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Abstract 

Background: Rotors and focal ectopies, or “drivers,” are hypothesized mechanisms of persistent 

atrial fibrillation (AF). Machine learning algorithms have been employed to identify these drivers, but 

the limited size of current driver datasets constrains their performance. 

Objective: We proposed that pretraining using unsupervised learning on a substantial dataset of 

unlabeled electrograms could enhance classifier accuracy when applied to a smaller driver dataset. 

Methods: We utilized a SimCLR-based framework to pretrain a residual neural network on 113,000 

unlabeled 64-electrode measurements from a canine model of AF. The network was then fine-tuned to 

identify drivers from intra-cardiac electrograms. Various augmentations, including cropping, Gaussian 

blurring, and rotation, were applied during pretraining to improve the robustness of the learned 

representations. 

Results: Pretraining significantly improved driver detection accuracy compared to a non-pretrained 

network (80.8% vs. 62.5%). The pretrained network also demonstrated greater resilience to reductions 

in training dataset size, maintaining higher accuracy even with a 30% reduction in data. Grad-CAM 

analysis revealed that the network’s attention aligned well with manually annotated driver regions, 

suggesting that the network learned meaningful features for driver detection. 

Conclusion: This study demonstrates that contrastive pretraining can enhance the accuracy of driver 

detection algorithms in AF. The findings support the broader application of transfer learning to other 

electrogram-based tasks, potentially improving outcomes in clinical electrophysiology. 

 

Keywords: Atrial Fibrillation, Deep Learning, Machine Learning, Pretraining, Intracardiac 

Electrograms, Atrial Fibrillation Drivers, Fibrillatory Mechanisms 
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1. Introduction 

Atrial fibrillation (AF) is the most prevalent cardiac electrical disease, affecting over 50 million 

patients globally [1]. While pulmonary vein isolation via ablation remains a conventional treatment for 

AF, it is still associated with high recurrence in cases of persistent atrial fibrillation (persAF) [2]. Non-

pulmonary vein mechanisms in the form of focal ectopies and reentrant rotors, termed "drivers", have 

been proposed as the reason for this recurrence [3]. As such, there is a growing interest in the automated 

identification of drivers in auxiliary treatments for persAF. Recent successes with machine learning 

algorithms for driver identification have been reported, leveraging data from endocardial mapping, 

optical mapping, and ECGI [4], [5], [6].  

Despite broad utilization in machine learning literature, transfer learning remains unexplored as a 

means of improving the accuracies of driver detection algorithms. In transfer learning, a model is 

trained a preliminary task to establish a set of initialized parameters [7]. In some cases, this pretraining 

may improve accuracy and expedite training when a model is subsequently fine-tuned on a separate 

task, even when the later task has few training samples. Many pretraining tasks are available for either 

labeled or unlabeled data, including denoising, image inpainting, and classification of readily available 

markers (e.g., age or sex).  

The SimCLR process is an unsupervised contrastive pretraining technique in which networks are 

trained to produce semantically meaningful representations of data [8]. SimCLR maximizes agreement 

between differently augmented views of the same input image while minimizing agreement between 

views of dissimilar images. Augmentation choice is key in this process. Generally, chosen 

augmentations apply a common noise type or highlight important features in data. Examples of 

augmentations for image datasets include rotation, cropping, and color jittering. While contrastive 

learning frameworks have been tested on endocardial electrograms (EGMs), there are no standard 
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augmentations for the endocardial EGM and it is unclear what types of augmentations are most 

effective in such contrastive learning processes [9].  

Our laboratory has built an extensive dataset of endocardial voltage measurements with ultra-high 

density mapping catheters in a canine model. In this paper, we evaluate the hypothesis that contrastive 

pretraining will improve the accuracy of a deep learning model in identifying driving mechanisms from 

endocardial EGMs. Successful improvement in driver detection accuracy would be impetus for broader 

application of pretraining in driver detection as well as for non-driver related tasks. Additionally, since 

ideal augmentation methods for EGM-based contrastive learning remain unclear, we analysed the 

effect of several different augmentations on testing performance. We also examined the comparative 

resilience of our best pretrained and non-pretrained networks against reductions in training dataset size. 

2. Methods 

For all studies, we adhered to the Guide for the Care and Use of Laboratory Animals. The 

Institutional Animal Care and Use Committee at the University of Utah approved the protocol. A 

preliminary version of this work was presented as a conference proceeding with similar methodology 

[10]. 

Paced Canine Model. We utilized a paced-canine model of AF as described previously (n=19, 

mongrel purpose-bred hound, 27-35 kg, 1-2 yrs.) [11], [12]. Neurostimulators with screw-in bipolar 

pacing leads were implanted in the right atrium, either at the right atrial appendage or lateral wall. 

Initially, pacing was set at 50 Hz for 1 second every other second. Every 1-2 weeks, pacing was paused, 

and electrocardiogram recordings were taken to check for persistent atrial fibrillation (AF). Persistent 

AF (persAF) was defined as AF lasting more than 20 minutes after stopping external stimulation. Once 

persAF was confirmed, the pacing interval was adjusted to 1 second of pacing per minute to ensure AF 

reinitiation if the animal reverted to sinus rhythm. Most animals developed persAF within 3 weeks of 
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starting the pacing protocol. Weekly electrocardiogram recordings were used to confirm sustained AF. 

No spontaneous termination of AF was observed during local EGM recordings, and the animals 

maintained AF for an average of 6 months. 

Mapping Studies. Serial electrophysiological studies were conducted at 1-, 3-, and 6-months post-

AF induction. Pacing was halted, and the Rhythmia Mapping System with a 64-electrode high-density 

Orion catheter (Boston Scientific) was used to create detailed endocardial maps of sustained AF. 

Geometries were generated using the Rhythmia Mapping System’s internal impedance mapping 

software, combined with magnetic tracking and intracardiac echocardiography guidance to ensure 

comprehensive atrial coverage. 

The catheter was positioned at stable sites within the atria to record AF activity, ensuring good 

contact and acquiring 4 minutes of 64-electrode EGMs per site. Contact was optimized by adjusting 

the catheter to maximize voltage at each site, verified through real-time ICE observation and 3D atrial 

geometry positioning using fluoroscopy and ICE. This process was repeated across the left and right 

atria, requiring 26-34 individual recordings (104-136 minutes of electrograms) per study. All EGMs 

were captured at a sampling frequency of 953.7 Hz.  

Animals were fasted for at least 12 hours before procedures, sedated with propofol (5-8 mg/kg IV), 

and intubated. Anesthesia was maintained with vaporized isoflurane (1.5%-4%). Femoral vein access 

was achieved using 8.5 and 9 Fr sheaths (Abbott), and femoral artery access with 5 Fr sheaths for blood 

pressure monitoring. Heparin was not administered to minimize post-procedure bleeding. Transseptal 

access was obtained using NRG transseptal needles (Baylis) under ICE and fluoroscopy guidance. All 

animals were in AF at the start of the procedures and maintained AF throughout the mapping studies. 

Pacing was resumed after each study. 

Driver Identification. Unipolar atrial AF electrograms were analyzed to identify rotational or focal 
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mechanisms driving AF. The atrium was divided into 15 major anatomical sites, and recordings from 

each site were inspected. The 2-second recording with the highest dominant frequency was selected, 

and QRS-T artifacts were removed using average beat subtraction, with powerline noise filtered out 

using a 60 Hz notch filter. The first temporal derivative of these cleaned signals was used to create 

activation sequence videos. For sites with multiple recordings, the one with the higher dominant 

frequency was analyzed. A reviewer (BH) annotated rotational or focal activation patterns, with sites 

exhibiting ≥3 consecutive rotations or focal activations classified as “drivers.” 

Data Structure and Network Design. We split the 64-electrode EGMs from all studies into samples 

of 2 seconds each. We then transformed these EGMs into stacked images of 8×8 (electrodes × catheter 

splines) with 1,907 channels encoding the time dimension. This choice of stacked images enabled us 

to retain the spatial relationships between splines and electrodes; adjacent electrodes on different 

splines would be adjacent in the 3D representation. As default, we used an 18-layer 3D ResNet as the 

base network for our model. 

Contrastive Learning. We pretrained our neural network with the SimCLR contrastive learning 

process [8]. In brief, we replace the final linear layer of the 3D ResNet with a 528×1,000 linear layer 

feeding into a multilayer perceptron termed the projection head. In order of application, this projection 

head consisted of a 1,000×1,000 linear layer, a ReLU, and a 1,000×128 linear layer to produce 128 

output features. Then, we trained this network to encode images derived from the same original images 

(e.g., two crops of a base image, or a blurred image and its unblurred original) to the same latent space. 

Likewise, images derived from different original images are encoded to distant locations in the latent 

space. Key to this task are the random augmentations used: these augmentations are used to transform 

given original images into daughter images to be compared to one another. Augmentations are also 

chosen such that semantic meaning is retained after transformation, akin to rotations of the same image. 
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This results in each image becoming a class unto themselves.  

As our default pretraining hyperparameters, we used NT-Xent loss, a LARS optimizer with learning 

rate of 4.8, weight decay of 10-6, and batch size of 4096. We trained for 200 epochs with a linear 

warmup for the first 10 epochs followed by a cosine decay schedule without restarts, terminating 

training upon plateau in loss reduction.  

Augmentations. For our augmentations, we examined a set of traditional ML augmentations and 

physiologically relevant transformations. For our traditional augmentations, we used 1) cropping in 

spline and electrode dimensions followed by bilinear interpolation back to original size and 2) Gaussian 

blurring in electrode and spline dimensions with a kernel size of 3×3. Our cropping reduced image area 

in the spatial dimensions by up to 75% with random aspect ratios ±25% of original. For our 

physiologically based augmentations, we used 1) rotation of the catheter by rearrangement of the spline 

dimensions, 2) the addition of Gaussian electrical noise with a random standard deviation between 0% 

and 100% of the standard deviation of the target signal, and 3) differentiation of the time signal (dV/dt). 

With the exception of random rotation and cropping, augmentations were applied with a 50% chance 

of occurrence. We evaluated all 10 3-sample combinations of these augmentations in the contrastive 

learning process with subsequent fine-tuning on the driver classification task.  

Classifier Training. After contrastive pretraining, we fine-tuned network parameters on the driver 

classification task. Here, we detach the projection head and replace it with a linear layer with a binary 

output as seen in Figure 1. For our dataset splits, we randomly selected three animals and reserved their 

data for the testing classification dataset. EGMs from those animals were not used in the pretraining 

task. The rest of the data were used for training with 10% of the data reserved for validation. For all 

networks (pretrained and non-pretrained), we performed a training grid search with 7 logarithmically-

spaced learning rates varying between 0.0001 and 0.1. We used a batch size of 256, weight decay of 
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10-6, and a training length of 100 epochs. In this training process, we did not use any augmentations. 

Early stopping was used if validation loss did not improve for 20 epochs. Additionally, all networks 

were fine-tuned with two different methods: first, by updating all parameters, and second, by updating 

only the parameters of the final linear layer. After completing the training grid searches with both 

pretrained and non-pretraining networks, we identified networks with the lowest validation loss and 

evaluated their performance on the testing dataset. Network parameters were saved at their validation 

loss minima, and the parameters for each network at those minima were used for the testing dataset 

evaluations. As a threshold for classification in the testing dataset, we took an average of the best 

threshold for the training and validation datasets. Those thresholds were found by optimizing against 

the receiver-operator-characteristic curves of the network outputs on those datasets.  

Interpretability Analysis. Interpretation analysis has become an essential for clinical acceptance of 

deep neural networks due to the opaque rationale underlying network performance. To address this, we 

employed Grad-CAM visualizations, examining model gradients and activations to scrutinize decision-

making processes in testing outcomes [13]. In brief, Grad-CAM computes the elementwise changes in 

classification confidence via multiplication of the gradient and activations of an input image. These 

changes are then laid onto the original image to highlight which elements were responsible for the 

greatest contributions to final class decision by the network. For our studies, we used the 4th layer of 

our highest scoring 3D ResNet to perform these Grad-CAM visualizations.  

3. Results 

In total, we obtained 113,406 64-electrode EGMs of 2-seconds each. From this, we examined 709 

EGMs per our methods above and classified them as contained a driver or non-driver. From the 709 

samples used for driver identification, we manually found and labeled 396 non-drivers, 259 rotors, and 

54 focal ectopies. Our classification training, validation, and testing data comprised 539 samples (290 
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non-driver and 349 driver), 60 samples (32 non-driver and 28 driver), and 110 samples (74 non-driver 

and 36 driver) respectively. Specific times where drivers began and terminated were noted. The 

remaining, unlabeled EGMs were used in the contrastive pretraining process. All EGMs from animals 

in the testing dataset for driver classification were excluded from both the pretraining and driver 

classification training tasks. The number of EGMs used from each animal and study for each dataset is 

shown in Supplementary Appendix 1.  

Classification. The results of networks where all parameters were fine-tuned are shown in Table 1. 

Training curves for these networks are reported in Supplementary Appendix 2.We found our best 

pretrained network (augmentations: rotation, cropping, and Gaussian blurring) outperformed the non-

pretrained network in testing accuracy (80.8% vs. 62.5%). Per the training and validation optimized 

thresholds, we classified all outputs above 0.664 as a driver. As seen in Figure 2, this relationship was 

seen to be durable even when training dataset size is reduced by up to 30%.  

Augmentation Comparison. The results of networks where only the final linear layer was fine-

tuned are shown in Table 2. The best augmentation set was crop, Gaussian blurring, and differentiation. 

with cropping being present in all top 6 of the 10 augmentation combinations. Notably, our best 

network with only fine-tuning in the last layer reaches near parity in accuracy against the fully trained 

control network (62.0% vs. 62.5%). 

Interpretability Analysis. For our Grad-CAM analysis, we examined the testing dataset 

performance of our best network with all layers fine-tuned on the driver classification task per above. 

Figure 3 shows example EGM images with regions more important to the network classification 

highlighted. We generally observed that these highlighted regions corresponded to the time intervals 

where drivers were manually annotated. 

Network errors in classification appeared to be reasonable upon closer inspection. For the false 
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positive site with the highest network confidence (network output: 0.979/1.00), the network’s attention 

in the first 500 ms highlighted a set of reentries in the left atrial appendage. During the initial review, 

these reentries were noted but classified as non-continuous conduction. A subsequent retrospective 

review confirmed that the site was a non-driver, indicating that the network had identified a challenging 

classification scenario. 

For the false negative site with the highest network confidence (0.485/1.000), we observed a set of 

focal activations at the 1-second mark. Although the network focused on these activations, it classified 

them as non-drivers. These focal activations were near the edge of the catheter’s perspective, and the 

network may have reasonably interpreted them as planar conduction. 

In the true negative measurement with confidence closest to the classification threshold 

(0.659/1.000), potential reentries were observed around the left superior pulmonary vein. However, a 

critical section of the reentrant pathway was determined to be noise. Network attention was aligned 

with the times where these reentries were observed, suggesting that the network made a similar 

conclusion regarding the noise. 

4. Discussion 

We successfully demonstrated improvement in driver detection accuracy after contrastive 

pretraining of our neural network, and we attribute this improvement to the initialization which 

provided a superior feature space representation of EGMs. We propose that these representations were 

more amenable than raw EGMs for subsequent classification tasks. This amenability is derived from 

these representations possessing invariance to the augmentations used in the contrastive task – 

augmentations similar to common noise patterns and data restrictions (such as incomplete electrode 

contact) in endocardial data.  

In addition to showing improved final accuracy with fine-tuning on the entire training dataset, our 
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best pretrained network showed higher performance than non-pretrained networks even as the size of 

the driver detection dataset was reduced by up to 30%. This is additional evidence in support of the 

pretrained network having developed a representation space requiring less network complexity to 

successfully separate classes. The improved robustness of the pretrained network against dataset 

reduction is also promising for application to electrophysiological tasks with even fewer data available 

for training. Future work should investigate further. 

To our knowledge, our unlabeled endocardial EGM dataset is the largest in AF deep learning 

literature. However, augmentation methods remain available which could have increased the effective 

size of our driver dataset. While our unlabeled dataset was sufficient for our pretraining task to improve 

our final classification, we did not explore data augmentation as a means of increasing the size of the 

labeled dataset. Such augmentations could improve network outcomes and should be investigated. 

In this work, we utilized minimally preprocessed EGMs as input to our networks, using only QRS-

subtraction and filtration of powerline noise. This allows for faster determination of drivers, reducing 

patient procedure time. Additionally, networks may be able to identify undiscovered markers of drivers 

in raw EGMs, and as such unnecessary removal of raw signal may degrade network performance. Our 

QRS-subtraction and powerline-filtration may have reduced network performance, however; future 

studies may evaluate whether these adjustments had a deleterious impact.  

Other machine learning algorithms in literature have achieved driver classification accuracies of up 

to 95%, exceeding our network performance [4], [6]. We attribute this to differences in EGM capture 

modality and use of phase maps rather than minimally processed EGMs. When limited to deep neural 

networks trained on a high-density endocardial mapping dataset, we find comparable accuracy (~80%) 

[14]. Additionally, the heterogeneity in dataset “difficulty” among studies remains unknown, 

preventing direct comparison of our results to others. Our innovation is in the introduction of 
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pretraining to driver classification, where we show improvement in driver detection accuracy after 

pretraining. When combined with other advances in network design, data collection, and training 

routines, pretraining may lead deep learning algorithms to achieve results equal or superior to manual 

identification. 

We note synergy between the use of a structured basket-style catheter and 3D convolutional neural 

networks. Networks with 3D layers are able to preserve more spatial information than 2D and 1D 

networks via use of kernels that respect electrode adjacency. When used with a basket-style catheter, 

these adjacencies are consistently respected across measurements. Deforming catheters would not have 

such consistent adjacencies and would need alternate design to incorporate spatial conformation of 

electrodes. Drivers are identified by sequences of endocardial activations with spatial relationships, 

making this an important network design constraint. 

Impact of Augmentation Choice. As expected, the choice of augmentation was highly influential 

for network performance in the driver classification task. Cropping was notably impactful, consistently 

being in all top-performing pretrained networks. This may be explained by the cropping augmentation 

requiring networks to identify EGMs by a broad number of spatial features rather than by focusing on 

a narrow subset of those features. These spatial features have importance for their utility in capturing 

structural information of the arrhythmia, which may impact the presence or absence of drivers in a 

location [15], [16]. Catheter rotation was also impactful, similarly being seen in top performing 

networks. This is unique in that it is a domain specific augmentation rather than a common machine 

learning augmentation. This demonstrates the importance of considering augmentations appropriate to 

subdomains rather than relying on out-of-the-box augmentations for transfer learning tasks. In this case, 

given that the Orion catheter is rotational symmetric without any known information being stored in 

this rotation, we consider it a noise source for which networks should be invariant.  
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In addition to the above, we also see both Gaussian noising and blurring to be impactful 

augmentations in the pretraining process. Similar to rotation, we assert that this reflects a need for the 

final representation space to become invariant to common electrical signal noise and far field effects. 

Both the additive Gaussian noising and Gaussian blurring are methods of artificially introducing or 

enhancing that noise. More sophisticated methods of introducing far-field noises into the contrastive 

process (e.g., random introduction of QRS-complexes to the signal) may result in improved accuracy 

gains. 

Curiously, our worst performing pretrained network in the full parameter fine-tuning obtained the 

highest F1 score in the comparison of fine-tuning on only the last layer. We attribute this to the 

contrastive augmentation set (i.e., cropping, Gaussian blurring, and dV/dt) producing a strong 

initialization but being particularly ill-suited for full parameter optimization – perhaps creating “bad 

habits” that force the network to rely on features that do not generalize well. 

Network Interpretability. Understanding the rationale behind network decision making is highly 

difficult given the opacity of the relationship between the function and output of a network. However, 

an assessment of network decision making is critical for maximizing the likelihood that network 

performance has external validity.  When we examined our best pretrained network with fine-tuning 

on all layers under Grad-CAM, we observed many regions with the greatest network attention were 

located within manually annotated times of driver occurrence. This concurrence between automated 

and manual attention is promising as this implies the network followed an identification process similar 

to the manual annotation of the underlying data.  

Given the high functional capacity of the networks used, overfitting to spurious or unconsidered 

correlates of drivers is a possibility. The use of a testing dataset with entirely separate data from training 

data was intended to reduce this effect. In practice, we observe our testing and validation accuracies to 
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be generally lower than our training accuracies, demonstrating modest overfitting. With respect to 

Grad-CAM, attention on areas of EGMs not classified as drivers would be strong evidence of 

overfitting and non-sensible network rationale. This was not observed, and instead we see network 

attention was significantly greater at times where EGMs were actively exhibiting driver behaviour. 

This implies the network was learning features of drivers rather than noise or extraneous correlates. 

5. Conclusions 

We confirmed our hypothesis, showing driver detection accuracy of our neural network to increase 

after pretraining. Our best augmentation set for contrastive pretraining was cropping in the spline and 

electrode dimensions, rotation of the catheter, and the addition of random Gaussian blurring. The 

relative importance of catheter rotation to network performance shows domain specific augmentation 

choice to be key when designing the contrastive pretraining process. Finally, our pretraining process is 

non-specific to driver detection and can be explored as parameter initialization for other 

electrophysiological tasks. 

6.  Limitations 

We used a paced canine model of AF as the source for our datasets, potentially limiting the 

generalizability of our results to clinical electrophysiology. 
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Figure 1. Model training schematic. First, the network is trained on the SimCLR task with unlabeled 

AF 64-electrodes EGMs. After the pretraining task is complete, the projection head is detached and 

replaced with a single linear layer leading to the binary output. The network is subsequently trained on 

the driver classification process with labeled 64-electrode EGM data. 
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Figure 2. Testing accuracy and F1 score as a function of fraction of the training dataset used. The 

size of the testing and validation datasets size remained the same for all networks shown. Our 

pretrained network substantially outperformed the non-pretrained network until the size of the 

training dataset was reduced by 40%. 
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Figure 3. Example EGMs from testing dataset after Grad-CAM analysis of the best performing 

pretrained network with fine-tuning on all layers. The 3D tiles used in the dataset have been reshaped 

into 2D images for simpler visualization. Regions more important to network identification are 

highlighted in yellow, and regions where drivers have been manually marked are indicated between 

red lines. Regions where drivers were manually marked tended to have more network attention than 
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other regions. Shown are true positive, true negative, false positive, and false negative samples, and 

these samples had the highest network prediction confidence in comparison to other samples from the 

testing dataset.  
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Table 1. Training, validation, and testing results of the pretrained and non-pretrained networks with 

fine-tuning on all layers. Best networks for each column are bolded. Rows are sorted by testing F1 

score in descending order. 

Augmentations Train. 
Acc. 

Train. 
F1 

Train. 
Loss 

Val. 
Acc. 

Val. 
F1 

Val. 
Loss 

Test 
Acc. 

Test 
F1 

Test 
Loss 

rotation, crop, Gaussian 

blur 

91.9% 0.922 0.240 78.3% 0.780 0.548 80.8% 0.820 0.480 

rotation, Gaussian noise, 

dV/dt 

85.6% 0.859 0.396 80.0% 0.798 0.565 73.2% 0.764 0.581 

crop, Gaussian blur, 

Gaussian noise 

80.3% 0.805 0.477 78.3% 0.782 0.543 73.2% 0.757 0.610 

rotation, Gaussian blur, 

dV/dt 

78.2% 0.788 0.545 80.0% 0.796 0.565 69.6% 0.752 0.588 

rotation, crop, Gaussian 

noise 

79.5% 0.793 0.678 83.3% 0.833 0.541 74.7% 0.744 0.979 

rotation, crop, dV/dt 76.2% 0.767 0.596 80.0% 0.798 0.537 68.4% 0.719 0.662 

rotation, Gaussian blur, 

Gaussian noise 

75.2% 0.755 0.616 76.7% 0.766 0.591 65.7% 0.680 0.821 

Gaussian blur, Gaussian 

noise, dV/dt 

75.4% 0.757 0.593 81.7% 0.816 0.568 63.6% 0.675 0.724 

crop, Gaussian noise, 

dV/dt 

71.2% 0.710 0.671 81.7% 0.815 0.587 63.9% 0.600 0.840 

crop, Gaussian blur, dV/dt 71.6% 0.715 0.668 81.7% 0.817 0.582 64.6% 0.598 0.834 

N/A 74.4% 0.745 0.613 83.3% 0.833 0.528 62.5% 0.580 0.873 
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Table 2. Training, validation, and testing results of pretrained networks with fine-tuning on only the 

final layer. Best networks for each column are bolded. Rows are sorted by testing F1 score in 

descending order. 

Augmentations Train. 
Acc. 

Train. 
F1 

Train. 
Loss 

Val. 
Acc. 

Val. 
F1 

Val. 
Loss 

Test 
Acc. 

Test 
F1 

Test 
Loss 

crop, Gaussian blur, dV/dt 70.1% 0.711 0.643 68.3% 0.683 0.656 62.0% 0.683 0.680 

rotation, crop, dV/dt 71.5% 0.722 0.630 70.0% 0.699 0.661 61.3% 0.679 0.644 

crop, Gaussian blur, 

Gaussian noise 

74.4% 0.749 0.631 63.3% 0.632 0.727 64.5% 0.639 0.790 

rotation, crop, Gaussian 

noise 

73.7% 0.746 0.641 63.3% 0.632 0.749 59.5% 0.633 0.812 

rotation, crop, Gaussian blur 73.2% 0.722 0.646 61.7% 0.616 0.739 63.2% 0.590 0.854 

crop, Gaussian noise, dV/dt 67.9% 0.688 0.689 75.0% 0.748 0.634 56.9% 0.577 0.851 

Gaussian blur, Gaussian 

noise, dV/dt 

62.2% 0.630 0.755 63.3% 0.605 0.720 57.6% 0.577 0.882 

rotation, Gaussian blur, 

dV/dt 

59.6% 0.603 0.760 71.7% 0.710 0.700 59.1% 0.543 0.849 

rotation, Gaussian blur, 

Gaussian noise 

63.7% 0.621 0.725 56.7% 0.566 0.752 59.2% 0.502 0.859 

rotation, Gaussian noise, 

dV/dt 

63.4% 0.591 0.745 63.3% 0.627 0.735 55.2% 0.415 0.856 
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Key Findings: 

 
• Improved Accuracy: Pretraining a neural network using a SimCLR-based framework on a 

large dataset of  unlabeled electrograms significantly improved driver detection accuracy 
from 62.5% to 80.8%. 

• Effective Augmentations: The most effective augmentations for pretraining were 
cropping, Gaussian blurring, and catheter rotation, which helped the network learn invariant 
features crucial for accurate classification. 

• Robustness to Data Reduction: The pretrained network maintained higher performance 
even when the training dataset size was reduced by up to 30%, indicating robustness and 
potential for application in scenarios with limited data. 

• Interpretability: Grad-CAM visualizations showed that the network’s attention aligned well 
with manually annotated driver regions, suggesting that the network learned meaningful 
features related to driver identification. 

• Potential for Broader Application: The pretraining approach is not specific to driver 
detection and could be applied to other electrophysiological tasks, enhancing the 
generalizability and utility of  the method. 
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