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We examine which decentralized finance architectures enable meaningful regulation by combining 
financial and computational theory. We show via deduction that a decentralized and permissionless 
Turing-complete system cannot provably comply with regulations concerning anti-money laundering, 
know-your-client obligations, some securities restrictions and forms of exchange control. Any system 
that claims to follow regulations must choose either a form of permission or a less-than-Turing-
complete update facility. Compliant decentralized systems can be constructed only by compromising 
on the richness of permissible changes. Regulatory authorities must accept new tradeoffs that limit 
their enforcement powers if they want to approve permissionless platforms formally. Our analysis 
demonstrates that the fundamental constraints of computation theory have direct implications for 
financial regulation. By mapping regulatory requirements onto computational models, we characterize 
which types of automated compliance are achievable and which are provably impossible. This 
framework allows us to move beyond traditional debates about regulatory effectiveness to establish 
concrete boundaries for automated enforcement.

Decentralized finance (DeFi) fundamentally transforms traditional financial systems by eliminating the need 
for trusted intermediaries. Instead of trust in financial institutions and various intermediaries, DeFi relies on 
technological advances to facilitate economic transactions without centralized service providers. For example, 
smart contracts can be programmed to assume the roles of custodians, central clearinghouses, and escrow 
agents. These contracts are stored as code on public blockchains and executed as part of the system’s consensus 
rules and computation engine. Specific protocols can be designed to prohibit intervention and manipulation 
and have been deployed to replicate numerous financial services such as lending markets, exchange protocols, 
financial derivatives, and asset management1–3.

As these new developments use computational systems, they must be bound by existing results from 
computation theory. In this paper, we extend results by focusing on specific key features of programming 
languages to study a desired feature in practice: What types of DeFi systems can be proven compliant with 
existing financial regulations? This question is important for two reasons. First, DeFi operates outside traditional 
financial systems and across borders, so jurisdictional and enforcement issues arise4,5 that are reminiscent of 
considerations with the development of the internet6. Second, the lack of a central authority and the anonymity 
or pseudonymity of transactions add to the regulatory complexity7. Even though recent research studies whether 
much of DeFi is genuinely decentralized2,8,9, regulators still face increased technological complexity in this new 
financial system.

Further, the advances in these financial technologies may broaden the scope of regulatory enforcement by 
allowing participants to observe the rules and verify that everything is executed accordingly10. For example, 
a public immutable blockchain contains all transactions among different parties, potentially allowing better 
tracing of funds. We explore the possibility of DeFi complying with existing financial regulations, highlighting 
the challenges and opportunities presented by this innovative and disruptive technology and key features of the 
innovation driving specific results.

Viewed through the lens of an automated system run on a Turing Machine, financial regulation means 
banning specific state transitions and sequences of letters on the tape. Our choice of the Turing Machine model 
is deliberate as it simple and serves as “a canonical model of computation used by theoreticians to understand the 
limits on serial computation“ and “also serves as the primary vehicle for the classification of problems by their 
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use of space and time11.” Further, we can rely on powerful results that this model of computation is sufficient to 
compute anything computable on what is conventionally know as a computer. We can also use related results 
that while simple modifications like parallelization, additional compute units or extra storage facilities may 
speed up a Turing Machine’s ability to complete a given task they cannot empower one to complete formerly 
non-computable tasks given unbounded time. As we will see these extensions map nicely on to more complex 
economic models and by starting from the Turing Machine we can easily extend our results across different 
approaches.

While our analysis focuses primarily on mechanically verifiable rules like transaction restrictions, we 
acknowledge that financial regulation encompasses a much broader spectrum of tools and objectives. As scholars 
like12 have shown, regulatory frameworks often serve to constitute and shape financial processes, not merely 
restrict them. Central banks, for instance, actively use private financial institutions to implement monetary 
policy rather than simply constraining their behavior. Our results on automated compliance should thus be 
understood as addressing a specific, though important, subset of regulatory challenges.

Taking this framework, we draw upon techniques and results from computation theory concerning the 
connections between different models of computing and language classes13–16. Because of our focus on DeFi, 
instead of simply considering static collections of finite state machines, strings, and other basic building blocks, 
we will insert a “system update” facility into the machine. In other words, how does allowing updates akin 
to the publication of new smart contracts affect externally imposed regulations? Since Alan Turing’s seminal 
work in 1937, computer scientists have known that an automated process for verifying all clearly-defined 
properties of generic algorithms is not possible (this result is known as “the halting problem”). However, there 
are circumstances under which certain features, like a given static program halting in finite time, using less 
than a certain amount of memory, or never accessing a particular storage location, can be proven. Similarly, it 
is possible to construct models under which such properties can be preserved across modifications to the code. 
The key is to restrict those modifications suitably.

We explore how limits on this sort of update facility can provide transitivity of properties across modifications. 
DeFi features some computationally challenging properties: (1) Turing-complete programming, (2) 
permissionless access to both transact and publish code and (3) selectively immutable code. The permissionless 
mutability of the system combined with the Turing completeness motivates our inquiry. A system running 
Turing-complete code where updates can be published permissionlessly cannot make any guarantees about its 
future behavior, a conclusion from early work on Universal Turing Machines (UTM)17.

Although a general version of “compliance” can never be achieved in DeFi, we show that it is possible to 
construct both (1) classes of algorithms that can make credible promises and (2) restricted update mechanisms 
that enable credible promises. In other words, DeFi platforms can provide compliant services like traditional 
centralized providers through fully automatic mechanisms. But achieving such compliance comes at a 
quantifiable cost within the theory of computation. The goal here is to assemble well-worn tools from computer 
science to show how one can construct an automated economic system that can credibly comply with a given 
legal system.

The remainder of this paper is organized as follows: We first present our methodological framework for 
analyzing automated financial systems. We then systematically examine all possible combinations of system 
features to identify which configurations permit meaningful regulation. After the analysis, we explore the 
theoretical implications and practical consequences of our findings. Finally, we conclude with recommendations 
for regulatory system design that acknowledge these fundamental constraints.

Defining compliance
What exactly constitutes compliance in a computational system? Consider an economy modeled as a Turing 
Machine, where the machine’s state corresponds to the state of the real economy. We formalize compliance as 
a property of system state transitions that can be verified mechanically, following Theorem 5.8.5 of Savage11. 
Specifically, a compliant system is one where no sequence of permitted operations can result in a state that 
violates predefined regulatory constraints set by an external regulator. For example, if a regulation prohibits 
transactions with certain addresses, compliance means no sequence of permitted operations can transfer value 
to those addresses, either directly or indirectly. Similarly a regulator may impose requirements on intermediaries 
transacting in certain assets or products akin to depository receipts for those assets. Compliance would then 
require ensuring one does not unknowingly transact in “products akin to depository receipts” for a given list of 
assets.

Further, these requirements can extend beyond the assets themselves. A regulator may require that the price 
of an asset on automated trading platforms remains within a given band. In this case the banned state transition 
is an exchange of that asset for some other asset outside of the band.

These examples cover basic anti-money-laundering, securities and foreign exchange control regulations. Our 
formalization maps naturally to both computation theory and practical regulatory requirements, providing a 
rigorous framework for analyzing what properties can be guaranteed in an automated financial system. We call 
the set of properties to be enforced at time t Pt.

This definition maps naturally to our Turing Machine model: banned states (such as having sent funds to a 
prohibited address) represent violations of properties in Pt, and a compliant system must prove that no sequence 
of operations can reach these states. Unlike simple blacklisting, which only checks individual transactions, 
our framework requires proving that no combination of permitted operations can circumvent the regulatory 
constraints.

This formulation maps to well-known results in computability, such as the Halting Problem and the more 
general impossibility known as Rice’s Theorem: No algorithm exists to determine from the description of a 
[Turing Machine] whether or not the language it accepts falls into any proper subset of the recursively enumerable 
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languages11. In other words, we cannot categorize arbitrary programs into specific subsets automatically and 
reliably. In financial regulation, the canonical “proper subset” is a ban on interacting with a given address: 
interactions involving a banned address are forbidden, and the acceptable subset of states includes no such 
transfers. By “compliance” we refer to conditions imposed by an external source that sets the financial regulations.

Based on these definitions, we immediately see that in systems offering complete anonymity, like Monero18 
or Zcash19, transactions can only be classified as being within or outside the system by design. No proper 
subsets exist before considering a computational model. Our boundaries would apply to the extent that users 
unintentionally leak information within these systems.

To develop intuition, consider a hypothetical rule given by a regulator that you cannot interact with a “mixing 
service” like Tornado Cash20. That prohibition describes the service as:

[A] virtual currency mixer that operates on the Ethereum blockchain and indiscriminately facilitates 
anonymous transactions by obfuscating their origin, destination, and counterparties, with no attempt to 
determine their origin.

Based on the regulation, can we achieve compliance through automation? Unless the definition of mixing service 
is “smart contract which matches a given chunk of code exactly,” the answer is “no” because any helpful definition 
will be a “proper subset” of all possible programs. Note that a code chunk is not a Turing Machine description. 
Even determining whether two different chunks of code describe the same Turing Machine is generally blocked 
by the same results. Note that this differs from simply evaluating identical code. In other words, suppose we have 
some program a ∈ RE (standing for “recursively enumerable”11). We know immediately that any other copy of 
a is the same program and in the same subsets of RE. If a = b and a ∈ X ⊂ RE, then b = a and b ∈ X ⊂ RE
. These are identities in set theory.In contrast, evaluating whether different codes describe the same Turing 
Machine is slightly different. Given a, b ∈ RE, do a and b describe the same Turing Machine? Further, perhaps 
we are also given a, b ∈ Mixers ⊂ RE. Unless Mixers = RE, solving this is blocked by Rice’s Theorem. 
And if Mixers = RE, we cannot say they are identical—we are just noting they are both valid Turing Machine 
descriptions.

However, suppose a regulator bans interactions with specific enumerated “mixers.” Although evaluating if 
some code is a mixer does not require classifying arbitrary code blocks, there are still two issues. First, this 
severely limits the regulator’s power from regulating a mutable set of protocols to only specific ones. In other 
words, what is often called “principles-based” regulations (as opposed to rules-based regulations)21,22 are 
impossible. We cannot ban “mixers” generally – we can only ban “mixers A, B and C.” In some sense, this is akin 
to banning specific means of murder rather than simply banning murder, no matter the means.

Second, and more importantly, we cannot enforce even these more straightforward rules reliably. Consider 
these steps: 

	1.	� Deploy a new, confusingly-coded, “mixer” labeled X
	2.	� Send funds to the mixer X
	3.	� Withdraw from the mixer X and feed into the mixer A
	4.	� Withdraw from the mixer A and feed into the mixer X
	5.	� Withdraw from the mixer X and spend freelyThis procedure works because we cannot identify arbitrary 

mixers, so we are free to deploy and then use them before they get put on the banned list. As a result, the 
regulator cannot even ban all interaction with enumerated mixers – it can only reliably ban some forms of 
interaction. This result is a severe limit on regulatory power.

If we consider that compliance exists in an automated form, operating on publicly available data in real-time, 
anyone accepting that final transfer must operate in a compliant fashion. If, instead, the plan is to decide these 
things later based on non-mechanical analysis, we are simply operating a conventional legal system with some 
more computers involved. Concretely, if that last transfer can be ruled illegal after the fact, it was never an 
automated financial system.

Finally, reconsider this example where rather than banning “mixer A,” the rule concerns some proscribed 
parties (terrorists, sanctioned groups, etc). If you cannot reliably ban mixers, then the process above shows 
you how to fund and accept funds from those groups. Similarly a process which generates assets akin to 
depository receipts works to evade securities-like regulations and a byzantine way of recording trades evades 
price regulations.

Methodology
We address regulatory challenges with the following method: 

	1.	� Develop a formal programming language model for a financial system built on smart contracts.
	2.	� Define a “regulator” in a way connected to the real world.
	3.	� Enumerate all the cases admitted by our model and derive the properties of a regulator for each case.
	4.	� Connect sets of cases to real-world regulatory designs.Our approach lets us cleanly map well-known and 

long-accepted limits on computation onto financial regulation questions that have historically been viewed 
from a social science perspective. The point is that questions regarding the power or authority of some judi-
cial, regulatory, or political body are fundamentally different from those surrounding specific computation 
models. From Gödel’s seminal work in the 1930s, we know that not every true statement in arithmetic can be 
proven, yet the field of mathematics continues to progress. In a similar vein, our computational impossibility 
results do not render any sensible definition of compliance out of reach. But they do force regulators and 
system designers to weigh trade-offs and make choices.
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If an economy is run on a computer, certain desirable legal outcomes may not be possible as certain types of 
computer designs can only compute some functions. For a computer scientist, this statement is unsurprising. 
We acknowledge that working through the cases of our model does not add much to the theory of computation 
literature; however, it provides a straightforward way of mapping across fields. While legal, economic, and 
political science research studies the completeness of contracts and various governmental systems, they typically 
do not strive to achieve mathematical precision. In contrast, we can make mathematically precise statements 
about the power of fully automated governance structures.

At the same time, regulators and financial system actors have long relied on procedures to freeze funds 
while issues are resolved. This can include additional bank holidays, legal actions, or taking certain actions 
on weekends. For example, bank regulators may seize, close, and transfer failed banks on weekends to avoid 
disrupting the normal course of business. The goal is to reopen a new, solvent successor institution on Monday 
morning and deal with the problems without blocking insured depositor access. Such ad hoc tools may be 
unavailable when a system is run mechanically. And they almost certainly are unavailable for systems like 
Bitcoin23 which lack any central operator or control mechanisms. It is worthwhile to consider what sorts of 
automation architectures admit possible replacements.

Stylized in-memory economy
So far, we have merely described our model economy as “automated” and have not been precise. In this section, 
we work through the properties of a stylized version of a common real-world smart contract platform (Ethereum) 
and then reduce it to a simple, classical model of computation with equivalent power. As we will see along the 
way, this model framing is without loss of generality for our main results. A model’s computational “power” 
refers to which tasks it can solve, not execution speed. For instance, finite state machines cannot parse natural 
languages, while Turing Machines can solve any computable problem11.

But a finite state machine is sufficient to build both a desktop calculator and to solve finite-sized instances 
of the well-known puzzle game Minesweeper. At the same time, both infinite-sized Minesweeper and Conway’s 
famous “Game of Life” require the more powerful Turing Machine model of computation to solve24.

We start by considering the economy to be a sizeable shared-memory computer where bank balances and 
ownership records correspond to the values stored at certain memory locations. So, some subset of the computer’s 
memory contains all the banking records and similar information, and then the programs that intermediate 
economic interactions manipulate those balances. This setup is analogous to an infinite-memory version of 
Ethereum25. Ethereum is a platform with a single, large, but finite memory space shared across all the platform’s 
programs. These programs, known as smart contracts, manipulate data on the platform. Smart contracts on 
Ethereum are capable of describing any computable function. A computable function is a technical term that 
means if a given problem can be solved programmatically, this language can do so. Certain problems, such as 
the well-known Halting Problem, cannot be solved and are known as non-computable functions. Although 
Ethereum includes a finite space in practice, the Ethereum Virtual Machine programming language imposes no 
such limits. Therefore, Ethereum’s native programming model is Turing-complete26.

Recall that Turing completeness is a language property; most modern programming languages allow us to 
write programs that require unbounded memory, even if all such programs will indeed crash when run on any 
real computer.

Then, we recognize that a finite-memory random access machine such as this is equivalent to a model of 
computation known as a Linear Bounded Automaton, and the infinite-memory version is equivalent to a Turing 
Machine11. Since we consider our economy to run on a random access machine with unbounded memory, it is 
equivalent to a Turing Machine. This analogy is a standard formulation in computer science where we do not 
impose limits on program size or complexity at the programming language level. Instead, we use the term in the 
same way that a natural language such as English contains infinitely long valid sentences. We will not try to write 
an infinite sentence, but the rules of grammar allow us to. And questions of verification therefore must handle 
arbitrarily long inputs and runtimes.

Therefore, an economy run on a single shared-memory computer, programmed with a standard Turing-
complete programming language manipulating in-memory balances, is equivalent to an economy run on a 
stylized model of computation known as a Turing Machine. As we will discuss later, this model is universal in 
that it captures all automated economic models describable with computers as we understand them today.

Mutable turing machine model
We need a formal model of how an automated financial system works to properly study its properties. To enable 
analysis, we present a simple set of algorithms run on standard computing models.

A Turing Machine’s state comprises the tape’s state and the finite state machine in the head. We can consider 
some encoding of the machine state and simulate it using a different Turing Machine without affecting its 
computational power11. In the same vein, consider the algorithm:
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 The functions CanonicalEncode and SimulateSteps can come from11 or myriad other sources. We are 
concerned with UpdateMachine. In particular, this function works something like:

 We will now explore how this model works and show that fundamental limits restrict how powerful our 
updates can be if we wish to be able to write RegulatorApproves. Within this framework, a conventional 
permissionless blockchain23,25 has:

 Such products are therefore considered within this analysis. Note that this case remains consistent with Rice’s 
Theorem, as accepting all updates does not concern a proper subset; it concerns the entire set. We can reliably 
accept all updates as no classification is required.

Initialization

This process starts with some base Turing Machine. We may well be able to prove some properties of this sys-
tem using computer science tools. A proof that the following algorithm halts is straightforward:

 We denote the set of proven properties of the machine at step i as Pi with P0 as the initial state before any 
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updates run. Note that these sets can be empty.

Updates
The next step is to consider what properties can be preserved through an update. We know that if the update 
process is itself Turing-complete, no mechanically-enforced rules can be followed. This means that although we 
can prove properties about specific update codes, we cannot make universal statements.

If the update process is described with a context-sensitive language – or something with less power – then we 
can prove properties about what updates are permitted. Updates are described in some language of a known-in-
advance class but get generated in the future.

Notably, the UpdateMachine function can try to impose limits on these changes. For example, if updates 
were described with regular expressions, the update process could verify many of the properties of the proposed 
changes and reject those it did not like. We can think of this as some combination of a compiler and regulator. 
Our framework shows that the compiler has all the power for a sufficiently powerful language, and the regulator 
has none27.

Permissions
Our motivation is to study the preservation of properties in permissionless, updateable systems. If a system is 
permissionless, we mean that updates can come from anywhere and anyone. What is passed into the update 
function gets determined anonymously in the future and is only constrained by the class of language accepted 
by UpdateMachine.

Parallelization
Our model considers a single, well-ordered sequence of operations across the economy. This is a significant 
simplification concerning the real world, enabling us to start. For example, suppose we have two separate 
economies, each with financial and legal systems. In that case, the construction of an automated compliance 
mechanism across them is blocked by FLP impossibility28. This can be seen by considering how two legal or 
regulatory processes might interact: as long as communication is asynchronous, the FLP result applies. The 
assumption of synchronous communication across national regulators is unreasonable.

Further, this ability to coordinate asynchronously is reminiscent of the concept of sovereignty in international 
law29. There is no way to enforce decisions across separate sovereign jurisdictions as neither is subservient to the 
other’s deadlines. In a programming sense, they do not share the same clock and need not respect each other’s 
timeouts. International financial regulations are, therefore, not automatable so long as the system is composed of 
independent sovereigns. Our concern is to show that progress can be made one level down and within a single 
system, but at a substantial cost.

This is why we restrict our analysis to systems under a single clock and with a single well-defined ordering 
of operations. Whether we require a total ordering or can get by with a partial ordering depends on the precise 
details of the system in question as discussed in30. Those authors survey several transaction tracking mechanisms 
and find that while many require a total ordering of transactions, it is possible to construct a “bill scheme” that 
gets by with partial ordering. This is a decomposable ledger akin to physical bank bills.

Here, the order of operations for a single bill must be clear, but operations across bills do not always 
require coordination. We could consider running these on separate systems with a synchronous coordination 
mechanism. This flavour of extension is similar to the multi-tape or multi-head Turing Machine. And we know 
from11 that such arrangements add no power in a language hierarchy sense. Although they can make the system 
faster, they do not expand the space of what can be done in finite time. So, for simplicity and without losing any 
generality, we consider the entirety of such a scheme to run on a single Turing Machine.

Universality of model
While our model is simple, it is universal: additional features cannot expand its computational power beyond 
that of a Turing Machine. This raises questions like “if the update function can edit the state in the machine’s 
head, can we find more power?” or “if the update function can modify the code we are simulating, can we make 
better promises about future behavior?” How do we know that our model is sufficiently general to handle all 
possible configurations?

We can consider a canonical encoding scheme for Turing Machines to be fed into a single UTM, which 
can simulate all others11. What they all have in common is they provide a way to write both state information 
about the world and code to interpret it next to each other on a single machine’s tape. The UTM does not 
further distinguish between code and state – it just runs and updates the information on the tape as required, 
regardless of whether it is state or code. Those distinctions may exist for us, but they do not exist for the computer 
processing our data.

Once we know such a machine exists, we can think of our entire algorithm as running on top of one of 
these simulators. A given set of regulations, balances, or any other feature of our system comprises nothing but 
a setup state for the simulator. It is worth being more concrete to show how the universality applies. A specific 
UTM construction technique is given in Section 5.5 of Savage11, which provides a well-specified programming 
language that offers access to the full power of a Turing Machine. We know that language offers the same 
power as any other Turing-complete programming language, so without loss of generality, let’s take that as the 
programming language for our economy.
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Balances, trades, states, and all regulations are now written down using this language. There are no restrictions 
on what state or code can be updated once this is fed into the UTM. We merely know it goes ahead and runs 
according to those rules.

What can we say about this system? We are running on a UTM, which means, by definition, we can run 
any algorithm expressible in a Turing-complete programming language. We are writing code in an unrestricted 
general-purpose language capable of describing any Turing Machine. Consequently, we have access to the full 
power of this model of computation. Any additional features—self-modifying code, some complex memory 
arrangement, fancy programming languages with convenience features – can be simulated comfortably within 
our framework. The entire space of regulations expressible in full-power programming languages can be written 
in this simple language on the tape at the start. This does not mean our model is the most efficient way to 
describe or simulate an economy; however, it does mean our model captures all possible arrangements.

In some ways, this model simply shows how trying to operate an economy programmatically brings us back 
to familiar concepts from programming. We can think of the UTM encoding scheme as an assembly language 
for economic interactions. Regulators will not want to refer to a computer science theory textbook. Instead, 
they will express the rules in some higher-level language, which will be compiled into the machine’s assembly 
language.

Similarly, traders, exchanges, payment service providers, and other economic agents will likely develop their 
own more convenient tools for describing their businesses. This observation dates back to the earliest days of 
commercial computing and the origins of both COBOL and Fortran31 as “domain-specific” languages. These 
can be compiled for the same “economic machine.” This all works, and these seemingly disparate tools can talk 
because we know computationally they are all identical and straightforward transformations across models can 
be constructed. Unsurprisingly, attempts to automate an economy will likely face standard software engineering 
challenges. We will discuss this confrontation later when we draw a closer analogy between the practice of 
regulation in an automated environment and how software development teams manage code changes.

Agent-based modelling
Our model conceives an economy as a single shared-memory computer where agents act as programs, with 
specific behaviors and interaction rules, ranging from simple buy/sell programs to complex market makers. This 
connects directly to established work in agent-based computational economics while maintaining mathematical 
precision. This framework is similar to those employed by researchers in “complexity” or “computational 
economics.”

Within this computational framework, we model agents as well-defined entities with specific behaviors and 
interaction rules. These agents can range from simple to complex: some might be basic programs that buy at 
price X and sell at price Y > X , while others could be sophisticated market makers running complex pricing 
algorithms. Crucially, some agents can be implemented using simple finite state machines, while others require 
the full power of a Turing Machine. This distinction becomes critical when analyzing what properties can be 
preserved across system updates.

The computational nature of our agents connects directly to established work in agent-based computational 
economics. We treat each agent as “a software entity within a computationally constructed world that can affect 
world outcomes through expressed actions32.” This agent-based approach fits naturally within our general 
framework and provides useful tools to analyze the results we will present next. By explicitly modeling these 
agents within our formal computational model, we can prove precise limits on what behaviors can be reliably 
controlled or verified.

Rather than studying equilibrium conditions, these frameworks see an economy “as not necessarily in 
equilibrium, its decision-makers (or agents) as not superrational, the problems they face are not necessarily 
well-defined, and the economy not as a perfectly humming machine but as an ever-changing ecology of beliefs, 
organizing principles and behaviors33.” As we will see shortly, the ability to constrain the update mechanism is 
closely tied to the question of whether or not a given system can provably comply with regulations in a general 
sense. But before we can use insights from agent-based models, we need to map them to our framework.

Our model conceives of the economy as a Turing Machine. Agents can exist as programs written in any 
class of language, including recursive enumerable languages. For example, some agents could be simulated on 
finite-state machines while others require the full Turing model. At the same time, we can have agents with 
different degrees of evolutionary power.1 For example, we can imagine agents that can be implemented as simple 
programs where only certain variable values can change via updates. A simple agent that buys goods at a constant 
price X and sells them at a constant price Y > X  subject to simple inventory and cash holding constraints does 
not require the full power of a Turing Machine. And inserting an update process that changes X and Y between 
rounds does not change this.

Alternatively, we might have an agent that continues to search for new trade opportunities until some 
complex conditions are met. And it might do so in a way that we cannot even be sure finishes in finite time. This 
sort of agent—which might be as simple as a potentially-non-terminating-loop around the simpler agent we just 
described – requires the full power of a Turing Machine.

Consider a concrete example of translating a financial regulation into our framework: the requirement 
that no single agent can control more than a fixed portion of a market’s volume. A simple trading agent can 

1 Formally we can consider a set of agents and some scheduler for economic interactions which all exist as Turing Machines. 
As long as the agent and scheduler programs correspond to computable functions we can use standard encoding techniques 
to simulate the ensemble on a single UTM. Such a model imposes no limitations on the agents or scheduling process beyond 
that they are clearly described in a language capable of expressing any computable function.
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be implemented as a finite state machine where states represent different position sizes. With a non-Turing-
complete update language, we can prove this agent’s operations will never exceed the limit. However, if we allow 
Turing-complete updates, an agent could deploy complex trading strategies that make such proofs impossible. 
This illustrates why meaningful regulation requires either restricting the update language or implementing 
permissions even for seemingly simple rules.

A framework for agent-based models includes seven principles. The first principle is “An agent is a software 
entity within a computationally constructed world that can affect world outcomes through expressed actions32.” 
Such an agent fits within our model. The other six principles explain how to construct an economy as an ensemble 
of such agents. These, too, fit within a general Turing Machine framework. But while our framework is relatively 
barren, leaving the details of the economy entirely up to the programmer, their approach of Completely Agent-
Based Modelling (c-ABM) more richly maps economic concepts onto anthropomorphized computational-agent 
functions.

Once we establish what sorts of compromises are required in the general framework to achieve compliance, 
we will return to the c-ABM framework to explore what it can teach us about those compromises.

The methodology outlined above provides a systematic framework for evaluating regulatory possibilities in 
automated financial systems. By examining each case through the lens of computational theory, we can move 
from abstract possibilities to concrete conclusions about implementable regulations. The following analysis 
applies this framework to enumerate all possible combinations of system features and their implications for 
regulatory enforcement.

Analysis
We now examine each possible combination of system features, analyzing their implications for regulatory 
enforcement. For each case, we consider whether meaningful regulation is possible and under what conditions. 
We consider eight potential systems based on the following three binary feature choices:

•	 Is the update language Turing-complete?
•	 Are updates permissionless?
•	 Do we start with the initial set of enforced properties P0 ̸= ∅ or P0 = ∅

     These cases are summarized in Table 1. We will analyze each case to determine whether updates in each system 
can always be proved to satisfy a set of externally specified rules.

Case 1. Limited Language, Permissioned, |P0| ≫ 0. Here we can design a system that ensures Pi+1 = Pi. As 
the update mechanism is not Turing-complete, it is possible to write automated compliance checks that handle 
arbitrary code.

The system is also permissioned, meaning that whoever controls the permissioning can delegate compliance 
to the group of their choice. This system resembles a common-law legal system where designated judges interpret 
the rules. The system would be compliant with respect to those judges’ decisions.

Further, as the system begins with a non-empty set of rules, it can achieve compliance with respect to P0 even 
before the first update step is run.

Case 2. Limited Language, Permissioned, |P0| = 0. This system begins with no rules. However, we can design 
an update process that allows for further initialization and imposes some rules after the first n steps. Such a 
process can also maintain compliance with these rules because the language is limited and not Turing-complete.

Case 3. Turing-Complete Language, Permissioned, |P0| ≫ 0. We can enforce rules here, but only via the 
permissioning mechanism. If someone tries to publish an update that sets |Pi| = 0, there is no way we can 
mechanically stop it.

This case is akin to a real-world legal system where a group of judges can impose any changes they wish. 
Given they can effect arbitrary change, the only reliable mechanism to enforce long-term compliance with a 
given set of rules is permission.

Case 4. Turing-Complete Language, Permissioned, |P0| = 0. This version, again, begins with no rules. We may 
be able to initialize a system of regulations – but again, only through permissioning. If someone tries to publish 
an update that sets |Pi| = 0, there is no way we can mechanically stop it. We can remove their permission in the 
future, but as the language is Turing-complete, we cannot automate that process, and there will be some gaps 
during which the system is non-compliant.

Note that an underlying consensus algorithm or other process does not matter in these cases. Whoever 
controls the permissioning can impose their will on the system anyway. Such tools may contribute to data 
integrity or help with liveness or any number of other engineering challenges – but they do not extend the power 
of the system.

TC, |P0| > 0 TC, |P0| = 0 NTC, |P0| > 0 NTC, |P0| = 0
Permissioned Can have rules∗ Can grow rules* Can have rules Can grow rules

Permissionless Cannot keep rules Lawless Can have rules Can grow rules

Table 1.  The various cases mapped out. *Indicates that those systems’ rules are contingent on the permissions 
process and no permission party going rogue rather than the system itself. TC = Turing-complete & NTC = 
non-turing-complete.
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Case 5. Limited Language, Permissionless, |P0| ≫ 0. The system is permissionless here, but the update process 
can impose rules. We can design a system that preserves P0 through arbitrarily-many arbitrary updates by 
building in a process that rejects changes where ∃p ∈ Pi|p /∈ Pi+1.

We could also design a system which ensures |Pi+1| ≥ |Pi|. The rules can change here, but the number 
of rules never decreases over time. That is odd and likely not useful in practice. However, it shows how this 
formalism helps explore the space of possible regimes in a novel way.

Case 6. Limited Language, Permissionless, |P0| = 0. This case is closely related to the previous case. We could 
build an update process that ensures the rule set is brought up to some size via updates. Here, we can achieve the 
desired rules as Pn but have no control over it before that time.

Another way to think of this case is that the first n steps are the initialization process. Conceptually, we could 
have an update process that ignores all inputs until this bootstrapping process is complete. In this sense, it is 
equivalent to the previous case. As we will see during later analysis, these two cases fall into the same category.

Case 7. Turing-Complete Language, Permissionless, |P0| = 0. This case corresponds to the initial state of a 
real-world blockchain. And there is no way, by Rice’s Theorem, to bootstrap a collection of system-wide rules 
reliably.

Case 8. Turing-Complete Language, Permissionless, |P0| ≫ 0. This system begins with some rules. If we take 
P0 to be our desired regulations, we are compliant for the first n steps. However, the system is permissionless, 
and updates are expressed in a Turing-complete language. So, we have no way to control the transition from Pn 
to Pn+1 and, therefore, no way to ensure compliance beyond that time.

Again, note that a consensus algorithm cannot fix this. If we had a consensus algorithm capable of ensuring 
the system never exhibited a given non-trivial property, it would run afoul of Rice’s Theorem27 in the same 
manner as our mixer discussion earlier. We can formalize this using standard techniques as follows. Assume the 
existence of a consensus algorithm that rejects all programs x where x ∈ Banned ⊂ RE. This algorithm then 
classifies programs: 

	1.	� Run the algorithm among participants configured to reject members of Banned
	2.	� Try to deploy x
	3.	� Check if x was deployed
	4.	� If so we know x /∈ Banned and if not x ∈ BannedThis process is precisely the classifier that Rice’s The-

orem states we cannot construct. Proof-by-reduction shows that a consensus algorithm for this problem 
does not exist. The analysis above reveals a fundamental pattern: achieving automated compliance requires 
either restricting system flexibility or implementing forms of centralized control. This pattern emerges from 
computational theory rather than policy choices, suggesting that certain regulatory goals are fundamentally 
incompatible with fully permissionless, Turing-complete systems.

But that is not to say that consensus algorithms cannot solve some problems. Bitcoin’s key innovation was solving 
double-spending without a trusted party; however, we already had solutions for double spending that required 
a trusted party. And for Bitcoin, we have a constructive proof of the property in question. It is not a generic or 
automated scheme for enforcing arbitrary properties.

A consensus algorithm that could natively enforce compliance in our strict sense would also be able to solve 
the Halting Problem and therefore not be simulatable on a “merely” Turing-complete computer. If such an 
algorithm does exist, it requires a more powerful computation and computer design than is currently understood 
by science.

Having enumerated and discussed all eight cases, we can now name certain subsets and relate them to the real 
world. We will do this by grouping and labeling subsets of these cases in a manner reminiscent of truth tables in 
logic. First, all permissioned systems can achieve compliance, as shown in Table 2. Similarly, systems with non-
Turing-complete update languages can also get there per Table 3. But there is no way for a permissionless system 
with a Turing-complete update process to achieve compliance per Table 4. This analysis of the case table tells us 
there are two ways to build a compliant system: 

	1.	� Permission the system, or
	2.	� Restrict code changes to be non-Turing-complete.We can see this in Table 5. As the underlying Turing Ma-

chine model is general and we impose no restrictions beyond these three properties, these eight cases cover 
all possible system designs.

Table 2.  All permissioned systems can enforce rules.
*Indicates that those systems’ rules are contingent on the permissions process and no permission party going 
rogue rather than the system itself. TC = Turing-complete & NTC = non-turing-complete.
a All individuals coming within 1 m to inspect experimental setup and, in parentheses, all individuals that 
made attempts
b Proportion successful
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Having established the feasible and infeasible cases for automated regulation, we now examine their broader 
implications for financial system design and regulatory policy. These results extend beyond pure theory to 
impose practical constraints on achievable regulatory frameworks.

Theoretical implications
The parallel between iterative economic decision-making and computational state updates provides a natural 
bridge between traditional economic models and our computational framework. This connection helps explain 
why certain regulatory goals that seem intuitive in traditional economics become provably impossible in 
automated systems.

We can draw a few conclusions from this analysis by cases. The first is that permissioned systems can enforce 
rules across a broader design space than permissionless ones. The second and more important conclusion is that 
not only are permissionless Turing-complete systems unable to enforce rules over the long term reliably – but 
also that the compromise in update power required to bring order to a permissionless system lives within the 
update process verification algorithm.

Alongside this observation, we note that the initial state of a permissionless system is, in the long run, 
irrelevant when considering whether that system remains compliant. Even with |P0| ≫ 0, we can still have 
a system that obeys none of those rules by step n + 1. This finding is important as it means we must focus 
at least as heavily on the update mechanism as the initial conditions. In financial regulation, when we talk 

Table 5.  Two strategies cover all the compliant states.
*Indicates that those systems’ rules are contingent on the permissions process and no permission party going 
rogue rather than the system itself. TC = Turing-complete & NTC = non-turing-complete.
a All individuals coming within 1 m to inspect experimental setup and, in parentheses, all individuals that 
made attempts
b Proportion successful

 

Table 4.  Permissionless systems with turing-complete updates cannot maintain compliance.
*Indicates that those systems’ rules are contingent on the permissions process and no permission party going 
rogue rather than the system itself. TC = Turing-complete & NTC = non-turing-complete.
*Indicates that those systems’ rules are contingent on the permissions process and no permission party going 
rogue rather than the system itself. TC = Turing-complete & NTC = non-turing-complete.
a All individuals coming within 1 m to inspect experimental setup and, in parentheses, all individuals that 
made attempts
b Proportion successful

 

Table 3.  All systems with non-turing-complete updates can maintain compliance.
*Indicates that those systems’ rules are contingent on the permissions process and no permission party going 
rogue rather than the system itself. TC = Turing-complete & NTC = non-turing-complete.
a All individuals coming within 1 m to inspect experimental setup and, in parentheses, all individuals that 
made attempts
b Proportion successful
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about “moment-to-moment” compliance, this is what it means in practice. The system must reliably maintain 
properties along a chain of updates.2

Permissions on a permissionless system

In practice, embedding a permissioned system inside a permissionless one is possible. This embedding is an 
extension of the update process where some subset of states and tape symbols are associated with a protection 
process. While this sort of “proof by simulation” is common in computer science, it is not generally employed 
when analyzing economic systems. Consider the following function:

 In a Turing-complete language, we cannot determine in advance if an arbitrary block of code will call this 
function. No algorithm can scan arbitrary code and determine if this function is called. But we can still guar-
antee that, conditional on it being called, it will not return a 2. This small crack allows us to achieve compliance 
on restricted systems carefully.

Similarly, a given state within a Turing Machine’s head cannot prevent the machine from entering it via any 
available path in the finite state machine. But if we, as someone trying to update the Turing Machine’s logic to 
prevent certain state transitions, can affect this sort of local change from Fig. 1a–b we can achieve something of 
the sort. As we see later, these simple sorts of updates are sufficient to achieve something like a “blacklist” that 
prevents explicitly named state transitions.

There is a wide range of languages for describing finite state machines and tape contents. Similarly, there are 
many ways of describing changes to those constructs. The critical point is that if we wish to preserve properties 
across permissionless updates, we must choose non-Turing-complete languages.

Real-world examples
Above, we referred to the concept of a state transition ban like “you cannot receive funds from party X.” But 
we also noted that it is sufficient to demonstrate that accidentally-received funds are properly ringfenced; the 
regulator’s demands acknowledge the realities of how the world works. Again, as discussed above, we can enforce 
these rules continuously with a non-Turing-complete update language.

Further, the regulatory process must know who is and is not trying to achieve compliance. If a new state 
transition into “End” in Fig. 1b is introduced, we must ensure it complies with the operator of the End’s rules. 

2 This matches how compliance requirements are understood for at least some regulations in the United States. The original 
statement of the “Net Capital Rule” required supervised entities to comply “at all times”34. This was later rephrased such that 
the rule imposes a “moment to moment” net capital requirement35. Those rules apply to systems operated by humans with 
human supervision so there is naturally some ambiguity. In our framework we can unambiguously require that the system 
can never enter an impermissible state.

Fig. 1.  Guarding inflows transitions within a finite state machine.
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Compliance is a global property, and the process by which it is enforced must handle unknown code. The process 
may involve banning such updates or allowing the machine’s “out of bounds” portions free-reign. The former 
is a form of algorithmic permissioning, while the latter restricts the compliant from non-compliant portions of 
the state space.

To see this in practice, consider this sort of contract that we can introduce into a system

 Addresses correspond, in some sense, to locations on the Turing Machine’s tape. One key lesson of Rice’s The-
orem is that we cannot guarantee what arbitrary code writes on an unbounded tape. No regulator can reliably 
block this sort of function without blocking all updates. The only available solution is to restrict ourselves to a 
weaker update language.

Let us consider introducing a new protocol with richer code into our system. If this code is Turing-complete, 
we cannot reject the update if it permits a prohibited state transition. In the model presented above, any working 
implementation of RegulatorApproves would run afoul of Rice’s Theorem.

This result follows the same argument made concerning certain proposed solutions to Ethereum’s DAO 
hack in 2016 in36. An extensive collection of tokens was “misappropriated” due to a smart contract bug. Several 
interested parties proposed modifying the system to prevent interaction with those tokens. Such a solution 
ran into the same problems, and the proposal was dropped. That long-accepted limitation is a straightforward 
consequence of this work.

We see here that in a restricted system, whether the restriction takes the form of permissions or reduced 
update power, achieving something like this level of control possible. Such control requires two things. First, 
the system must be compromised. Second, someone must work to prove that a given setup enforces the desired 
rules. This cannot be done mechanically-someone needs to prove compliance constructively.

Cryptocurrency market incidents
The cryptocurrency markets have seen several incidents where this lack of compliance, defined broadly, 
manifested in interesting ways. Each shows how a powerful update mechanism, or a potential code path to a 
non-terminating loop, can wreck an economic system.

The DAO   An early project on the Ethereum blockchain, The DAO encountered a critical issue in 2016 when 
a bug led to a large transfer of tokens to an address considered malicious by many in the community37. This 
incident, whether termed a hack or not,3 led to proposals for recovering the lost value. Some of these proposals 
faced a fundamental challenge that aligns with our paper’s core argument: the impossibility of proving properties 
about arbitrary code without execution. This limitation, as described by36, effectively prevented the implementa-
tion of an algorithm to ban interactions with specific addresses in smart contracts pre-execution, illustrating our 
impossibility result in a real-world context.

Ultimately, the Ethereum community opted for a network “fork,” splitting the blockchain into two versions: 
“Ethereum,” which reversed the supposed hack through an “irregular state change”39, and “Ethereum Classic,” 
which maintained the original transaction history. This solution, which fractured the network and delegated the 
regulatory decision to users39, starkly contrasts with traditional financial regulation methods. It demonstrates 
the unique challenges in regulating decentralized systems and underscores the relevance of our paper’s findings 
on the limitations of automated compliance in Turing-complete environments.

Beanstalk Finance. In 2022, Beanstalk Finance experienced losses from what is now called a “governance 
attack”40. This decentralized finance protocol, like many others, includes a governance mechanism mediated by 
publicly visible and accessible smart contracts41. A stylized description of the process is: 

	1.	� There is some project token. Holding this token is required to participate in the process.
	2.	� Anyone with a sufficient token holding can propose, publicly and with code, a change to the system.
	3.	� Token holders can vote publicly for or against the proposal. There is some time limit.
	4.	� The proposal passes if a sufficient number of tokens vote in favor and some lower quorum of votes is cast.

3 There is an ongoing debate as to whether or not making use of a feature of a decentralized finance system that the code 
permits but the authors publicly describe as a bug should be called a hack. That question is outside the scope of our 
research37,38.
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	5.	� At this point, anyone with a token holding can call the public function which effects the changes.A stated 
design goal of their mechanism was described as:

A robust decentralized governance mechanism must balance the principles of decentralization with 
resistance to attempted protocol changes, both malicious and ignorant, and the ability to adapt to changing 
information quickly. In practice, Beanstalk must balance ensuring sufficient time for all ecosystem 
participants to consider a Beanstalk Improvement Proposal (BIP), join the Silo, and cast their votes, with 
the ability to be quickly upgraded in cases of emergency.

This looks a lot like our model above. Here, the “regulator” is the set of token holders and the regulatory process 
is the voting.Despite aiming to balance decentralization principles with resistance to malicious changes, the 
system proved vulnerable when an attacker borrowed a large share of tokens, proposed changes that would 
transfer the project’s treasury to themselves, and successfully passed these proposals through voting40,42.

This incident exemplifies the challenges our model addresses about the fundamental limitations of automated 
compliance in Turing-complete environments. The smart contracts governing the DAO represented a specific 
instance of our Turing Machine model, where: (1) the machine’s state corresponded to token balances and voting 
rights, (2) state transitions represented transfers and governance actions, and (3) the update mechanism allowed 
for arbitrary new code deployment.

It demonstrates the difficulty of enforcing externally imposed requirements (such as preventing self-serving 
proposals) in a permissionless system with a Turing-complete update facility. The complexity of code interacting 
with a dynamic economy makes it impossible to predict or prevent all potential exploits before execution reliably. 
This limitation applies to straightforward attacks like Beanstalk’s and more complex scenarios involving intricate 
trading systems or subtle manipulations. The Beanstalk example thus reinforces our paper’s argument, echoing 
the unresolvable nature of the DAO hack through simple programming changes.

Our impossibility results explain why no simple programming fix could guarantee the absence of exploits 
without fundamentally restricting the system’s update capabilities. This connection between abstract theory and 
practical failure helps explain why certain seemingly-intuitive fixes were mathematically impossible.

Compound   In 2024, the Compound protocol faced an attack similar to Beanstalk Finance, but with a cru-
cial difference: a multi-day delay between successful votes and upgrade deployments43. This delay allowed the 
Compound team to intervene when a malicious upgrade passed, negotiating with the “attacker” to withdraw 
the proposal before implementation. This incident highlights a shift from pure computer science to a political 
process addressing security vulnerabilities.

This case directly supports our paper’s impossibility result by demonstrating that mechanically enforcing a 
“no upgrades which allow theft” policy is infeasible in a Turing-complete system. The time delays and human 
intervention represent a compromise necessitated by the unwillingness to reduce the update facility’s richness 
or introduce permissions. This example underscores our argument that in permissionless, Turing-complete 
systems, perfect automated compliance is unattainable, and some form of external, non-automated process 
becomes necessary for maintaining system integrity.

Terra/LUNA   The Terra project, built around the LUNA governance token and UST “algorithmic stablecoin,” 
aimed to maintain UST’s price at $1 through software-driven trading and stabilization strategies44. However, 
in May 2022, the system collapsed, with both tokens’ values plummeting to near zero45. This failure, while not 
immediately apparent as a regulatory issue, can be viewed through the lens of our paper’s framework: the man-
date “UST should always trade at $1” is fundamentally a regulatory statement, akin to prohibitions on specific 
financial transactions such as “you cannot receive money from North Korea.”

This example illustrates the limitations our paper addresses. While it’s not impossible to design a $1-pegged 
token system, such a mechanism must be constructively proven to achieve its goal of being decidedly stable. 
Terra’s reliance on dynamic algorithms and upgradeable trading strategies highlights the pitfalls of depending on 
flexible, Turing-complete systems for regulatory compliance. As our paper argues, achieving specific regulatory 
outcomes often requires reducing the power of the upgrade facility.4

MakerDAO   Another $1-pegged token system, MakerDAO employs a more complex mechanism than Terra. 
Users deposit collateral into “vaults” to receive dollar-pegged tokens, allowing them to leverage their assets 
while retaining ownership47. For example, a user might deposit $150 worth of some token with a floating price 
and receive back $100 of the dollar-pegged tokens47. The system aims to maintain stability by enforcing high 
collateralization ratios and liquidating undercollateralized positions. However, this approach faces challenges in 
a dynamic market environment.

Why would anyone do this? Because they are not exchanging one group of tokens for another. They can 
later choose to return 100 tokens and recover the initial collateral. Through this mechanism, they take on some 
leverage for trading purposes and still hold on to their original assets.

Through a governance mechanism similar to those discussed above, community members are able to propose 
the acceptance of different assets as collateral for token issuance and to adjust the “collateralization ratio” – the 
ratio of value deposited to the value of $1 tokens return – for each asset over time.

4 Our related work46 demonstrates more precisely that a generic, upgradable trading strategy relying on a nebulous asset pool 
cannot reliably maintain a stable price, underscoring the broader implications of our impossibility result in the context of 
algorithmic stablecoins.
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To keep the system stable and avoid a Terra-like collapse, the system also enforces that the value of each 
collateral pledge – which, recall consists of things that are not necessarily intended to have stable prices – must 
remain significantly higher than the number of dollar-pegged tokens originally issued against it.

But how can it do that? The MakerDAO protocol does not control all the prices in the world. Rather, it tells 
depositors that if their collateral value falls too close to the number of dollar-pegged tokens they withdrew, it will 
seize their collateral and sell it for dollars to make the system whole. If the $150 of value deposited above drops 
to just $100 + ϵ and the original depositor does not return their 100 tokens, the system allows them to walk 
away and sells the collateral for dollars. A larger buffer, say ϵ = 5 rather than ϵ = 1, triggers the sale at a higher 
price and increases the system’s safety margin. However, as is the trend here, we cannot guarantee the outcome 
of trading activities in a dynamic system like this.

The property MakerDAO wants to enforce is “the collateral can always be liquidated for more money than the 
loan balance.” We cannot prove this will always be true as long as MakerDAO interacts with dynamic contracts 
in a Turing-complete environment.

In March 2022, amid COVID-19-related market volatility, MakerDAO experienced liquidation losses48, 
eventually leading to community-approved debt write-offs49. Some users also suffered losses when rapid price 
fluctuations led to collateral liquidations just before market recovery50. These incidents highlight the difficulty 
of enforcing the property that “collateral can always be liquidated for more than the loan balance” in a system 
interacting with dynamic contracts, highlighting our paper’s central argument about the limitations of automated 
compliance in Turing-complete environments.

These case studies-The DAO, Beanstalk Finance, Compound, Terra/LUNA, and MakerDAO-collectively 
illustrate the practical manifestations of our paper’s theoretical findings. Each example demonstrates a different 
facet of the challenges in implementing reliable, automated compliance mechanisms in decentralized, Turing-
complete systems. From governance attacks to stablecoin collapses and liquidation issues, these incidents 
underscore the impossibility of guaranteeing specific regulatory outcomes without compromising system 
flexibility or introducing external interventions.

Our impossibility result explains why these systems ultimately resort to human intervention, time delays, or 
accepting certain risks. The fundamental issue lies not in the specific design of these protocols but in the inherent 
limitations of enforcing regulatory constraints in highly dynamic, Turing-complete environments. As our paper 
argues, achieving robust compliance in such systems necessitates either reducing the power of the upgrade 
facility or accepting that some regulatory goals cannot be mechanically enforced. These real-world examples 
thus provide evidence for the practical relevance and importance of our theoretical findings in decentralized 
finance and automated regulatory systems.

Order of operations
Note that the permissibility of certain actions may depend strongly on their order. Consider the following 
sequence of events where X is a wallet where regulations ban interaction: 

	1.	� Publish R as a “repeater” contract which forwards funds to Z
	2.	� Send funds to R
	3.	� Update R to forward funds to XSwapping the second and third operations renders the transfer impermissi-

ble. So long as our smart contract language permits the construction of non-commutative operations, this 
phenomenon is possible. As the simple act of transferring funds from a to b is non-commutative, this is going 
to be an issue in practice.

As discussed above, all operations have a well-defined total order within our framework. This means there is 
never ambiguity around ordering concerning the regulator, and regulations can reliably be enforced even in 
non-commutative operations.

The situation for end users is not as good. Say a user is connected to the system through a link with significant, 
and variable, latency like the internet. In the example above consider different users submitting steps 2 and 3. 
The regulator will see these in an order and act accordingly. However, this ordering may not be predictable 
for the end users. In the same way that FLP prevents us from automatically coordinating regulations across 
independent legal systems, it also blocks users with real-world connectivity from reliably predicting the outcome 
of some types of regulatory action in advance. This problem exists even before we consider how the underlying 
transactions are handled (i.e. if there is some complex consensus process or a central authority or anything in 
between).

A user can send funds that end up being blocked by the regulator when that user could not have known when 
the order was submitted that it would be blocked. This elevates the idea of “plausible deniability” to “provably 
undecideable.” The unreliability, which manifests as undecidability, stems from FLP rather than Halting. 
However, the question of what the user was trying to do is also undecideable, given the inability to mechanically 
classify updates.

Implications for financial regulation in DeFi
Returning to Table 1, we can reframe it for whether we can have a reliable regulator.

Which feasible cases in Table 6 are new and interesting? Permissioned systems are still centralized. Similarly, 
a system that is only sometimes compliant does not offer much comfort. But we do have one box with a “yes” that 
is interesting: permissionless systems that are initialized to a compliant state and have a non-Turing-complete 
update language.
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This does not mean all such systems are compliant – but we know it is possible to build examples at the 
cost of restricting the richness of updates. The restriction is a non-trivial constraint, especially since weaker 
programming languages are rarely used in practice.

This result is quite general. Our model of an automated financial system is nothing but a composition of 
abstract machines. Computational power is equivalent within each class of machine. Therefore, adding a second 
finite-state machine or more tape cannot achieve more power. In other words, fiddling with the design will not 
change our results. Any automated financial system, blockchain or otherwise, fits within our framework so long 
as a Turing Machine can simulate the underlying model.

The implications are similarly broad. Any regulator that wishes to maintain meaningful control over an 
automated financial system must choose between two alternatives. First, they can run a permissioned system in 
much the same way finance has worked for a long time. Or they can employ a permissionless one that regulates 
through the automated validation of proposed updates. The latter approach is new but quite literally limits 
potential innovation by restricting the class of functions supported by the system. This is an unavoidable tradeoff 
if one wishes to enforce a regulatory regime and automate financial services.

Regulatory workflow
Traditional financial regulation involves periodic publication of comprehensive rules and guidelines. In contrast, 
our model transforms this into a continuous process of reviewing code changes, similar to software development 
workflows. Updates are submitted, validated, and either accepted or rejected based on their compliance with 
system constraints.

While automation through smart contracts reduces manual checks, the regulator’s role evolves rather than 
disappears. Instead of reviewing individual transactions, regulators must design and maintain the automated 
validation rules. This introduces a new form of permissioning: rather than controlling specific transactions, 
regulators define the boundaries of permissible system changes. For instance, they might reject modifications 
that exceed certain complexity thresholds or validation timeframes.

This shift from document-based regulation to code review represents more than a technical change-it 
fundamentally alters how regulations evolve. Rather than comprehensive periodic updates, the system favors 
incremental, verifiable changes. This mirrors modern software development practices where small, frequent 
updates are preferred over large, infrequent ones. While permissionless updates remain possible, they require 
significant compromise: the update language cannot be Turing-complete, and all changes must pass automated 
validation through the RegulatorApproves function. This cost is non-trivial, mainly as weaker programming 
languages are rarely used in practice. Unfortunately, we are left with limited options once we recognize the 
connection between a regulator’s explicit prohibition of specific state transitions and Rice’s Theorem.

Applying an agent-based framework
That regulatory analysis connects the functions of a financial regulator with software engineering by virtue of 
conceiving an economy as a computer. We can gain further insight by employing the c-ABM style to explore 
regulations and compromises differently.

Already, we know that the unconstrained updating of Turing-complete agents will render the system 
ungovernable. But it is still worth considering an economy of heterogeneous agents of known type running 
known programs to explore this limit. We may still be able to make some progress even if the agents are modeled 
in a Turing-complete language.

For example, consider an economy that consists of a large collection of simple “trader” agents that can be 
simulated on finite-state machines traders and a single “market-operator” that requires a Turing Machine. Say 
that some finite set of constants parameterizes each agent’s preferences. Furthermore, assume we can prove that 
the operator’s market-clearing process always terminates for all possible values of all the agent’s preferences. We 
can remain compliant if the update function can arbitrarily change the preferences of the traders so long as it 
cannot change the operator.

And by modeling the economy as a Turing Machine where the full richness of that model of computation 
is employed, we can leverage that “arbitrarily” into significant complexity. Agent models, and both economic 
equilibrium and disequilibrium models alike, often focus on parameterizations of the real world with tractable 
complexity. This is understandable when designing economic mechanisms that humans will operate. Milgrom51 
explicitly talks about the necessity of “limiting the complexity” of auction mechanisms for human reasons. But 
for an economy that consists of heterogeneous computer programs interacting with each other we need not 
eschew a design with “so much complexity that the FCC could not successfully implement it, and bidders could 
not understand it51” because our bidders are other computer programs that will not struggle to understand their 
instructions.

Our general-computation model of an economy allows the c-ABM framework to stretch its legs.32 Those 
authors discuss agent rationality and stochasticity. Stochasticity concerns how wildly a trader’s parameters 
and algorithms change, or perhaps oscillate, from period to period. It might also mean that two traders make 

TC, |P0| > 0 TC, |P0| = 0 NTC, |P0| > 0 NTC, |P0| = 0
Permissioned Yes Yes Yes After n steps

Permissionless For n steps No Yes After n steps

Table 6.  Can we achieve a reliable regulator in each case?
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opposing choices when faced with the same sequence of events or that the model admits parameters where 
an agent does not maximize wealth, utility, or any other standard economic quantity. All of these ideas are 
easily expressible in programs. Often inserting a single negative sign into a utility or optimization objective 
function is sufficient to achieve “irrationality.” And everyone with programming experience knows how easy it is 
to get seemingly stochastic and irrational behavior from a computer even when considering supposedly simple 
programs. Constraining parameters and updates is important.

At the same time, even if we have incredibly simple traders and do not allow them to be updated at all, 
compliance will remain out of reach if the operator’s code can be arbitrarily changed. It is not the heterogeneity 
of the agent or their complexity that binds us here. It is the question of which box in the truth tables above our 
overall system lands in. And that classification is made easier when we bring in the ideas of c-ABM rather than 
working from a bare Turing Machine model and blank slate of code.

Example real regulations

So, what can we achieve in practice? Consider a scripting language where we cannot have variables. A simple 
“splitting the tab” contract might look like

 This is dangerous if we have a regulation that certain addresses cannot be paid. The issues raised surrounding 
the DAO hack, discussed above, apply here. But what if the only way to transfer a token is to call SendTo and 
that function looks like:

 There is no issue if a function only calls RealSendTo from SendTo. In such cases, the regulator’s respon-
sibility is to maintain the BannedList, and the system is permissioned. Alternatively, we could use a permis-
sionless system that relies on pre-2021 Microsoft Excel spreadsheets for updates. These spreadsheets are not 
Turing-complete52, and it is possible to verify in advance if a banned address is paid without the need for 
formal in-code gatekeeping. The regulator must then maintain the list and validate the spreadsheets manually, 
automatically, or through other means.

This framing of regulation represents a significant re-conception of the regulator’s role, but it is in line with 
what we might expect. Suppose we combine the permissionless spreadsheet-based system with the merge request 
analogy above. In that case, we arrive at a practical rule that sounds reasonable: do not submit overly complex 
spreadsheets for validation and expect approval. In essence, we have turned the financial system regulator into a 
code reviewer, which is again unsurprising once we make these connections.

However, things are more complex within the new paradigm of DeFi, where interactions occur via code on 
permissionless systems. Not all rules written down as code can be reliably implemented in DeFi. New trade-
offs emerge, which regulators must confront. These are not the sorts of traditionally political or policy-related 
tradeoffs regulators face when weighing competing interests. Instead, some limits emerge from the computational 
power of the platforms themselves.

Conclusion
This paper explores the possibility of designing a permissionless financial system that meets regulatory 
requirements. Although possible, creating a compliant, permissionless financial system requires compromise 
on the new functionality: the reliance on regulators acting as gatekeepers to ban impermissible transactions 
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and restricting system updates to a weak programming language that can be automated to meet regulatory 
requirements.

Our analysis demonstrates that meaningful regulation of decentralized finance is possible, but only through 
fundamental compromises stemming from computational limits rather than policy choices. Creating a compliant 
permissionless financial system requires either restricting the system’s update capabilities to a less-than-Turing-
complete programming language or implementing traditional gatekeeping mechanisms. This tradeoff is not a 
matter of design choice but a consequence of fundamental computational constraints.

The implications are significant for both system architects and regulators. System designers must choose 
between permissionless operation with limited functionality or maintaining rich features through traditional 
permissioned structures. Regulators, in turn, must precisely specify which rules will be mechanically enforced 
and commit to those boundaries, even when race conditions might temporarily allow prohibited activities. 
Attempting to combine unrestricted permissionless operation with comprehensive regulatory compliance 
ultimately reduces to traditional computer-aided financial systems, negating the core innovation of decentralized 
finance.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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