![]() Detection and segmentation in microscopy images, N. Ramesh, T. Tasdizen. In Computer Vision for Microscopy Image Analysis, Academic Press, pp. 43-71. 2021. DOI: 10.1016/B978-0-12-814972-0.00003-5 The plethora of heterogeneous data generated using modern microscopy imaging techniques eliminates the possibility of manual image analysis for biologists. Consequently, reliable and robust computerized techniques are critical to analyze microscopy data. Detection problems in microscopy images focuses on accurately identifying the objects of interest in an image that can be used to investigate hypotheses about developmental or pathological processes and can be indicative of prognosis in patients. Detection is also considered to be the preliminary step for solving subsequent problems, such as segmentation and tracking for various biological applications. Segmentation of the desired structures and regions in microscopy images require pixel-level labels to uniquely identify the individual structures and regions with contours for morphological and physiological analysis. Distributions of features extracted from the segmented regions can be used to compare normal versus disease or normal versus wild-type populations. Segmentation can be considered as a precursor for solving classification, reconstruction, and tracking problems in microscopy images. In this chapter, we discuss how the field of microscopic image analysis has progressed over the years, starting with traditional approaches and then followed by the study of learning algorithms. Because there is a lot of variability in microscopy data, it is essential to study learning algorithms that can adapt to these changes. We focus on deep learning approaches with convolutional neural networks (CNNs), as well as hierarchical methods for segmentation and detection in optical and electron microscopy images. Limitation of training data is one of the significant problems; hence, we explore solutions to learn better models with minimal user annotations. |
![]() ![]() Leveraging 31 Million Google Street View Images to Characterize Built Environments and Examine County Health Outcomes Q. C Nguyen, J. M. Keralis, P. Dwivedi, A. E. Ng, M. Javanmardi, S. Khanna, Y. Huang, K. D. Brunisholz, A. Kumar, T. Tasdizen. In Public Health Reports, Vol. 136, No. 2, SAGE Publications, pp. 201-211. 2021. DOI: doi.org/10.1177/0033354920968799 Objectives Methods
We leveraged computer vision and Google Street View images accessed from December 15, 2017, through July 17, 2018, to detect features of the built environment (presence of a crosswalk, non–single-family home, single-lane roads, and visible utility wires) for 2916 US counties. We used multivariate linear regression models to determine associations between features of the built environment and county-level health outcomes (prevalence of adult obesity, prevalence of diabetes, physical inactivity, frequent physical and mental distress, poor or fair self-rated health, and premature death [in years of potential life lost]).Results
Compared with counties with the least number of crosswalks, counties with the most crosswalks were associated with decreases of 1.3%, 2.7%, and 1.3% of adult obesity, physical inactivity, and fair or poor self-rated health, respectively, and 477 fewer years of potential life lost before age 75 (per 100 000 population). The presence of non–single-family homes was associated with lower levels of all health outcomes except for premature death. The presence of single-lane roads was associated with an increase in physical inactivity, frequent physical distress, and fair or poor self-rated health. Visible utility wires were associated with increases in adult obesity, diabetes, physical and mental distress, and fair or poor self-rated health.Conclusions
The use of computer vision and big data image sources makes possible national studies of the built environm
|
![]() ![]() Lessons learned towards the immediate delivery of massive aerial imagery to farmers and crop consultants A. A. Gooch, S. Petruzza, A. Gyulassy, G. Scorzelli, V. Pascucci, L. Rantham, W. Adcock, C. Coopmans. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VI, Vol. 11747, International Society for Optics and Photonics, pp. 22 -- 34. 2021. DOI: 10.1117/12.2587694 In this paper, we document lessons learned from using ViSOAR Ag Explorer™ in the fields of Arkansas and Utah in the 2018-2020 growing seasons. Our insights come from creating software with fast reading and writing of 2D aerial image mosaics for platform-agnostic collaborative analytics and visualization. We currently enable stitching in the field on a laptop without the need for an internet connection. The full resolution result is then available for instant streaming visualization and analytics via Python scripting. While our software, ViSOAR Ag Explorer™ removes the time and labor software bottleneck in processing large aerial surveys, enabling a cost-effective process to deliver actionable information to farmers, we learned valuable lessons with regard to the acquisition, storage, viewing, analysis, and planning stages of aerial data surveys. Additionally, with the ultimate goal of stitching thousands of images in minutes on board a UAV at the time of data capture, we performed preliminary tests for on-board, real-time stitching and analysis on USU AggieAir sUAS using lightweight computational resources. This system is able to create a 2D map while flying and allow interactive exploration of the full resolution data as soon as the platform has landed or has access to a network. This capability further speeds up the assessment process on the field and opens opportunities for new real-time photogrammetry applications. Flying and imaging over 1500-2000 acres per week provides up-to-date maps that give crop consultants a much broader scope of the field in general as well as providing a better view into planting and field preparation than could be observed from field level. Ultimately, our software and hardware could provide a much better understanding of weed presence and intensity or lack thereof. |
![]() Determining uranium ore concentrates and their calcination products via image classification of multiple magnifications, C. Ly, C. Vachet, I. Schwerdt, E. Abbott, A. Brenkmann, L.W. McDonald, T. Tasdizen. In Journal of Nuclear Materials, 2020. Many tools, such as mass spectrometry, X-ray diffraction, X-ray fluorescence, ion chromatography, etc., are currently available to scientists investigating interdicted nuclear material. These tools provide an analysis of physical, chemical, or isotopic characteristics of the seized material to identify its origin. In this study, a novel technique that characterizes physical attributes is proposed to provide insight into the processing route of unknown uranium ore concentrates (UOCs) and their calcination products. In particular, this study focuses on the characteristics of the surface structure captured in scanning electron microscopy (SEM) images at different magnification levels. Twelve common commercial processing routes of UOCs and their calcination products are investigated. Multiple-input single-output (MISO) convolution neural networks (CNNs) are implemented to differentiate the processing routes. The proposed technique can determine the processing route of a given sample in under a second running on a graphics processing unit (GPU) with an accuracy of more than 95%. The accuracy and speed of this proposed technique enable nuclear scientists to provide the preliminary identification results of interdicted material in a short time period. Furthermore, this proposed technique uses a predetermined set of magnifications, which in turn eliminates the human bias in selecting the magnification during the image acquisition process. |
![]() Adversarial regression training for visualizing the progression of chronic obstructive pulmonary disease with chest x-rays, R.B. Lanfredi, J.D. Schroeder, C. Vachet, T. Tasdizen. In Arxiv, In International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019. Knowledge of what spatial elements of medical images deep learning methods use as evidence is important for model interpretability, trustiness, and validation. There is a lack of such techniques for models in regression tasks. We propose a method, called visualization for regression with a generative adversarial network (VR-GAN), for formulating adversarial training specifically for datasets containing regression target values characterizing disease severity. We use a conditional generative adversarial network where the generator attempts to learn to shift the output of a regressor through creating disease effect maps that are added to the original images. Meanwhile, the regressor is trained to predict the original regression value for the modified images. A model trained with this technique learns to provide visualization for how the image would appear at different stages of the disease. We analyze our method in a dataset of chest x-rays associated with pulmonary function tests, used for diagnosing chronic obstructive pulmonary disease (COPD). For validation, we compute the difference of two registered x-rays of the same patient at different time points and correlate it to the generated disease effect map. The proposed method outperforms a technique based on classification and provides realistic-looking images, making modifications to images following what radiologists usually observe for this disease. Implementation code is available athttps://github.com/ricbl/vrgan. |
![]() Identifying surface morphological characteristics to differentiate between mixtures of U3O8 synthesized from ammonium diuranate and uranyl peroxide, S. T. Heffernan, N. Ly, B. J. Mower, C. Vachet, I. J. Schwerdt, T. Tasdizen, L. W. McDonald IV. In Radiochimica Acta, 2019. In the present study, surface morphological differences of mixtures of triuranium octoxide (U3O8), synthesized from uranyl peroxide (UO4) and ammonium diuranate (ADU), were investigated. The purity of each sample was verified using powder X-ray diffractometry (p-XRD), and scanning electron microscopy (SEM) images were collected to identify unique morphological features. The U3O8 from ADU and UO4 was found to be unique. Qualitatively, both particles have similar features being primarily circular in shape. Using the morphological analysis of materials (MAMA) software, particle shape and size were quantified. UO4 was found to produce U3O8 particles three times the area of those produced from ADU. With the starting morphologies quantified, U3O8 samples from ADU and UO4 were physically mixed in known quantities. SEM images were collected of the mixed samples, and the MAMA software was used to quantify particle attributes. As U3O8 particles from ADU were unique from UO4, the composition of the mixtures could be quantified using SEM imaging coupled with particle analysis. This provides a novel means of quantifying processing histories of mixtures of uranium oxides. Machine learning was also used to help further quantify characteristics in the image database through direct classification and particle segmentation using deep learning techniques based on Convolutional Neural Networks (CNN). It demonstrates that these techniques can distinguish the mixtures with high accuracy as well as showing significant differences in morphology between the mixtures. Results from this study demonstrate the power of quantitative morphological analysis for determining the processing history of nuclear materials. |
![]() Quantifying Impurity Effects on the Surface Morphology of α-U3O8, A. B. Hanson, R. N. Lee, C. Vachet, I. J. Schwerdt, T. Tasdizen, L. W. McDonald IV. In Analytical Chemistry, 2019. DOI: doi:10.1021/acs.analchem.9b02013 The morphological effect of impurities on α-U3O8 has been investigated. This study provides the first evidence that the presence of impurities can alter nuclear material morphology, and these changes can be quantified to aid in revealing processing history. Four elements: Ca, Mg, V, and Zr were implemented in the uranyl peroxide synthesis route and studied individually within the α-U3O8. Six total replicates were synthesized, and replicates 1–3 were filtered and washed with Millipore water (18.2 MΩ) to remove any residual nitrates. Replicates 4–6 were filtered but not washed to determine the amount of impurities removed during washing. Inductively coupled plasma mass spectrometry (ICP-MS) was employed at key points during the synthesis to quantify incorporation of the impurity. Each sample was characterized using powder X-ray diffraction (p-XRD), high-resolution scanning electron microscopy (HRSEM), and SEM with energy dispersive X-ray spectroscopy (SEM-EDS). p-XRD was utilized to evaluate any crystallographic changes due to the impurities; HRSEM imagery was analyzed with Morphological Analysis for MAterials (MAMA) software and machine learning classification for quantification of the morphology; and SEM-EDS was utilized to locate the impurity within the α-U3O8. All samples were found to be quantifiably distinguishable, further demonstrating the utility of quantitative morphology as a signature for the processing history of nuclear material. |
![]() ![]() Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study K. A. Johnson, P. T. Fletcher, D. Servello, A. Bona, M. Porta, J. L. Ostrem, E. Bardinet, M. Welter, A. M. Lozano, J. C. Baldermann, J. Kuhn, D. Huys, T. Foltynie, M. Hariz, E. M. Joyce, L. Zrinzo, Z. Kefalopoulou, J. Zhang, F. Meng, C. Zhang, Z. Ling, X. Xu, X. Yu, A. YJM Smeets, L. Ackermans, V. Visser-Vandewalle, A. Y. Mogilner, M. H. Pourfar, L. Almeida, A. Gunduz, W. Hu, K. D. Foote, M. S. Okun, C. R. Butson. In Journal of Neurology, Neurosurgery & Psychiatry, BMJ Publishing Group, 2019. DOI: 10.1136/jnnp-2019-320379 BACKGROUND: METHODS:
We collected retrospective clinical data and imaging from 13 international sites on 123 patients. We assessed the effects of DBS over time in 110 patients who were implanted in the centromedial (CM) thalamus (n=51), globus pallidus internus (GPi) (n=47), nucleus accumbens/anterior limb of the internal capsule (n=4) or a combination of targets (n=8). Contact locations (n=70 patients) and volumes of tissue activated (n=63 patients) were coregistered to create probabilistic stimulation atlases.RESULTS:
Tics and obsessive-compulsive behaviour (OCB) significantly improved over time (p<0.01), and there were no significant differences across brain targets (p>0.05). The median time was 13 months to reach a 40% improvement in tics, and there were no significant differences across targets (p=0.84), presence of OCB (p=0.09) or age at implantation (p=0.08). Active contacts were generally clustered near the target nuclei, with some variability that may reflect differences in targeting protocols, lead models and contact configurations. There were regions within and surrounding GPi and CM thalamus that improved tics for some patients but were ineffective for others. Regions within, superior or medial to GPi were associated with a greater improvement in OCB than regions inferior to GPi.CONCLUSION:
The results collectively indicate that DBS may improve tics and OCB, the effects may develop over several months, and stimulation locations relative to structural anatomy alone may not predict response. This study was the first to visualise and evaluate the regions of stimulation across a large cohort of patients with TS to generate new hypotheses about potential targets for improving tics and comorbidities.
|
![]() ![]() A High-Resolution Head and Brain Computer Model for Forward and Inverse EEG Simulation A. Warner, J. Tate, B. Burton,, C.R. Johnson. In bioRxiv, Cold Spring Harbor Laboratory, Feb, 2019. DOI: 10.1101/552190 To conduct computational forward and inverse EEG studies of brain electrical activity, researchers must construct realistic head and brain computer models, which is both challenging and time consuming. The availability of realistic head models and corresponding imaging data is limited in terms of imaging modalities and patient diversity. In this paper, we describe a detailed head modeling pipeline and provide a high-resolution, multimodal, open-source, female head and brain model. The modeling pipeline specifically outlines image acquisition, preprocessing, registration, and segmentation; three-dimensional tetrahedral mesh generation; finite element EEG simulations; and visualization of the model and simulation results. The dataset includes both functional and structural images and EEG recordings from two high-resolution electrode configurations. The intermediate results and software components are also included in the dataset to facilitate modifications to the pipeline. This project will contribute to neuroscience research by providing a high-quality dataset that can be used for a variety of applications and a computational pipeline that may help researchers construct new head models more efficiently. |
![]() ![]() Skeletal Shape Correspondence through Entropy L. Tu, M. Styner, J. Vicory, S. Elhabian, R. Wang, J. Hong, B. Paniagua, J.C. Prieto, D. Yang, R. Whitaker, M. Pizer. In IEEE Transactions on Medical Imaging, Vol. 37, No. 1, IEEE, pp. 1--11. Jan, 2018. DOI: 10.1109/tmi.2017.2755550 We present a novel approach for improving the shape statistics of medical image objects by generating correspondence of skeletal points. Each object's interior is modeled by an s-rep, i.e., by a sampled, folded, two-sided skeletal sheet with spoke vectors proceeding from the skeletal sheet to the boundary. The skeleton is divided into three parts: the up side, the down side, and the fold curve. The spokes on each part are treated separately and, using spoke interpolation, are shifted along that skeleton in each training sample so as to tighten the probability distribution on those spokes' geometric properties while sampling the object interior regularly. As with the surface/boundary-based correspondence method of Cates et al., entropy is used to measure both the probability distribution tightness and the sampling regularity, here of the spokes' geometric properties. Evaluation on synthetic and real world lateral ventricle and hippocampus data sets demonstrate improvement in the performance of statistics using the resulting probability distributions. This improvement is greater than that achieved by an entropy-based correspondence method on the boundary points. |
![]() ![]() F. Mesadi, E. Erdil, M. Cetin, T. Tasdizen Image segmentation using disjunctive normal Bayesian shape, appearance models. In IEEE Transactions on Medical Imaging, Vol. 37, No. 1, IEEE, pp. 293--305. Jan, 2018. DOI: 10.1109/tmi.2017.2756929 The use of appearance and shape priors in image segmentation is known to improve accuracy; however, existing techniques have several drawbacks. For instance, most active shape and appearance models require landmark points and assume unimodal shape and appearance distributions, and the level set representation does not support construction of local priors. In this paper, we present novel appearance and shape models for image segmentation based on a differentiable implicit parametric shape representation called a disjunctive normal shape model (DNSM). The DNSM is formed by the disjunction of polytopes, which themselves are formed by the conjunctions of half-spaces. The DNSM's parametric nature allows the use of powerful local prior statistics, and its implicit nature removes the need to use landmarks and easily handles topological changes. In a Bayesian inference framework, we model arbitrary shape and appearance distributions using nonparametric density estimations, at any local scale. The proposed local shape prior results in accurate segmentation even when very few training shapes are available, because the method generates a rich set of shape variations by locally combining training samples. We demonstrate the performance of the framework by applying it to both 2-D and 3-D data sets with emphasis on biomedical image segmentation applications. |
![]() ![]() A virtual reality visualization tool for neuron tracing W Usher, P Klacansky, F Federer, PT Bremer, A Knoll, J. Yarch, A. Angelucci, V. Pascucci . In IEEE Transactions on Visualization and Computer Graphics, Vol. 24, No. 1, IEEE, pp. 994--1003. Jan, 2018. DOI: 10.1109/tvcg.2017.2744079 racing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists. |