system
runs is to use aggressive mesh refinement, which has been shown to improve this
problem’s ability to weak-scale [17].

3.3 Large-Scale Studies

Large-scale studies explored the impact of an increasing mesh refinement
ratio on weak-scaling efficiency to determine if aggressive mesh refinement will



Lessons Learned for Uintah at Exascale 7

make full-system runs possible. Experiments used refinement ratios of 4, 8, and
16 when weak-scaling the base problem to larger node counts. Figure 2 shows
strong-scaling results using 3 problem sizes weak-scaled across Aurora and Fron-
tier nodes for the modified Burns and Christon benchmark problem on a 2-level
structured adaptive mesh refinement grid. L0 and L1 correspond to coarse and

 10

 100

144
12
18

288
24
36

576
48
72

1152
96
144

2034
192
288

4608
384
576

9216
768
1152

18.4K
1536
2304

36.8K
3072
4608

73.7K
6144
9216

MPI+Kokkos: 1 Stack\GCD per MPI Process
L0: 576 - 323 Patches
Averaged over 7 Timesteps

M
e
a
n
 T

im
e
 P

e
r 

T
im

e
st

e
p
 (

s)

Stacks\GCDs
Aurora Nodes
Frontier Nodes

Ideal

Aurora: L1: 4608 - 643 Patches; RR: 4

Frontier: L1: 4608 - 643 Patches; RR: 4

Aurora: L1: 36.8K - 643 Patches; RR: 8

Frontier: L1: 36.8K - 643 Patches; RR: 8

Aurora: L1: 294K - 643 Patches; RR: 16

Frontier: L1: 294K - 643 Patches; RR:16

Modified Burns and Christon Benchmark - Strong Scaling
Arches - Hypre - 2-Level RMCRT

Fig. 2. Increasing mesh refinement ratio experiments. This work was done on a pre-
production supercomputer with early versions of the Aurora software development kit.

fine mesh patch counts and sizes, respectively, and RR corresponds to refinement
ratio. When increasing refinement ratio, the 18- and 192-node problems provide
fewer per-device coarse mesh patch counts than the base problem. When compar-
ing the topmost data point in each strong-scaling trend, results show that good
weak-scaling efficiency is achievable with aggressive mesh refinement. However,
good strong-scaling can be difficult to achieve with the largest problem used. This
difficulty is attributed to poor scaling of reductions across ARCHES simulation
variables. These results are encouraging as they demonstrate Uintah’s ability to
portably run across 29% of Aurora nodes and 98% of Frontier nodes. Further,
this has been achieved using largely naive ports of ARCHES loops to device-side
Kokkos backends with room for improvement. Note, larger node counts were not
explored on Aurora due to limited system availability at the time of submission.
Note also, Section 3.1’s atypical scaling was also encountered at large-scale here.

4 Lessons Learned

4.1 Continued Portability of AMT Runtime Systems

Over the last decade, Uintah’s asynchronous many-task runtime system has had
great success in making challenging applications scale. This is a result of the self-



8 J.K. Holmen et al.

adaptive approach used by the underlying runtime in Uintah and other AMT
runtime systems. Such runtime systems ease porting and scaling challenges for
application developers by offloading low-level details for making efficient use of
the underlying hardware to the runtime itself. However, this is achieved by shift-
ing these challenges to the runtime system developers. Continuous exploration
and integration of portable support for emerging architectures helps ensure long-
term portability of runtime systems.

4.2 Pre-Production Work Environments

Resilience is an essential skill for working on pre-production systems. It has
been particularly important for exascale systems as the path to Aurora (and
to a lesser extent, Frontier) has been long and challenging. For example, devel-
opers preparing for Aurora faced a product cancellation and ported codes to
not only novel hardware but also novel software stacks. Additional complexity
was added by the several testbeds used through the 2017 to 2024 Aurora ESP
and a six-week software development kit (SDK) upgrade cadence that required
continuous testing and bug reporting across all areas of the software stack (e.g.,
MPI to Kokkos). For example, testbeds spanned multiple generations of GPU
and include: Iris (Intel Iris Pro Graphics P580), Arcticus (ATS Intel GPU B
Silicon 32GB 960EU SIMD256b), Florentia (PVC Intel GPU A Silicon 128GB
1024EU SIMD512b), and Sunspot (Intel Data Center GPU Max Series). As a
result, care was needed to help maintain team cohesion, focus, and motivation
as the success of the process is essential for providing confidence for future sys-
tems. An approach used to help ensure success was the use of dedicated contacts
for application teams and constant involvement of ESP personnel through the
process. Difficulties aside, the authors are forever grateful for the opportunity to
be a part of the DOE’s path to exascale.

4.3 Rapidly Evolving Software

Uintah’s portability relies on the Kokkos performance portability layer and third
party libraries using Kokkos (e.g., LLNL’s hypre library of linear solvers). Both
the Kokkos and hypre teams have been outstanding in their support of Uintah
while at the same time making significant advancements to support Intel- and
AMD-based GPUs. Combined with Aurora’s novel software stack, this has made
for a rapidly evolving software ecosystem that has increased the complexity of
Uintah’s development as the ecosystem stabilizes. For example, it is important
to test new third party library releases alongside research software engineer-
ing to help identify issues early. Maintaining a patient understanding of the
challenges associated with such a fast-moving ecosystem helps maintain healthy
collaborations and reasonable expectations. Such collaborations helped ease the
modernization of Uintah’s use of Kokkos when updating to the latest releases
and deprecating a patched version of a 2018 Kokkos release used to accelerate
Uintah development [10]. To put the pace into perspective, this patched version
was 25 releases behind the Kokkos 4.2.01 release used for this work. Similarly,



Lessons Learned for Uintah at Exascale 9

the fixed release of hypre previously used was 19 releases behind the hypre

2.31.0 release used for this work.

4.4 Node Complexity

Increasing node-level parallelism and deep memory hierarchies pose challenges
for making efficient use of a node. This is a result of nodes having various non-
uniform memory access (NUMA) domains and network interface controller (NIC)
card configurations. For example, Frontier has 4 NUMA domains per node with
2 L3 cache regions per NUMA domain for a total of 8 L3 cache regions and 1
NIC connected directly to each MI250X GPU for a total of 4 NICs per node. In
addition to high-bandwidth memory on each GPU, Aurora nodes also feature
high-bandwidth memory on each CPU [22] with 4 NICs connected directly to the
PCIe switch of each socket for a total of 8 NICs per node. This is complicated by
non-obvious mapping of resources across NUMA domains. For example, GPU 4 is
associated with the L3 cache region of cores 0 through 7 on Frontier. Consulting
user guides, reviewing a system’s node topology, and verifying that you are
running sensibly with regard to NUMA domains and NIC configurations helps
improve node use.

4.5 Parameter Tuning

The great flexibility of Kokkos execution policies poses potential parallel pat-
tern design challenges. This is a result of the many ways in which a parallel
pattern can be written for a target architecture. Offering mechanisms for users
to easily change between execution policy types (e.g., MDRange, Range, Team)
and low-level parameters (e.g., chunk size, tile size) helps ease parameter tuning
when working to identify optimal run configurations. An example of a mecha-
nism used by Uintah is that command-line options (e.g., -kokkos policy range

-kokkos chunk size 64) can be used to modify the default parallel pattern de-
sign at run-time (i.e., -kokkos policy mdrange -kokkos tile size 4 4 4).

5 Related Work

As described in [10], Uintah is one of many asynchronous many-task runtime
systems and block-structured adaptive mesh refinement (SAMR) frameworks.
Examples of similar AMT runtime systems include Charm++ [20], HPX [19],
IRIS [21, 25], Legion [3], PaRSEC [4], and StarPU [2]. Examples of similar SAMR
frameworks include BoxLib [29] (superseded by AMReX [28]), Cactus [8], and
Parthenon [9]. A review of representative SAMR frameworks, including Uintah,
can be found in a recent survey [5].

General lessons learned when moving to Exascale and making use of Kokkos
are readily available (e.g., [6, 1, 7]). Kokkos is one of many performance portabil-
ity layers. Examples of similar performance portability layers include OCCA [23],
RAJA [16], and SYCL/DPC++ [27]. A review of exascale challenges and per-
formance portable programming models can be found in a recent survey [18].



10 J.K. Holmen et al.

6 Conclusions and Future Work

The work presented here captures the culmination of Uintah’s decade long prepa-
ration for DOE exascale systems through highly collaborative multidisciplinary
efforts pursued as a part of PSAAP II and the Aurora Early Science Program.
Specifically, this work documents Uintah’s first large-scale portable use of the
exascale DOE Aurora and DOE Frontier systems. This use has been made possi-
ble through Uintah’s adoption of a portable MPI+X hybrid parallelism approach
using the Kokkos performance portability library (i.e., MPI+Kokkos).

MPI+Kokkos capabilities have been shown across the DOE Aurora and DOE
Frontier systems when using this approach to make portable use of Intel- and
AMD-based GPUs, respectively. On Aurora, strong-scaling characteristics were
shown to 3,072 nodes using MPI+Kokkos at scale with the Kokkos::SYCL back-
end. On Frontier, strong-scaling characteristics were shown to 9,216 nodes using
MPI+Kokkos at scale with the Kokkos::HIP backend. Preliminary experiments
used to identify approaches needed to reach this scale and general lessons learned
were also discussed.

The portable scalability shown here offers encouragement as we prepare to
scale further across Aurora. Next steps include further investigation of perfor-
mance variability encountered on Aurora nodes and ARCHES-related scalability
barriers. Once understood, we aim to stress Uintah’s infrastructure across the
full Aurora system to help identify issues and scalability barriers encountered
at larger scales. Such efforts will help further improve Uintah’s readiness for
large-scale portable science runs across DOE exascale systems.

Acknowledgement. This material is based upon work originally supported
by the Department of Energy, National Nuclear Security Administration, under
Award Number(s) DE-NA0002375. This research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357. This work is associated with
an ALCF Aurora Early Science Program project. This work was supported by
the Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357. This research used resources of the Oak Ridge Leadership Com-
puting Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725. Support for Allen Sanderson comes from the
University of Texas at Austin under Award Number(s) UTA19-001215 and a gift
from the Intel One API Centers Program. We would like to thank the ALCF
and OLCF for early system access with special thanks to Varsha Madananth for
her continued support through the Aurora Early Science Program.

References

1. Abdelfattah, A., Barra, V., Beams, N., Bleile, R., Brown, J., Camier, J.S., Car-
son, R., Chalmers, N., Dobrev, V., Dudouit, Y., Fischer, P., Karakus, A., Kerke-
meier, S., Kolev, T., Lan, Y.H., Merzari, E., Min, M., Phillips, M., Rathnayake, T.,



Lessons Learned for Uintah at Exascale 11

Rieben, R., Stitt, T., Tomboulides, A., Tomov, S., Tomov, V., Vargas, A., Warbur-
ton, T., Weiss, K.: GPU algorithms for Efficient Exascale Discretizations. Parallel
Computing 108, 102841 (2021)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23(2), 187–198 (2011)

3. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
p. 66. IEEE Computer Society Press (2012)

4. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J.J.:
PaRSEC: Exploiting Heterogeneity to Enhance Scalability. Computing in Science
Engineering 15(6), 36–45 (Nov 2013)

5. Dubey, A., Almgren, A., Bell, J., Berzins, M., Brandt, S., Bryan, G., Colella, P.,
Graves, D., Lijewski, M., Löffler, F., O’Shea, B., Schnetter, E., Straalen, B.V.,
Weide, K.: A survey of high level frameworks in block-structured adaptive mesh
refinement packages. Journal of Parallel and Distributed Computing (2014)

6. Dubey, A., McInnes, L.C., Thakur, R., Draeger, E.W., Evans, T., Germann, T.C.,
Hart, W.E.: Performance portability in the exascale computing project: Explo-
ration through a panel series. Computing in Science & Engineering 23(5), 46–54
(2021)

7. Evans, T.M., Siegel, A., Draeger, E.W., Deslippe, J., Francois, M.M., Germann,
T.C., Hart, W.E., Martin, D.F.: A survey of software implementations used by
application codes in the exascale computing project. The International Journal of
High Performance Computing Applications 36(1), 5–12 (2022)

8. Goodale, T., Allen, G., Lanfermann, G., Massó, J., Radke, T., Seidel, E., Shalf, J.:
The cactus framework and toolkit: Design and applications. In: Palma, J.M.L.M.,
Sousa, A.A., Dongarra, J., Hernández, V. (eds.) High Performance Computing for
Computational Science — VECPAR 2002. pp. 197–227. Springer Berlin Heidelberg,
Berlin, Heidelberg (2003)

9. Grete, P., Dolence, J.C., Miller, J.M., Brown, J., Ryan, B., Gaspar, A., Glines, F.,
Swaminarayan, S., Lippuner, J., Solomon, C.J., Shipman, G., Junghans, C., Hol-
laday, D., Stone, J.M., Roberts, L.F.: Parthenon—a performance portable block-
structured adaptive mesh refinement framework. The International Journal of High
Performance Computing Applications 37(5), 465–486 (2023)

10. Holmen, J.K., Garćıa, M., Bagusetty, A., Sanderson, A., Berzins, M.: Making Uin-
tah Performance Portable for Department of Energy Exascale Testbeds. In: Euro-
Par 2023: Parallel Processing. pp. 1–12 (2024)

11. Holmen, J.K., Humphrey, A., Sunderland, D., Berzins, M.: Improving Uintah’s
Scalability Through the Use of Portable Kokkos-Based Data Parallel Tasks. In:
Proceedings of the Practice and Experience in Advanced Research Computing
2017 on Sustainability, Success and Impact. pp. 27:1–27:8. PEARC17, ACM, New
York, NY, USA (2017)

12. Holmen, J.K., Peterson, B., Berzins, M.: An approach for indirectly adopting a
performance portability layer in large legacy codes. In: 2019 IEEE/ACM Interna-
tional Workshop on Performance, Portability and Productivity in HPC (P3HPC).
pp. 36–49 (2019)

13. Holmen, J.K., Peterson, B., Humphrey, A., Sunderland, D., Diaz-Ibarra, O.H.,
Thornock, J.N., Berzins, M.: Portably Improving Uintah’s Readiness for Exascale
Systems Through the Use of Kokkos. Tech. Rep. UUSCI-2019-001, SCI Institute
(2019)



12 J.K. Holmen et al.

14. Holmen, J.K., Sahasrabudhe, D., Berzins, M.: A Heterogeneous MPI+PPL Task
Scheduling Approach for Asynchronous Many-Task Runtime Systems. In: Pro-
ceedings of the Practice and Experience in Advanced Research Computing 2021
on Sustainability, Success and Impact (PEARC21). ACM (2021)

15. Holmen, J.K., Sahasrabudhe, D., Berzins, M.: Porting Uintah to Heterogeneous
Systems. In: Proceedings of the Platform for Advanced Scientific Computing Con-
ference. Association for Computing Machinery, New York, NY, USA (2022)

16. Hornung, R.D., Keasler, J.A.: The RAJA portability layer: overview and status.
Tech. rep., Lawrence Livermore National Laboratory, Livermore, CA (2014)

17. Humphrey, A., Berzins, M.: An Evaluation of An Asynchronous Task Based
Dataflow Approach For Uintah. In: 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC). vol. 2, pp. 652–657 (July 2019)

18. Johnson, A.: Area Exam: General-Purpose Performance Portable Programming
Models for Productive Exascale Computing (2020)

19. Kaiser, H., Diehl, P., Lemoine, A.S., Lelbach, B.A., Amini, P., Berge, A., Biddis-
combe, J., Brandt, S.R., Gupta, N., Heller, T., Huck, K., Khatami, Z., Kheirkha-
han, A., Reverdell, A., Shirzad, S., Simberg, M., Wagle, B., Wei, W., Zhang, T.:
HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of
Open Source Software 5(53), 2352 (2020)

20. Kale, L.V., Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented
System Based on C++. In: Proceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and Applications. pp. 91–108.
OOPSLA ’93, ACM, New York, NY, USA (1993)

21. Kim, J., Lee, S., Johnston, B., Vetter, J.S.: IRIS: A Portable Runtime System
Exploiting Multiple Heterogeneous Programming Systems. In: 2021 IEEE High
Performance Extreme Computing Conference (HPEC). pp. 1–8 (2021)

22. McCalpin, J.D.: Bandwidth Limits in the Intel Xeon Max (Sapphire Rapids with
HBM) Processors. In: International Conference on High Performance Computing.
pp. 403–413. Springer (2023)

23. Medina, D.S., St-Cyr, A., Warburton, T.: OCCA: A unified approach to multi-
threading languages. arXiv preprint arXiv:1403.0968 (2014)

24. Meng, Q., Humphrey, A., Schmidt, J., Berzins, M.: Investigating applications
portability with the uintah DAG-based runtime system on PetaScale supercomput-
ers. In: SC ’13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. pp. 96:1–96:12 (2013)

25. Monil, M.A.H., Miniskar, N.R., Liu, F.Y., Vetter, J.S., Valero-Lara, P.: LaRIS:
Targeting Portability and Productivity for LAPACK Codes on Extreme Hetero-
geneous Systems by Using IRIS. In: 2022 IEEE/ACM Redefining Scalability for
Diversely Heterogeneous Architectures Workshop (RSDHA). pp. 12–21 (2022)

26. Peterson, B., Xiao, N., Holmen, J.K., Chaganti, S., Pakki, A., Schmidt, J., Sun-
derland, D., Humphrey, A., Berzins, M.: Developing uintah’s runtime system for
forthcoming architectures. Tech. rep., SCI Institute (2015)

27. Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J., Tian, X.:
Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Sys-
tems using C++ and SYCL. Springer Nature (2021)

28. Zhang, W., Almgren, A., Beckner, V., Bell, J., Blaschke, J., Chan, C., Day, M.,
Friesen, B., Gott, K., Graves, D., Katz, M., Myers, A., Nguyen, T., Nonaka, A.,
Rosso, M., Williams, S., Zingale, M.: AMReX: a framework for block-structured
adaptive mesh refinement. Journal of Open Source Software 4(37), 1370 (2019)

29. Zhang, W., Almgren, A.S., Day, M., Nguyen, T., Shalf, J., Unat, D.: Boxlib with
tiling: An AMR software framework. CoRR abs/1604.03570 (2016)


