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A B S T R A C T

As the capabilities of convolutional neural networks (CNNs) for image classification tasks have advanced, interest
in applying deep learning techniques for determining the natural and anthropogenic origins of uranium ore
concentrates (UOCs) and other unknown nuclear materials by their surface morphology characteristics has grown.
But before CNNs can join the nuclear forensics toolbox along more traditional analytical techniques – such as
scanning electron microscopy (SEM), X-ray diffractometry, mass spectrometry, radiation counting, and any
number of spectroscopic methods – a deeper understanding of “black box” image classification will be required.
This paper explores uncertainty quantification for convolutional neural networks and their ability to generalize to
out-of-distribution (OOD) image data sets. For prediction uncertainty, Monte Carlo (MC) dropout and random
image crops as variational inference techniques are implemented and characterized. Convolutional neural net-
works and classifiers using image features from unsupervised vector-quantized variational autoencoders (VQ-
VAE) are trained using SEM images of pure, unaged, unmixed uranium ore concentrates considered “unper-
turbed.” OOD data sets are developed containing perturbations from the training data with respect to the chemical
and physical properties of the UOCs or data collection parameters; predictions made on the perturbation sets
identify where significant shortcomings exist in the current training data and techniques used to develop models
for classifying uranium process history, and provides valuable insights into how datasets and classification models
can be improved for better generalizability to out-of-distribution examples.
1. Introduction

Convolutional neural networks (CNNs) are deep machine learning
architectures that have demonstrated incredible performance on tasks
involving images, such as classification. While many more detailed de-
scriptions of convolutional neural networks and their deep learning can
be found in the literature, in brief, supervised learning for CNNs involves
passing a batch of labeled image examples through the network,
computing how off the predictions were from the expected labels with a
loss function, updating the convolutional kernel and fully-connected (FC)
layer weights with the backpropagation algorithm, and then passing
successive image batches until the network loss is minimized [1–3].
When making predictions, an image is passed through the convolutional
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and pooling layers which extract image features, next the fully-connected
layers correlate extracted features to labels, and then an activation
function computes a score for each image class [2]. For multi-class
problems, a normalized exponential function known as SoftMax relates
the FC layer's outputs (often called logits) to scores for each class that are
normalized to sum to one [4]. In addition to the standard convolutional,
pooling, and activation layers, residual neural network (ResNet) archi-
tectures utilize skip connections which retain the outputs of previous
layers, allowing for better classification performance with deeper CNNs
than previously possible [5].

Deep learning models can also be developed to learn without
accessing all or any of the class ground truth labels in what is known as
semi-supervised learning and unsupervised learning, respectively. In
March 2022
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unsupervised learning for images with autoencoders, two sets of con-
volutional neural networks are used to first compress the information
from images into a smaller dimensionality (encoding) and then repro-
duce the original image from this representation (decoding). While many
varieties of autoencoders have been developed, learning of image rep-
resentations is facilitated by implementing a loss function between the
image reconstructions to the original images to iteratively update the
encoder and decoder weights to produce better reconstructions [6–8].
Encoded image representations are often useful for other downstream
tasks, such as clustering or training classification models.

The vector quantized variational autoencoder (VQ-VAE) learns
discrete representations from the input data by replacing the encoder
outputs with its most similar vector in a codebook; Oord et al. (2017)
claims these discrete representations can produce better latent space
features than continuous variational autoencoders, whose decoders can
become autoregressive and bypass the need for good latent representa-
tions to reconstruct data [8]. A later VQ-VAE adaptation used a hierar-
chical encoder/decoder architecture to improve latent space
representations at multiple image scales [9]. After training the autoen-
coder, image features can be extracted by passing the image through the
encoders, quantizing features with the codebook vectors, and then
essentially performing a histogram operation by counting the number of
occurrences for each codebook vector in an image [10]. The ResNet-34
and VQ-VAE-2 architectures respectively serve as the starting networks
for supervised and unsupervised learning in this paper.

One of the primary goals of machine learning algorithms is general-
ization, or the ability to make good predictions on unseen examples. Past
advances in image classification include improvements to CNN archi-
tectures, regularization methods to prevent over-fitting, optimization
functions for updating weights, and training practices to achieve state-of-
the-art generalization and classification accuracies. Other recent work
has sought to gain a deep understanding of what are often considered
“black box” algorithms; such efforts have focused on fairness by elimi-
nating biases, robustness to adversarial attacks, explainable artificial
intelligence (XAI), uncertainty quantification (UQ), and the ability to
identify out-of-distribution (OOD) examples [11–20]. This paper ex-
plores uncertainty quantification and predictions on OOD data in the
context of nuclear forensics analysis using the surface morphology of
uranium ore concentrates (UOCs) from a collection of scanning electron
microscopy (SEM) images.

When considering uncertainty quantification for classification
models, one must first consider the sources of the uncertainty. Epistemic
uncertainty comes from a lack of knowledge in a model's parameters, such
as a machine learning classifier's weights after training on an incomplete
dataset [13,21]. On the other hand, the source of aleatoric uncertainty is
the variance naturally present in the observed data, such as differences
seen in the surface morphology across several micrographs belonging to
the same class or even within a single micrograph [13,21]. Several
methods for UQ in deep neural networks have been developed to help
determine when to trust a set of predictions, and to improve the inter-
operability of the results. These methods include, but are not limited to,
deep ensembles, Gaussian processes, Bayesian neural networks, and
Monte Carlo (MC) dropout [22–27]. Among the most popular prediction
uncertainty method is MC dropout, which uses variational inference and
requires few modifications to existing state-of-the-art neural network
architectures or training procedures [26]. Dropout is a well-known reg-
ularization technique that randomly “drops” neurons in the hidden layers
of a neural network during training, which can prevent the network from
relying too much on a single data feature [28]. MC dropout works by
continuing to leave out connections during inference while making
several predictions on a single test example, resulting in a distribution of
SoftMax scores for each class; the statistical variance of the SoftMax
scores for each class can be considered the “per-class” uncertainty [26].

On a “per-image” basis, uncertainty can be measured by the infor-
mation entropy for the set of predictions [29]. Shannon information
entropy H(X) is calculated by taking the negative sum of each class's
2

SoftMax score P(xi)multiplied by the logarithm of that score for a set of n
class predictions X (Eq. (1)). When using the base-2 logarithm, infor-
mation entropy takes units of bits to quantify how much information is
needed to communicate a set of predictions. A more surprising prediction
has a higher information entropy and indicates a higher degree of un-
certainty. This metric for prediction uncertainty can be applied to a single
prediction with no statistical variance, as is done without MC dropout or
ensembles, which makes Shannon information entropy particularly use-
ful for comparing different inference methods.

HðXÞ¼ �
Xn

i¼1

PðxiÞlog 2 PðxiÞ (1)

During nuclear forensics investigations, a variety of analytical tech-
niques might be utilized to gather information about the anthropogenic
origins of an unknown nuclear material that was illicitly trafficked or
smuggled.[30] Such analytical techniques might include scanning elec-
tron microscopy (SEM) to observe microstructure, powder X-ray
diffractometry (P-XRD) to determine crystal structure, inductively couple
mass spectrometry (ICP-MS) to measure elemental composition and
trace-level impurities, and alpha-particle spectrometry or gamma-ray
spectroscopy to analyze the isotopic composition of the nuclear mate-
rial. [30–33] The information gathered from these techniques, and
others, can be combined to produce “signatures” or “fingerprints” that
indicate how, when, and where the material was produced.[30]

Surface morphology analysis with SEM micrographs has shown the
potential to be a powerful signature in the nuclear forensics toolbox
[34–37]. Materials with the same crystal structures, as determined by
P-XRD analysis, can have significantly different microstructures if syn-
thesized by different processes. Fig. 1 shows UOCs from five common
precipitation routes – ammonium diuranate (ADU), ammonium uranyl
carbonate (AUC), magnesium diuranate (MDU), sodium diuranate
(SDU), and uranyl peroxide (UO4) – that have been converted to UO3,
U3O8, and UO2. Each synthesis route has distinct particle morphology
size and shape characteristics that could be used as a signature in
determining their process history; detailed morphology descriptions for
these materials can be found elsewhere in the published literature [38].

Other factors outside of the precipitation reaction can also affect
particle microstructure of uranium ore concentrates. Such factors include
aging, the presence of elemental impurities, physical mixtures of UOC
powders, calcination conditions, starting material, and the uranium so-
lution from which the UOC was precipitated [39–46]. Many previously
published UOC morphology studies have trained convolutional neural
networks to supplement qualitative descriptions and quantitative particle
segmentation morphology measurements. While often achieving high
classification accuracies, the scope of each classifier was narrow, often
only using images from a single precipitation route and oxidation state in
the training and testing data sets. When multiple precipitation routes and
oxidation states were considered by Ly et al. (2020), the materials were
pure and unaged; images were collected with standardized SEM param-
eters [47]. Girard et al. (2021) implemented unsupervised representation
learning with a VQ-VAE for feature extraction, paired with supervised
models – including a multi-level perceptron (MLP) – that were trained
using the VQ-VAE codebook histograms for various downstream tasks,
such as synthetic route classification, calcination temperature classifi-
cation, and SEM acquisition magnification [10]. This VQ-VAE þ MLP
implementation and fully-supervised convolutional neural networks
achieved comparable accuracies on 12-way synthetic route classification
of uranium oxides produced from different precipitates [10,47].

With systems as complex as those influencing the surface morphology
characteristics of nuclear materials, it is imperative that any classifier
trained should be able to generalize to out-of-distribution data sets.
Additionally, SEM data collection parameters are known to affect the
appearance of the image; biases from micrograph acquisition could lead
to so-called texture-shape cue conflicts when using a CNN to make pre-
dictions [48]. By evaluating the classification results on OOD image sets,



Fig. 1. Characteristic scanning electron micrographs for UO3, U3O8, and UO2 from the ammonium diuranate (ADU), ammonium uranyl carbonate (AUC), magnesium
diuranate (MDU), sodium diuranate (SDU), and uranyl peroxide (UO4) precipitation routes. The scale bar pictured applies for all micrographs.
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the most problematic material and data collection perturbations can be
identified, and specific strategies for improving CNNs for nuclear forensic
tasks can be developed. Additionally, characterizing the uncertainty
quantified for CNN predictions of UOC images will help identify which
predictions should or should not be trusted by nuclear forensics
investigators.
3

2. Methods & materials

The ResNet-34 residual neural network architecture starting with
weights pretrained on the ImageNet dataset was used for each experi-
ment [3,5]. The final layer of the network was replaced with a layer
consisting of global max pooling (GMP) and global average pooling
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(GAP) concatenated, followed by a dropout regularization layer, a
fully-connected layer with 1000 units, and an output layer with the
number of units corresponding to the number of classes for that model.
The output layer used the SoftMax activation function for predicting
labels.

Hyperparameter tuning using 5-fold cross validation (CV) was used to
identify the optimal settings for training the model. Two training phases
were used while learning the model. For the first 25 training epochs
(passes through all the training data) only the weights of the fully con-
nected layers were updated, with the pre-trained ResNet-34 wt frozen.
All weights were updated for the final 50 epochs. The adaptive mo-
mentum (Adam) optimizer with decaying learning rates was used [49].
After hyperparameter tuning, initial learning rates of 0.0002 and 0.0001
were set for the first and second training phases, respectively. Image data
augmentation during training included flipping the image across its ho-
rizonal and vertical axes and random crops to 224 � 224 pixels with 3
color channels, which corresponds to the default input size of the
ResNet-34 architecture [5]. The deep learning models were implemented
using the Keras API (version 2.3.1) with the TensorFlow backend
(version 2.1.0). Training and inference were executed using a single
NVIDIA RTX 2060 (6 GB) GPU.

The VQ-VAE was trained by tuning the learning rate and commitment
loss term hyperparameters; the final model was trained with a commit-
ment loss of 1.0 and an Adam optimizer (learning rate of 0.001) for 25
epochs. The VQ-VAE latent count and size were 128 and 256, respec-
tively. The unsupervised model was trained with the same augmentation
policy, though crop sizes of 512 � 512 pixels were used with grayscale
images. To relate the VQ-VAE features to image classes, a 16-way MLP
classifier consisting of 5 hidden layers with 1024 nodes each was trained
using normalized codebook histograms extracted from random crops of
training set images by the trained VQ-VAE. 5-fold CV was used to
determine the best learning rate (Adam, 0.0005) and number of epochs
(200) for the supervised MLP. The PyTorch machine learning API was
used to implement the VQ-VAE model and its supervised neural network
classifier. Training and inference were carried out on a single NVIDIA
Tesla V100 Tensor Core GPU (32 GB).
2.1. Uncertainty estimates for CNNs

Machine learning classifiers, whose respective training datasets are
described in Table 1, were used to evaluate model uncertainty and
generalizability. The SEM micrographs corresponding to each of these
models were collected with a FEI Nova NanoSEM 630 scanning electron
microscope at a horizontal field width (HFW) of 6.13-μm and a resolution
of 1024 � 943 pixels, meaning the 224 � 224-pixel training crops had a
width of 1.34-μm. These images were collected of pure, unaged, and
unmixed uranium materials belonging to 5 synthetic routes (ADU, AUC,
MDU, SDU, and UO4) and 3 calcination products (UO3, U3O8, and UO2).
The synthesis and data collection has previously been described in the
published literature [38,47,50].

The 5-class U3O8 model consisted only of SEM images taken of a
single oxide (U3O8) and had 5 labels corresponding to the precipitation
route used to synthesize these samples. The 16-class model treated each
combination of synthetic routes and calcination products as individual
Table 1
Description of training image data for 5-class U3O8-only model and 16-class
models.

Training Images

Model Oxide(s) ADU AUC MDU SDU UO4 Total

5-class U3O8 U3O8 104 102 96 117 80 499
16-class UO3 72 82 86 72 72 1336

U3O8 104 102 96 117 80
UO2 117 84(d), 64(i)a 73 73 72

a AUC-UO2 images split into the directly (d) and indirectly-reduced (i) classes.

4

labels, i.e., ADU-UO3 and ADU-UO2 each had their own image class. As
per Ly et al. (2020) the ammonium uranyl carbonate UO2 materials were
divided into direct (AUCd-UO2) and indirect (AUCi-UO2) classes [47].
The image data for each model was partitioned using a stratified split
with 80% of the total images belonging to a training subset and 20%
belonging to the holdout (test) subset. The 5-fold CV accuracy was 0.962
� 0.020 for the 5-class U3O8 model, 0.885 � 0.019 for the 16-class CNN,
and 0.870 � 0.024 for the 16-class MLP trained on VQ-VAE codebook
histograms. Training accuracy and loss curves can be found in the Sup-
plemental Information.

To characterize the neural network and image uncertainties, the
trained 5-class U3O8 model was used to make predictions on its holdout
set using different inference methods (Table 2), which utilize either a
single 224 � 224-pixel crop at the center of the image (#1, #3) or
multiple 224 � 224-pixel random crops from the image (#2, #4). By
evaluating these methods with (#3, #4) and without (#1, #2) Monte
Carlo dropout, the contributions of aleatoric uncertainty from the image
itself and epistemic uncertainty from variation inference can be esti-
mated. Inference method #1 serves as a baseline for comparison, making
only a single prediction without MC dropout on a single image crop,
resulting in no variance with respect to class SoftMax scores. For all other
inference methods SoftMax scores were averaged over each random crop
and MC dropout trial associated with a test image, and the label with the
greatest mean SoftMax score was considered the predicted label. Infer-
ence on the U3O8 holdout set was repeated for each method using n
values from 1 to 100 to evaluate the convergence of prediction uncer-
tainty and classification accuracy.
2.2. Model generalizability

In addition to the holdout image sets corresponding to each trained
model, predictions will be made on image sets out-of-distribution from
the training data to determine how models trained with “unperturbed”
datasets perform on uranium ore concentrate process history perturba-
tions or data collection perturbations. The in-distribution holdout set
splits and OOD perturbation datasets used to evaluate model generaliz-
ability are described in Table 3. Where applicable, the corresponding
publications that describe the uraniummorphology of interest have been
listed. U morphology studies represented in the perturbation sets often
only used a single precipitation route, typically uranyl peroxide, which
means the effects of all process history perturbations on all precipitation
routes cannot be evaluated at this time. However, by identifying which
changes to UOC process history are most challenging to accurately pre-
dict, future surface morphology research needs can be more efficiently
prioritized.

Predictions made on sets containing the image scale perturbation
were made twice: with and without adapting the image scale to match
the crops. As with HFW 6.13-μm images, unscaled predictions used
random crops of 224� 224 pixels for the CNN or 512� 512 pixels for the
VQ-VAE, though the actual physical area of sample represented would
not be equal to what was seen in the training crops. HFW-scaled inference
used an adaptive integer crop size C that corresponded to the physical
width of what was seen during training (Eq. (2)); for example, a test
image acquired at HFW 8.54-μmwould use a 161-px wide crop (1.34-μm
width) for prediction by the CNN or a 368-px wide crop (3.06-μmwidth)
for the VQ-VAE feature extractor. Each of the C x C-px crops were then
Table 2
Summary of inference methods used to characterize prediction uncertainty.

# MC
Dropout

Crop
Mode

Name Passes/Image

1 No Center No MC-center 1
2 No Random No MC-random n
3 Yes Center MC-center n
4 Yes Random MC-random n2



Table 3
Summary of holdout (test) and OOD image datasets.

Dataset Perturbation(s) Images in
Dataset

Reference(s)

U3O8 Holdout 124 [38,47]
Full Holdout 340 [38,47]
UO3 Oxidation state 480 [38,47]
UO2 Oxidation state 603 [38,47]
Humidity Aging Artificial aging 142 [46,51]
High Temperature
Aging

Artificial aging
SEM used
Image scale

500 [39,52]

UO2Cl2 Precipitation solution 101 [50]
Partial Reduction Partial reduction (U3O8 to

UO2)
80 aU

Variable Temp. Calcination temperature
SEM used
Image scale

247 [43]

800 �C Temp. SEM used
Image scale

103 [43]

Single Impurities Impurities
Unwashed precipitates
Image scale

277 [40]

SX Impurities Impurities
Precipitation solution
Partial calcination (UO3 to
U3O8)

180 [41]

Unwashed UO4 Unwashed precipitates
SEM used
Image scale

184 [53]

Washed UO4 SEM used
Image scale

485 [53]

Different SEM SEM used 15 aU
Bin (3.00, 4.57] Image scale 300 [38,47]
Bin (4.57, 6.13] Image scale 189 [42]
Bin [6.13, 7.70] Image scale 300 [44]
Bin (7.70, 9.27] Image scale 300 [44]
Bin (9.27, 10.83] Image scale 93 [38,45]
Bin (10.83, 12.40] Image scale 300 [38,47]

a U ¼ unpublished data.
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resized to the desired input size of S x S using the OpenCV resize function
with bilinear interpolation. Scaling images by horizontal field width
normalizes particle size features to those seen in the training images,
which is expected to result in better predictions for test images across a
wider range of acquisition scales.

C¼ int
�
train HFW
test HFW

* S px
�

(Eq. 2)

In past uranium morphology studies – particularly Schwerdt et al.
(2019) and Ly et al. (2020) – the similarities and differences in surface
morphology observed for the calcination products of a single synthetic
route have been noted [38,47]. If a CNN trained with images of single
calcination product (U3O8) can generalize enough to effectively make
predictions on other calcination products, the scope of future
morphology studies could possibly be scaled back; this will be tested by
making predictions for the UO3 and UO2 datasets with the 5-class U3O8.
The perturbation sets for UO3 and UO2 consist of images that make up the
training and holdout sets for the 16-class models.

The humidity-aged perturbation set consists of uranium ore concen-
trate that have been artificially aged in a laboratory setting under a va-
riety of conditions. 72 of the images are from images of UO3 from the UO4
synthetic route that were aged under fixed conditions with respect to
aging time, temperature, and relative humidity (RH) [51]. The remaining
70 images are of U3O8 from the AUC or UO4 routes that were aged with
diel cycling of the temperature and relative humidity with 12-h “high”
periods and 12-h “low” periods. The high and low cycles had setpoints of
45 �C/90 RH% and 25 �C/20 RH%, respectively [46].

The high temperature aging set aged U3O8 and UO2 from uranyl
peroxide UOCs in an atmosphere-controlled furnace under variable time,
temperature, and O2 partial pressure [39]. Surface morphology
5

characterizations showed qualitative and quantitative changes for the
aged UO2 materials, particularly seen by decreasing circularity after
aging under more extreme conditions; no significant changes were seen
in the aged U3O8 [39]. Crystallographic changes for these materials were
also quantified using P-XRD [52]. These micrographs were collected at
HFW 8.53-μm using an FEI Quanta 600 FEG scanning electron micro-
scope [39].

The uranyl chloride (UO2Cl2) set contains images of UO4 materials
precipitated from a solution of uranyl chloride rather than the uranyl
nitrate solutions used to synthesize the unperturbed data sets. All images
of the materials in this set are of the U3O8 calcination product acquired at
a HFW of 6.13-μm. The morphology of UO4 precipitates from the uranyl
chloride solution was more platelet-like with some rounded and acicular
microparticles, than the entirely acicular uranyl nitrate precipitates; the
calcined U3O8 materials from either route had similar shapes, though the
UO2Cl2 UOCs were somewhat larger in size [50].

The partial reduction perturbation set includes SEM images of ura-
nium oxides that were not fully reduced from U3O8 to UO2 in a 5%
hydrogen atmosphere at 560 �C with a dwell time of 8 h. Rietveld
refinement of the P-XRD determined that materials from the UO4 route
were 77.8 wt% α-U3O8 and 22.2 wt% UO2. The AUC route UOCs were
almost completely reduced to UO2, with only 1.9 wt% belonging to the
α-U3O8 phase. Supplemental Table 1 shows the Rietveld refinement lat-
tice parameters for each of these materials. All SEM images in this set
were acquired with a horizontal field width of 6.13-μm. The largest phase
present was used as the oxidation state for the 16-class label for sets with
partial calcination or reduction perturbations, e.g., the partially reduced
UO4 with 77.8 wt% α-U3O8 was assigned the label “UO4–U3O8.”

The variable calcination set consists of α-U3O8 materials from the
uranyl peroxide route synthesized using calcination temperatures be-
tween 600 �C and 750 �C, whose images where acquired with an FEI
Quanta 600 FEG SEM at HFWs ranging from 3.20-μm to 6.40-μm [43].
The 800 �C calcination image set features images of materials synthe-
sized at the same calcination temperature as the training set U3O8 ma-
terials (800 �C) that were collected using the same SEM settings as the
variable calcination set at HFWs between 3.20-μm to 8.53-μm [43]. UO4
materials calcined at lower temperatures were shown to have smaller
particle sizes and a somewhat lower circularity [43].

Hanson et al. (2019) has previously characterized the materials pre-
sent in the single impurities set, which studied the effect of a single im-
purity added to the uranyl nitrate before precipitation as UO4 and
calcination to U3O8 [40]. This perturbation set consisted of 227 images
with HFWs ranging from 3.40-μm to 9.88-μm, and included materials
doped with calcium, zirconium, and magnesium impurities. Materials
containing each of these materials qualitatively resembled the control
materials, and most quantitative particle features were found to be sta-
tistically different [40]. A convolutional neural network was trained to
classify images by the impurities present and achieved an accuracy of
83.84% [40]. Predictions on this image set were made with and without
scaling the HFWof the image crops to the size of the training image crops.

Images in the SX impurities dataset were originally described in
Nizinski et al. (2020), which compared the surfacemorphologies of UOCs
extracted from uranium ore and purified by two different solvent
extraction (SX) routes [41]. The materials from this study were precipi-
tated as ADU from uranyl sulfate solutions and then partially calcined
between the α-UO3 phase (~70 wt%) and α-U3O8 phase (~30 wt%), as
determined by Rietveld refinement of P-XRD spectra [41]. ICP-MS
showed that the final UOCs were between 80 wt% and 90 wt% ura-
nium, with sodium (0.65–1.65 wt%) and calcium (~0.80 wt%) as the
most abundant elemental impurities [41]. The calcined UOCs from either
purification route were described as agglomerations of smooth and
mostly spherical microparticles, and a CNN was trained to distinguish
materials by SX route at an accuracy greater than 97% [41].

The insufficient washing of uranium ore concentrates following their
precipitation is known to result in drastically different and more complex
surface morphologies than their washed counterparts [53,54]. Separate



Fig. 2. (a) Classification accuracy on holdout set represented as the Wilson
score interval at 1σ confidence interval and (b) mean image information entropy
for each prediction method as a function of number of predictions n. Random
crop methods show lower accuracy but lower uncertainties when using fewer
predictions per image before converging around n ¼ 25. The higher un-
certainties of the Monte Carlo dropout þ random crop inference methods may
indicate the inclusion of epistemic and aleatoric uncertainties for predictions.

Table 4
Classification accuracy and information as a function of MC dropout probability
from P ¼ 0.20 to P ¼ 0.80

Dropout Prob. (P) Accuracy Mean Entropy (bits)

0.20 0.968 � 0.007 0.309
0.35 0.960 � 0.007 0.342
0.50 0.952 � 0.008 0.396
0.65 0.952 � 0.008 0.490
0.80 0.952 � 0.008 0.700
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perturbation sets were created for unwashed andwashed uranyl peroxide
UOCs that had been calcined to UO3. Micrographs in either set were
collected at HFW 8.53-μm using an FEI Quanta 600 FEG SEM [53]. The
washed UO4 set serves as a baseline to distinguish how the process his-
tory and data collection perturbations each affect the performance of the
classification models.

To evaluate the effects of only SEM settings on convolutional neural
network predictions, 15 SEM acquisitions were made using an FEI Helios
NanoLab 650 SEM. U3O8 calcined from UO4 precipitates were imaged at
a HFW of 6.13-μm using beam voltages of 7.00-kV, which falls within the
5.00-kV to 10.00-kV range seen for the training images, and 2.00-kV,
which does not. Acquisitions using 2.00-kV appeared to be grainier and
have sharper contrast than those at 7.00-kV, but particle sizes and shapes
appeared to be the same. This visual difference is due to the lower
penetration depth of electrons at lower beam voltages, which reveals
more information about the surface of the sample than deeper pene-
trating electrons. A comparison of micrographs acquired by the FEI Nova
NanoSEM 630 and FEI Helios 650 scanning electron microscopes at
varying beam voltages can be seen in Supplemental Fig. 1.

SEM micrographs of pure, unaged, and unmixed materials were ac-
quired at horizontal field widths between 3.00-μm and 12.40-μm,
excluding the training HFW of 6.13-μm. Images in this range were
grouped by HFW into 6 bins with a width of 1.57-μm. Data with HFWs of
3.06-μm or 12.30-μm consisted primarily of the same UOCs as the
training images [38,47]. The data in other bins was sourced from pre-
vious studies that characterized materials that would be considered un-
perturbed in the scope of this paper [39,42,43,45,53]. Each group of
images was predicted with and without HFW-scaling.

3. Results & discussion

3.1. Uncertainty estimates for CNNs

Predictions were made on the 5-class U3O8 holdout set using each
inference method described in Table 2. The number of predictions n for
inference on each image varied between 1 and 100 for the inference
methods using MC dropout or random image crops. The dropout prob-
ability was initially set to P ¼ 0.20, which is equal to the dropout regu-
larization probability determined by hyperparameter tuning. The
resulting classification accuracies with uncertainties calculated by the
Wilson score interval at a 1σ confidence interval (CI) and per-image
average Shannon information entropies can be seen in Fig. 2(a) and
(b), respectively. A classification accuracy of 0.952 was seen when
making a single prediction without MC dropout on the center crop of
each image (“No MC-center”), and the resulting mean information en-
tropy was 0.190 bits per holdout set image. Predictions made on the
holdout set using MC dropout with center crops (“MC-center”) had a
classification accuracy equal to the baseline accuracy of 0.952 for all
number of MC predictions made per image. However, as n increased, so
did the Shannon entropy from 0.166 bits/image at n¼ 1 until converging
to around 0.220 bits per image by n ¼ 10.

The random crop inference methods with (“MC-random”) or without
(“No MC-random”) Monte Carlo dropout initially saw classification ac-
curacies below the baseline accuracy for n ¼ 1. As n increased, the
classification accuracy for the No MC-random predictions converged
back to the baseline accuracy at n ¼ 25 and above. The MC-random
predictions exceeded the baseline accuracy, peaking with an accuracy
of 0.968 for n ¼ 10 and n ¼ 25, before decreasing back to the baseline.
The information entropies for the random crop predictions were signif-
icantly higher than predictions made with only crops as the center of the
image, converging around 0.300 bits/image for No MC random and
0.315 bits/image for MC-random.

These results indicate that higher classification accuracies are seen
when using random image crops paired with Monte Carlo dropout during
inference. Consequently, this method also results in the highest predic-
tion uncertainties, representing both aleatoric (data) uncertainty from
6

random crops and epistemic (model) uncertainty from MC dropout [13,
21]. The uncertainties appear to converge around n ¼ 25, which equates
to 625 forward passes through the CNN for each prediction; this requires
~24.5 s to make predictions on each image using a single NVIDIA RTX
2060 GPU. The baseline inference method (“NoMC-center”) needed only
one-twentieth of a second per image for predictions; the O(n) inference
methods took ~1.0 s/image for n ¼ 25. The complete time complexity
comparison can be seen in Supplemental Fig. 2.

Using a dropout probability of 0.20, it is apparent that random image
crops, representing aleatoric uncertainty, provides the largest contribu-
tion to the final prediction uncertainty. Past research has noted that CNN
uncertainty estimates using MC dropout variation inference are often
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miscalibrated [55,56]. Table 4 shows the classification accuracy and
mean information entropy for MC-random n ¼ 25 predictions made on
the holdout set for dropout probabilities between 0.20 and 0.80. At P ¼
0.80 the mean information entropy is 0.700 bits/image, more than twice
the uncertainty seen at P ¼ 0.20. A small trade-off in classification ac-
curacy exists, since fewer of the image features extracted by the trained
CNN are available for predictions as more connections are dropped; the
classification accuracy at P¼ 0.80 only decreases to an accuracy of 0.952.
This suggests that CNN prediction uncertainty estimates for uranium ore
concentrate morphology images could possibly be scaled by adjusting the
dropout probability, though calibration of uncertainty estimates remains
more elusive.

Since both Monte Carlo dropout and random image crops are sto-
chastic inference methods, some deviation in predictions is expected
each time predictions are made on a set of images. To quantify the
consistency of stochastic inference, 10 sets of predictions were made on
the holdout data using the trained model with MC-random inference (n
¼ 25, P ¼ 0.20). The results (Table 5) show a range of classification
accuracies from 0.952 to 0.968, with a mean and standard deviation of
0.956 � 0.008. This would indicate that the benefit of MC-random
inference over the baseline is less than previously shown in Fig. 2 and
Table 4. The relative standard deviation was 0.837% for the classification
accuracy and 1.27% for the per-image Shannon information entropy
suggests that n ¼ 25 is sufficient for consistent and reproducible results
by MC dropout variational inference. Moreover, the standard deviation
in classification accuracy empirically seen with multiple trials (0.008)
was well-aligned with the reported 1σ Wilson score intervals
(0.007–0.008).

While related work has noted practical success with the imple-
mentation and calibration of variational inference methods across
various data domains, other efforts are still seeking to establish a sound
theoretical basis for Monte Carlo dropout [55–59]. Sicking et al. (2020)
empirically demonstrated correlated systems that were more complex in
nature – latent activation layers that combine Gaussian and
non-Gaussian, exponentially-tailed distributions differently for train,
test, and OOD image data – than previously assumed, which may
complicate the base assumption that MC dropout can be used for
Bayesian approximation [26,59]. Future research characterizing the
statistical distributions of deep learning models and the discovery of new
distribution functions, such as the continuous Bernoulli and continuous
categorical distributions, will likely be required to further improve the
performance, tractability, and quality of UQ for deep learning models
[59–61].
3.2. Model generalizability

Since UO3 and UO2 materials were included in the 16-class training
sets, predictions on these perturbation sets were only made by the 5-class
U3O8 model. The classification accuracy for the UO3 set was 25.0%,
compared to 90.2% for the UO2 set. In qualitative descriptions of these
materials, Schwerdt et al. (2019) notes the similarities in surface
morphology, particularly the formation of elongated platelets, seen in the
ADU, MDU, and SDU starting materials and low-temperature calcined
UO3 [38]. Sintering was shown to occur for these UOCs during the 800 �C
calcination to U3O8, which formed sub-rounded grains for the SDU route,
Table 5
Consistency of 10 replicates of MC-random (n ¼ 25, P ¼ 0.20) predictions on the
holdout set with respect to classification accuracy and uncertainty. RSD indicates
relative standard deviation.

Accuracy Mean Entropy (bits)

Minimum 0.952 0.307
Maximum 0.968 0.318
Mean � 1σ 0.956 � 0.008 0.314 � 0.004
RSD (%) 0.837% 1.27%
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spherical particles for ADU, and more rounded platelets for MDU; little to
no qualitative change in surface morphology was seen for these materials
during the reduction of U3O8 to UO2 in a hydrogen atmosphere [38].

The confusion matrix of the UO3 predictions by the 5-class U3O8
classifier shows significant confusion for every label (Fig. 3). Images of
ADU and MDU UOCs were nearly always predicted as SDU. UO4 and SDU
images were predicted as either MDU or SDU. The AUC-UO3 images were
most often incorrectly predicted as belonging to the MDU or SDU route.
In contrast, the UO2 perturbation saw relatively little confusion, which
can be explained by the qualitative similarities seen in U3O8 and UO2
materials from each precipitation route. This confirms the need to thor-
oughly characterize surface morphologies at each oxidation state along
uranium's process history when developing nuclear forensics datasets,
and that training models on a single product does not produce general-
izable models. As such, only the 16-class models were used for predicting
the remaining OOD sets.

Each 16-class model made predictions with high accuracy on its
respective holdout image set, though a higher accuracy was seen with the
fully supervised model (0.929) over the VQ-VAE (0.856); confusion
matrices for the 16-class CNN and MLP trained on VQ-VAE feature
codebooks can be seen in Fig. 4. The supervised CNN showed the most
confusion in overpredicting the examples as UO3 calcined from an MDU
starting material. The incorrectly predicted examples from the MLP were
more dispersed, and most of the confusion was between images of
various uranium oxides synthesized from the ammonium uranyl car-
bonate starting material.

The classification accuracies of predictions made by each model on
the out-of-distribution image data sets can be seen in Table 6; Wilson
score intervals at a 1σ CI can be found in Supplemental Table 3. For sets
that include the scale on the image as a data perturbation, the classifi-
cation accuracy is listed for both the unscaled and HFW-scaled pre-
dictions. Confusion matrices, which help visualize a classifier's correct
and incorrect predictions, can be found in the Supplemental Information
for each classifier and image set. In general, the classification accuracy on
OOD datasets was very low, with both classifiers failing to achieve above
random chance (1/16 ¼ 6.25%) for six of the 17 OOD sets. These sets
include both aging sets (humidity and high temperature), the partially
reduced U3O8 to UO2, U3O8 calcined at variable temperatures, materials
extracted from uranium ores then purified by solvent extraction, and
unwashed uranyl peroxide precipitates. Three of these datasets (high
temperature aging, variable temperature, and unwashed UO4) were
collected on a different SEM than the training data. Two of the sets
(partial reduction and SX impurities) contained images of materials that
were not fully converted to a single uranium oxide phase. Apart from the
partially reduced UO2 set, each of these OOD sets with predictions below
chance contained more than one perturbation from the training data,
which highlights the need for greater understanding of compound effects
in uranium process history and SEM data collection when developing
machine learning datasets and classifiers.

Predictions on the humidity aging OOD set by each 16-class model
had a classification accuracy of 2.1%. The confusion matrix for the CNN
predictions shows that micrographs of aged materials from the uranyl
peroxide and ammonium uranyl carbonate synthetic routes were over-
whelmingly misclassified as belonging to the magnesium diuranate route
(Supplemental Fig. 3). In contrast, the predictions for aged UO4 materials
by the MLP hadmisclassifications across nearly all other precipitates. The
MLP's predictions of the aged U3O8 from AUC materials reported a
classification accuracy of 0.0%, but 16 of the 35 predictions went to
classes for other uranium oxides produced from AUC (12 for UO2 directly
reduced from AUC and 4 for UO3 calcined from AUC), which means that
46% of aged AUC micrographs were predicted to the correct precipita-
tion route. Supplemental Fig. 4 shows the relative similarity between
unaged and diel-cycling aged AUC compared to UO4, which may indicate
that classification models might have an easier time predicting aged
materials from the more unique startingmorphologies, like those seen for
AUC and MDU [46].



Fig. 3. Confusion matrices for predictions made on the (a) U3O8 holdout set, (b) UO3 perturbation set, and (c) UO2 perturbation set by the 5-class model trained only
on U3O8 image data. Predictions on the UO3 set show that the MDU and SDU routes were the most frequent mispredictions.

Fig. 4. Confusion matrices for (a) 16-class CNN and (b) VQ-VAE þ MLP predictions made on the holdout set using random crops with MC dropout inference (n ¼ 25).
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No correct predictions were made for the high temperature aging set
by either classifier. The unscaled and scaled CNN predictions were biased
heavily towards the ADU-UO3 and SDU-UO3 classes, respectively (Sup-
plemental Fig. 5). As with the humidity aging set, confusion in pre-
dictions by the MLP trained on unsupervised VQ-VAE features were
spread across more labels.

Micrographs of UO4 precipitated from UO2Cl2 solutions and calcined
to U3O8 were very accurately predicted by the CNN model, with a clas-
sification accuracy of 97.0%. The same image set predicted by the multi-
level perceptron trained on autoencoder feature histograms had a
significantly lower classification accuracy (41.6%). Supplemental Fig. 6
shows that most of this confusion was towards the MDU-U3O8 class,
though the exact reason for this cannot be determined.

Varying calcination conditions, as seen in the partial reduction and
variable calcination temperature sets, also proved to be challenging OOD
sets for the classifiers. Confusion in the partially reduced UO4 or AUC-
route U3O8/UO2 indicated a heavy bias towards the MDU routes by
both classifiers (Supplemental Fig. 7). Predictions by the CNN saw a
much higher classification accuracy when the same calcination
8

temperature as the training set is used (38.8%) than with other tem-
peratures (4.5%), despite the fact that α-U3O8 was synthesized in each
case [38,43]. It may be beneficial to slightly vary these conditions when
synthesizing future materials for uranium oxide morphology dataset
development in order to introduce more variance within each image
class.

The unscaled predictions from the supervised CNN had the highest
classification accuracy (37.2%) on the single impurities data set; the
unscaled VQ-VAEþMLP predictions had an accuracy of 22.0%. Both sets
of unscaled predictions outperformed the HFW-scaled predictions,
whereas the opposite trend was seen for nearly all other OOD sets ac-
quired at varying image scales. Hanson et al. (2019) notes that SEM
HFW's for each impurity element were individually selected to best
represent each's unique particle morphology characteristics [40].
Table 7, which splits the predictions by impurity, shows that images from
unwashed uranyl peroxide precipitates with calcium or magnesium im-
purities could be classified with higher accuracy than the washed pre-
cipitates despite higher impurity concentrations and surface
morphologies that were more distinct from the pure control samples



Table 6
Summary of predictions made for holdout (test) and perturbation image datasets
by the 16-class supervised CNN and 16-class MLP trained on features from the
unsupervised VQ-VAE. A second set of predictions were made using HFW scaling
by adaptive crop sized (Eq. (2)) when an OOD set's HFW was not equal to that of
the training set, 6.13-μm. Corresponding confusion matrices and uncertainties
calculated by the 1σ Wilson score interval have been included as supplemental
information.

Dataset 16-class CNN VQ-VAE þ MLP Supplemental
Figure

Unscaled Scaled Unscaled Scaled

Humidity Aging 0.021 – 0.021 – 3
High Temp. Aging 0.000 0.004 0.000 0.000 5
UO2Cl2 0.970 – 0.416 – 6
Partial Reduction 0.013 – 0.013 – 7
Variable Temp. 0.000 0.045 0.000 0.000 8
800 �C Temp. 0.029 0.388 0.000 0.000 9
Single Impurities 0.372 0.029 0.220 0.112 10
SX Impurities 0.000 – 0.000 – 11
Unwashed UO4 0.000 0.000 0.022 0.017 12
Washed UO4 0.008 0.177 0.014 0.017 13
Different SEM 0.333 – 0.133 – 14
Bin (3.00, 4.57] 0.590 0.693 0.343 0.613 15
Bin (4.57, 6.13] 0.280 0.302 0.153 0.148 16
Bin [6.13, 7.70] 0.073 0.302 0.061 0.061 17
Bin (7.70, 9.27] 0.110 0.340 0.051 0.000 18
Bin (9.27, 10.83] 0.355 0.484 0.070 0.070 19
Bin (10.83, 12.40] 0.717 0.577 0.433 0.727 20

Table 7
Unscaled predictions on the single impurity OOD set split by impurity element.
Uncertainties calculated by the 1σ Wilson score interval are tabulated in Sup-
plemental Table 3.

Impurity Images CNN
Accuracy

VQ-VAE þ MLP
Accuracy

Ca (unwashed) 47 0.574 0.404
Ca (washed) 51 0.118 0.098
Mg (unwashed) 34 0.147 0.029
Mg (washed) 34 0.000 0.000
Zr (unwashed) 57 0.579 0.316
Zr (washed) 54 0.593 0.333

Fig. 5. Predictions on images acquired at HFWs ranging from 3.00-μm to 12.40-
μm (excluding the training HFW of 6.13-μm) for the (a) 16-class CNN and (b)
MLP trained on VQ-VAE features. Higher classification accuracies for the HFW
bins furthest from the training HFW can be attributed to the fact that images in
these sets come from the same materials as those imaged at 6.13-μm for the
training data. This indicates that image scale has less impact on model perfor-
mance than the variance seen in other pure, unaged materials that have been
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[62]. Supplemental Fig. 10 shows that U3O8 from UO4 containing
elemental impurities were often classified as various oxides fromMDU or
UO2 fromUO4. The latter further supports the earlier results showing that
models may not be able to easily discriminate between the relatively
similar morphologies seen in U3O8 and UO2 from the same precipitation
route.

Confusion matrices for predictions on the SX impurities data set
overwhelmingly show sodium diuranate labels as the most common
incorrect prediction (Supplemental Fig. 11); it is unclear to what extent
the mispredictions as SDU ore concentrates can be attributed to the most
abundant impurity element in these UOCs (sodium), or to the similarities
in morphology between SDU and ADU material that have been calcined
to UO3 [38,41]. The 16-class CNNmade 7/180 predictions as ADU-U3O8,
which is below random chance; the VQ-VAE þMLP made 20 predictions
as ADU-U3O8 and 5 predictions as ADU-UO2, for a 13.9% classification
when only the correct precipitation route is concerned.

Predictions on the 15 micrographs acquired using the FEI Helios 650
scanning electron microscope were 33% accurate for the 16-class CNN.
The 5 correct predictions made by each classifier had been acquired at a
beam voltage of 7.00-kV. Each incorrectly classified image was acquired
using a 2.00-kV beam voltage and was predicted as ADU by the 5-class
models or ADU-UO2 by the 16-class model, rather than the true label
of UO4 calcined to U3O8 (Supplemental Fig. 14). The VQ-VAE feature-
trained MLP predicted UO2 or U3O8 from UO4 for four of five 7.00-kV
images, and UO2 from SDU for each 2.00-kV image and the remaining
7.00-kV image. While the size of this OOD data set (15 images) was
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relatively small, consistent trends were apparent between the two
models. Recent advances in domain adaption methods for image classi-
fiers may provide a way to train models only on morphology features
without recognizing biases related to data collection parameters.

The classification accuracy plotted against HFW bin shows a “U”
shape for both the 16-class CNN and MLP trained on VQ-VAE features,
with higher classification accuracies at the bins furthest from the 6.13-μm
scale of the training data (Fig. 5). This trend was the opposite of what was
hypothesized: that image scales nearer the training data would result in
better predictions. However, the images acquired at horizontal field
widths of 3.06-μm and 12.3-μm came from the same set of samples
synthesized for Ly et al., ’s 2020 multi-magnification study, which in-
dicates that image scale plays a smaller role than the inherent variance in
other pure, unaged uranium oxides synthesized under slightly different
conditions [47].

Implementing HFW-scaling during inference (as described by Eq. (2))
improved classification accuracy on most, but not all, OOD sets. Whereas
the fully supervised 16-class CNN saw the greatest relative improvement
with respect to classification accuracy using HFW-scaling for the inter-
mediate HFW bins (4.57-μm to 10.83-μm), the MLP classifier had little-
to-no improvement for these bins but significantly higher classification
accuracies for scaled predictions on the (3.00-μm, 4.57-μm] and (10.83-
synthesized and analyzed for other research efforts than the training set.



Fig. 6. Mean information entropy values of correct and incorrect predictions on
OOD sets by the 16-class CNN and MLP trained on VQ-VAE features; darker plot
marker shading represents higher classification accuracies. Accurately predicted
sets from either classifier show low uncertainties for correct predictions and
high uncertainties for incorrect predictions. The CNN classifier showed high
uncertainties for all predictions from datasets that were not accurately pre-
dicted, whereas the VQ-VAE þ MLP classifier tended to be overconfident (low
uncertainties) on sets predicted with lower classification accuracies.
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μm, 12.40-μm] bins. Confusion matrices for each model's HFW-scaled
and unscaled predictions can be found in Supplemental Figs. 15–20. As
with the holdout set, the 3.06-μm and 12.30-μm predictions show
confusion mostly between adjacent classes of the same precipitation
route. The intermediate HFW bins, which consisted largely of UO4-route
micrographs, had confusion across the ADU, MDU, and SDU uranium
oxide labels.

3.3. Evaluation of uncertainties for OOD sets

Sections 3.1 and 3.2 presented results for the implementation of un-
certainty quantification with MC dropout and random image crops for
CNNs and the performance of classification models on out-of-distribution
data sets, respectively. One purpose of investigating uncertainty esti-
mates for neural network predictions is to determine what the model is
and is not confident in, and when the end-user can trust the model's
confidence in its predictions. In an ideal scenario, one would see low
uncertainties for a set of predictions and believe that those predictions
were correct; predictions with high uncertainties could be considered
low-confidence and face additional scrutiny from human domain experts.
However, biases and errors from many sources – insufficient training
data, mislabeled training data, overfit models, domain shift, OOD data,
etc. – can lead to models that are under confident for correct predictions
and overconfident for incorrect predictions, which makes knowing what
to trust troublesome.

To evaluate the quality of the classifiers' UQ, the Shannon information
entropies were computed for each holdout and out-of-distribution set
predictions made by the 16-class CNN and MLP from VQ-VAE features.
Mean entropy values for each set's correctly and incorrectly predicted
examples were plotted with the color of plot markers indicating the
classification accuracy on that set (Fig. 6). OOD sets with 0% classifica-
tion accuracy were excluded from this figure; entropy values for all sets
are tabulated in Supplemental Table 4. Accurately predicted sets can be
seen clustered towards the bottom left of the plot for either classifier,
which shows lower uncertainties for correct predictions than for incor-
rect predictions. For the supervised CNN, these sets include the holdout
set, uranyl chloride set, and several HFW bin sets. Likewise, the VQ-VAE
þMLP classifier showed confident correct predictions for the holdout set
and several HFW bins.

For OOD sets predicted with lower classification accuracies the CNN-
predicted sets generally had higher mean information entropies for
correctly and incorrectly predicted examples on low-accuracy OOD sets,
which indicates a lower level of confidence for all examples in sets where
the classification accuracy metric measured poor performance. This
would mean all predictions could be rejected due to low confidence.
Some exceptions to this trend, such as the partial reduction set (1.2%
classification accuracy) and the humidity aging set (2.1%), showed
incorrect example entropies that were lower than those for correctly
predicted examples. In contrast, OOD sets predicted with low classifica-
tion accuracies by the MLP had lower entropies for incorrect predictions
than correct predictions. In such cases the low information entropy
values of incorrect predictions may result in false positive examples being
accepted by the end-user. Better generalizing classifiers and well-
calibrated UQmethods will be needed to avoid such pitfalls in the future.

Significant challenges were seen in making predictions and for
obtaining reasonable uncertainty estimates on out-of-distribution data
with either fully supervised convolutional neural networks or networks
that were trained on features extracted by unsupervised autoencoders.
However, the results were not entirely unexpected. The ability to produce
models that can generalize to different kinds of OOD data is problematic
for state-of-the-art machine learning classification models and remains a
very active area of research. Recent work by Power et al. has utilized
small algorithmic datasets to better probe the mechanisms by which
neural networks generalize, though these efforts have not yet been
applied to larger image datasets [63]. For image data collected by
different sources, domain adaptation might help develop classifiers that
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use image features relevant only to the image classes, and not the way in
which they were collected. In the context of scanning electron micro-
graphs, implementing domain adaptation for neural networks could
likely reduce the depreciation in classifier performance related to SEM
data collection parameters, which was particularly apparent with the FEI
Helios SEM OOD set [64,65]. Specifically, test-time domain adaptation
could be useful for classification models utilizing features extracted by
unsupervised models.

While the overall performance of the fully supervised CNN and un-
supervised VQ-VAE features used with a supervised MLP were similar,
both eventually use large, labeled image sets to train a classifier. The full
utility of the VQ-VAE features for uranium oxide morphology data
outside of direct classification has not yet been explored. Oord et al.
(2017) hypothesized that the discrete nature of VQ-VAE codebook his-
tograms would be especially useful for categorical contexts, such as de-
scriptions of images with natural language [8]. This holds particular
relevance for relating morphology features to nuclear forensics
morphology lexicon, which may help develop highly interpretable ma-
chine learning models [37]. Additionally, the discrete learned repre-
sentations of the VQ-VAE are highly descriptive with a relatively low
dimensionality, which may prove useful in few-shot learning (FSL) and
human-in-the-loop machine learning contexts [66–69]. FSL models have
previously shown a great ability to generalize using only a few – and in
the case of zero-shot learning, zero – training examples for each class.
Human-in-the-loop implementations for nuclear forensics could syner-
gistically pair the knowledge and insight of domain experts with the
highly descriptive image representations to better characterize unknown
materials.

4. Conclusions

Uncertainty quantification was successfully implemented for con-
volutional neural networks predicting the process history from SEM
images. The combination of Monte Carlo dropout and random image
crops creates per-class uncertainty estimates that capture both aleatoric
and epistemic uncertainties, though provides no significant boost in
classification accuracy, as reported by others. At 25 MC dropout pre-
dictions on 25 random image crops per SEM image, the uncertainties
were found to converge, indicating reproducible UQ by variation
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inference methods. The magnitude of the uncertainties was found to be
scalable by adjusting the dropout probability without significantly
affecting model performance; further investigation is needed before it
can be determined whether uncertainty estimates by MC dropout can
truly be calibrated.

Making predictions on OOD image datasets using a classifier trained
with uniformly acquired SEM images of unperturbed UOCs from com-
mon processing routes demonstrated the shortfalls of relying on a narrow
set of training data, and highlighted areas where more surface
morphology data is needed. Perturbations of lesser concern include the
solution of precipitation and image scale, when considered alone. Partial
conversions, aged materials, and chemical impurities all led to low
classification accuracies when compared to the unperturbed holdout sets.
The classifiers were also sensitive to the image collection parameters of
the scanning electron microscope, even when the same samples were
represented in the training images, signifying the importance of utilizing
training data from multiple facilities. Domain adaptation neural net-
works should be explored for SEM image data of uranium oxides
collected by different microscopes and acquisition parameters once suf-
ficient data is collected.

Most present shortcomings with predicting on OOD data mainly stem
from a shortage of available data, leading to significant data biases and a
limited ability to generalize. Among the most pressing research questions
are how chemical impurities, aging, partial conversions, and combina-
tions of all other factors affect the UOC morphology for each precipita-
tion product. Design-of-experiment studies might be able to
quantitatively tease out the most significant effects. FSL and human-in-
the-loop learning schemes could produce models with greater general-
izability when only a few examples are available for each image class and
perturbation. Further explainability might also be accomplished by
combining visual explanations in natural language with nuclear material
lexicon descriptions, allowing classification models to describe why a
processing route was or was not predicted. In any case, staying at the
forefront of deep learning advances will be crucial for developing the
most generalizable and interpretable classification models for nuclear
forensics using surface morphology signatures.
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