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Abstract—Many biological tissues contain an underlying 
fibrous microstructure that is optimized to suit a 
physiological function. The fiber architecture dictates 
physical characteristics such as stiffness, diffusivity, and 
electrical conduction. Abnormal deviations of fiber 
architecture are often associated with disease. Thus, it is 
useful to characterize fiber network organization from 
image data in order to better understand pathological 
mechanisms. We devised a method to quantify 
distributions of fiber orientations based on the Fourier 
transform and the Qball algorithm from diffusion MRI. The 
Fourier transform was used to decompose images into 
directional components, while the Qball algorithm 
efficiently converted the directional data from the 
frequency domain to the orientation domain. The 
representation in the orientation domain does not require 
any particular functional representation, and thus the 
method is nonparametric. The algorithm was verified to 
demonstrate its reliability and used on datasets from 
microscopy to show its applicability. This method 
increases the ability to extract information of 
microstructural fiber organization from experimental data 
that will enhance our understanding of structure-function 
relationships and enable accurate representation of 
material anisotropy in biological tissues.    

 
Index Terms— Fibers, Fourier Transform, Nonparametric 

distributions, Orientation Distribution Function (ODF).  

I. INTRODUCTION 

any materials consist of one or more families of fibers 

with varying orientations. Examples include fabricated 

materials such as ceramics, concrete, glass-fiber, carbon-fiber, 

and polymers; plant-based biomaterials including cotton, hemp, 

wood, and wool; and biomaterials of human tissues such as 

myocardium [3], skin [4], cartilage [6], arteries [7], brain [8], 

ligaments [9], and tendons [10]. The organization of fibers in 

these materials determines both physical and mechanical 

properties, which are modulated by parameters such as fiber 

thickness, length, interconnections, ratio to ground substance, 

and their orientations. The orientation of fibers also contributes 

to various physical characteristics including directional 

stiffness of the material [11], conductance of electrical signals 

[12], diffusion of water and other soluble molecules [13], 

thermal conductivity [14], acoustic insulation [15], and 

direction of cellular growth [16].  

 
This work was supported in part by NIH Heart, Lung, and Blood Institute under grant F31HL154781 and R01HL131856-01A1. 
All authors are with the Scientific Computing and Imaging Institute at the University of Utah, Salt Lake City, Utah 84112. A. Rauff, L. H. Timmins, 

and J. A. Weiss, are with the Department of Biomedical Engineering (e-mail: u1143568@utah.edu; lucas.timmins@utah.edu; jeff.weiss@utah.edu). 
R. T. Whitaker is with the School of Computing (e-mail: whitaker@cs.utah.edu). 

In biological soft tissues, the fibrous architecture of 

constituents such as collagen and elastin are fundamental to 

mechanical function. In articular cartilage, collagen fibrils 

provide the tissue with compressive stiffness [6], and the 

orientation of collagen fibers is the most important structural 

element [17]. Myocardial muscle fibers conduct electrical 

signals and contract, and changes in fiber angles from apex to 

base result in contraction and twisting of the heart (Fig. 1a,b) 

[3]. In arteries, collagen and elastin fibers organize into helical 

structures with some dispersion to resist luminal pressure, 

elongation, and contraction [18]. In the brain, complex nerve 

fiber tracts conduct electrical signals that are activated during 

neural activities (Fig. 1c) [19]. Because of the fundamental 

importance of fiber architecture to the function of biological 

tissues, there is a need to quantify the characteristics of these 

fiber families to understand structure-function relationships and 

characterize changes in tissue function due to growth, aging, 

injury and disease. A number of specialized imaging techniques 

have been developed and applied for this purpose, including 

polarized light microscopy (PLM) [20], optical coherence 

tomography [21], multiphoton microscopy [22], confocal 

microscopy [23, 24], small angle x-ray scattering [14], serial 

block electron microscopy (Fig. 1d) [5, 25], and more recently, 

diffusion-weighted magnetic resonance imaging (MRI) [2]. 

Once image data are available, there is a need to quantify the 

geometric characteristics of the fiber organization.   

The distribution of fibers at locations within these image 

datasets are often described using a 3D orientation distribution 

function (ODF), a continuous probability distribution function 

that maps a direction to a probability value [26]. This approach 

provides a compact description of the fiber families within an 

image volume, which lends itself to graphical display as well as 

quantitative evaluation. A number of different approaches have 

been used to obtain a 3D fiber ODF from image data including 

the MRI signal [27-30] - as water molecules preferentially 

diffuse along the direction of fibers, subsequent processing of 

diffusion signals from MRI [31, 32], 2D Fourier analysis [33] 

on three perpendicular imaging planes from microscopy [22], 

2D Fourier analysis on individual z-stacks [34], the structure 

tensor method from image analysis [23, 24], PLM [20, 35], the 

vector summation method [36], and the filter bank method [37].  
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Despite the need to analyze 3D image data quantitatively, 

current approaches have significant limitations. Many 

approaches assume a particular parametric form for the ODF. 

For instance, diffusion tensor imaging of MRI assumes an 

underlying ellipsoidal distribution that contains six free 

parameters (in 3D) and has limited ability to represent crossing 

fibers with multiple directional preferences [29, 38]. Often, 

only the maximum direction and anisotropy are used for 

subsequent analysis. Other approaches assume the ODF can be 

represented by a single direction and a measure of dispersion 

[22, 39]. The structure tensor [23] and vector summation 

methods [36, 40] from image processing retain one fiber 

direction at each voxel. These methods, along with PLM [20], 

could construct an ODF by accumulating voxel-wise directions 

into a directional histogram. Yet, they also do not account for 

the errors associated with voxels that do not belong to fibers, 

the number of voxels in fibers, image noise, and voxels of 

crossing fibers. A more recent approach also quantified voxel-

wise fiber directions in addition to the fiber cross-sectional area 

[41]. This method is similar to the vector summation method 

and requires costly pre-processing, in particular segmentation 

of the image stack. Further, our objective is to characterize 

physical properties of a tissue by gleaning statistical insights of 

the microstructures from a sub-tissue volume rather than 

individual voxels. To the best of our knowledge, none of these 

methods have implemented an objective metric of error that 

compares the entire 3D approximated distributions with known 

ODFs.  

In this study, we developed a nonparametric methodology 

that computes the fiber ODF from 3D images, independent of 

the specific imaging technology. The approach is based on the 

Fourier transform that decomposes a function into directional 

components, and the Q-ball algorithm from diffusion MRI that 

converts the frequency-based information to the orientation 

domain [42]. This provides a general-purpose algorithm for 

analysis of fibrous architectures in 3D images that is robust to 

noise, capable of high angular resolution, and is not based on 

predetermined distributions. It is also accompanied by an 

objective metric of error across ODFs based Riemannian 

manifolds. We demonstrated the accuracy of the algorithm 

using synthetic images generated from known fiber ODFs. The 

approximated ODF is nonparametric, as it does not assume 

prior knowledge about the shape of the distribution. The 

angular resolution of the ODF was sufficiently high to represent 

sharp signals such as parallel fibers, and the ability of the 

algorithm to resolve the details of the ODF is only limited by 

the image resolution and noise levels. The robustness to noise 

of this approach was demonstrated by adding Gaussian noise to 

synthetic images. Lastly, this algorithm is validated using 

biomedical image data from scanning electron microscopy 

(SEM) and lattice sheet microscopy.   

II. METHODS 

Fig. 2 illustrates the essential computational processes of the 

method introduced in this work. Volumetric images containing 

fibrillar structures of a material are transformed with the Fourier 

transform and then processed with the Q-ball algorithm. The 

Fourier transform decomposes a function, in this case a 

volumetric image, into sinusoidal basis functions. Each basis 

function has a unique direction, frequency, and phase. The 

power spectrum discards the information stored within the 

phase, and a further step of summation is used to discard the 

information on the frequency (Fig. 2b). This isolates the relative 

weights of the directional components of the image. 

The Q-ball algorithm, originating in the literature of 

diffusion-weighted MRI [29] is used to resolve the fiber 

directions by converting the sinusoidal wave directions to their 

fiber orientation components (Fig. 2c). The implementation of 

the Q-ball utilizes a decomposition of the power spectrum to a 

spherical harmonic series [42], which allows for a closed-form 

solution to the Funk-Radon transform. The use of spherical 

harmonics is also advantageous for compact representation of 

the resultant ODF. While this results in an ODF represented by 

a finite number of terms, the ODF remains nonparametric as no 

particular distribution is assumed a priori, and the choice of the 

number of terms resides with the analyst and the available 

image resolution. The number of spherical harmonic terms 

determines the resolution of the approximated ODFs as higher 

order terms able to represent higher frequency content such as 

concentrated spikes in the distribution. This subject is further 

inspected in the results and the supplementary materials. 

(a)  (b)  

(c)  (d)  
Fig. 1.  Examples of fibrillar structures of biological tissues. (a-b) 

Muscle fibers in the heart imaged using diffusion weighted Magnetic 
Resonance Imaging (MRI). Images reproduced from Zhang et al. [1]. 
(a) Cardiac tissue seen from the top, with the left ventricle on the left 
and right ventricle on the right. (b) side view of myocardium. (c) Human 
brain tissue imaged using diffusion weighted MRI. Image reproduced 
from Hagmann et al. [2]. (d) Collagen fibril network imaged using 
scanning electron microscopy (SEM). Collagenous proteins are the 
most abundant structural proteins of the extracellular matrix of 
vertebrate organisms. Image reproduced from Reese et al. [5]. 
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A. Description of Algorithm  

The methodology introduced in this paper analyzes 3D 

images to extract an ODF,  . The ODF is a probability 

distribution function where  

2:  .          (1) 

Here, 2 is the space of orientations, that is all unit vectors in

3
, and 


 is the space of positive scalars. The function has 

two constraints. The probability density distribution constraint 

ensures the sum of the area is one,  
2

0 0
( )sin 1d d

 

      u ,     (2) 

where 2u  are unit vectors denoting directions, and θ and φ 

are the azimuthal and polar angels. Antipodal symmetry,  

, ( ) ( )   u u u ,       (3) 

is a constraint that arises from the symmetrical contribution of 

fibers from opposing directions.  

This technique utilizes the Fourier transform to extract 

directional components from an image using minimal pre-

processing with a Butterworth filter (Supp. Mat. – Methods). 

The Fourier transform is used to discern the directional 

specificity as it decomposes the image into sinusoidal basis 

functions with an orientation. Images were transformed with the 

3D Fourier transform to obtain ( , , )F u v w , the frequency 

domain representation of the image where u, v, and w denote 

position within frequency domain. Next, the power spectrum, 

S, was computed according to the equation  

 

2

2 2

( , , ) ( , , )

Re ( , , ) Im ( , , )

S u v w F u v w

u v w u v w



 
,   (4) 

and the zero frequency was shifted to the center. S was filtered 

with ideal low and high pass filters to ensure the components 

that make up the fiber structures are included while other 

components of the image, such as noise, are ignored. This was 

manually determined for each image set by visually checking 

the filtered images with the inverse Fourier transform. The 

image from the inverse transform was used to ensure the 

fibrillar structures remain while other features are attenuated. 

The power spectrum S was then summed along the frequencies 

to determine the contribution to each direction in space, and 

discard the wavelength information. This results in a condensed 

power spectrum (Fig. 2b), E, defined on the unit sphere:  

      
1 1 1

0 0 0

, , 1
U V W

ij uvw ij

u v w

S u v w 
  

  

  E q q , (5) 

where U, V, and W, are the total number of pixels along the 

image dimensions, and δ denotes the Dirac delta function. The 

condensed power spectrum, E, is discretized as a vector 

quantity defined on every sampled direction ijq , where 

T

sin( )cos( ) sin( )sin( ) cos( )ij i j i j j       q ,

   (6) 

and uvw denotes direction of the sinusoidal basis functions 

obtained from the Fourier transform, where 

  
 
 

uvw

u v w

u v w
= .        (7) 

In order to sample directions 
ijq on the unit sphere, it  was 

discretized using N points into equal-area triangles using a 

tessellated icosahedron [42-44]. The condensed spectrum 

contains the directional components of the image in the 

frequency domain.  

The Q-ball algorithm resolves fiber directions by converting 

sinusoidal wave directions to their fiber direction components. 

The fiber ODF was obtained by applying the Q-ball algorithm 

to condensed power spectra. This algorithm implements the 

Obtain Image stacks 3D Fourier Transform Process with Q-Ball

VU

W

100 [units]

(a)  (b)  (c)  

X Y

Z

Fig. 2. Summary of algorithm. (a) Three-dimensional images are obtained using any imaging modality that can capture fibrous architecture. (b) 
Image is transformed with the 3D Fourier Transform, which decomposes the image into sinusoidal basis functions, each having a unique direction 
and wavelength. The power spectrum that is obtained from the Fourier transform is then summed along the radial direction, discarding the 
wavelengths but retaining the directional information. The signal in the condensed power spectrum contains relatively large amplitude perpendicular 
to the fiber directions. This occurs because wave-like basis functions create fiber structures when propagating perpendicular to the fiber directions. 
(c) The condensed power spectrum is processed with the Q-Ball algorithm, an implementation of the Funk-Radon transform that was developed in 
the diffusion MRI community. The Funk-Radon transform integrates the power spectrum over each great circle. This computes the amount of 
“signal” pointing in every direction in 3D space, and results in an orientation distribution function (ODF), as show in this panel. The ODF assigns a 
probability value to each direction in space, giving a statistical representation of the directions of fibers contained in the image. 
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Funk-Radon transform that integrates over a circle 

perpendicular to each orientation, 2u ,  defined by 

 
2

0 0
( ) ( )sin

( )

d d

d

 

    



 



 


q u

u u q E q

E q q
.  (8) 

The Funk-Radon transform was computed following the 

approach in Hess et al. and Descoteaux et al. [42, 44]. First, the 

condensed spectrum, ( )E q , was decomposed to a spherical 

harmonic series using the least squares method. A spherical 

harmonic series, m

lY , is an orthogonal set of basis functions 

delimited by two variables, order l and phase m. This 

decomposition modified the harmonic bases, to have a single 

index 
jY , where 

2 2
:

2

k k
j m

 
  , defined by  
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l

Y l m

Y Y

Y m l

   


 

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Here, 0, 2, 4,...,k l  is the harmonic order after re-

indexing, and , 1, ..., 0, ..., 1,m k k k k      is the phase 

after re-indexing [44]. The antipodal symmetry of ODFs means 

there is no information stored in odd order terms of the series 

(3). Then, the least squares method was used to decompose the 

power spectrum, E, to spherical harmonic bases. The harmonic 

bases were represented by the matrix B, defined by  

   

   

0 1 1 1 1

0

, ,

, ,

J

N N J N N

Y Y

Y Y

   

   

 
 
 
 
 

B = .    (10) 

The coefficients of the harmonic terms were stored in a vector 

c, and the equation E Bc  was solved using the least squares 

solution:  

 
1

T T


c B B B E .       (11) 

Next, the closed-form solution of the Funk-Radon transform 

was implemented, also known as the Funk-Hecke transform  

1

( ) 2 (0) ( )
j

R

l j j

j

P c Y 


u u ,    (12) 

where (0)
jlP  is a Legendre polynomial evaluated at 0 of the lth 

degree, as defined on the jth harmonic term order. The result was 

post-processed using a modified min-max normalization (Supp. 

Mat. – Methods). We have provided the Matlab code used to 

implement the entire processing pipeline on GitHub [45]. 

B.  Statistical Analyses 

Synthetic Fiber Image Generation. Synthetic fiber images 

were simulated using a custom program. The images were 

utilized to examine the approximation process, testing the 

accuracy and persistence of approximations and evaluating the 

robustness to noise. Synthetic images were sized at 400 cubic 

voxels and fibers were oriented along a user-defined underlying 

distribution. The image was dilated to increase the thicknes of 

each fiber to approximately 3 voxels, and converted to 8-bits. 

The exact ODF of simulated fibers was constructed by adding 

concentrated Gaussian functions centered on the direction of 

each fiber. All simulations were conducted in Matlab (Natick, 

MA, version 2017a). Additional information is provided in the 

Supplementary Materials – Methods.  

Statistical Analyses of ODFs. Scalar measures are useful to 

summarize geometric features and apply basic statistical 

techniques. We utilized two scalar measures: The anisotropy of 

individual ODFs, and the distance between ODFs.  

The anisotropy of individual ODFs was characterized by the 

generalized fractional anisotropy (GFA) [29]. This measure 

generalizes the fractional anisotropy (FA) commonly used in 

diffusion tensor imaging to nonparametric ODFs. Like FA, the 

GFA of an ODF is a scalar between zero and one that describes 

the degree of anisotropy, where a GFA of zero describes an 

isotropic distribution.  

To compute the distance between ODFs, we employed an 

approach based on Riemannian geometry that follows Goh et 

al. [46]. Briefly, the space of ODF functions is not a vector 

space.  This can be appreciated by considering that the addition 

of two ODFs does not result in a function that satisfies the 

probability density function constraint (2). Hence, the space of 

ODFs was equipped with a differential manifold structure and 

an inner product, that is a Riemannian manifold (Supp. Mat. – 

Methods). The distance metric is a value between 0ᵒ and 90ᵒ, 
where 0ᵒ indicates identical ODFs. The distance metric is a 

more sensitive measure than anisotropy as it accounts for 

accumulated differences across ODFs, and anisotropy is a 

coarser measurement that describes the shape of distributions. 

C. Verification 

Angular Resolution and Accuracy. The angular resolution 

attained by the algorithm determines the extent of high 

frequency content included in the approximation. This  is 

modulated by the highest spherical harmonic order that is 

included, and defined by the user. The ability to approximate 

ODFs with high frequency content was examined by analyzing 

simulated images of parallel fibers, corresponding to the Dirac 

delta distribution. This distribution poses the greatest challenge 

to this approximation process because the solution consists of 

smooth waves. Approximating concentrated “spikes” requires 

high order terms, similarly required in 1D Fourier analysis. 

Additional analysis on the number of terms to include on 

experimental data was conducted using biomedical image data. 

ODF approximations were then compared with varying number 

of harmonic terms (Supp. Mat. – Methods) 

Analysis of Noise. The effect of noise was assessed by adding 

artificial noise to simulated and experimental image datasets. A 

zero-mean Gaussian noise of specified variance was added to 

images to sample the signal to noise ratio (SNR) from 0.2 to 

1.0, using an interval of 0.2, and 2.0 and 4.0. The SNR is 

defined as the ratio of the variance of image intensities of the 

noise-free image to the variance of the noisy images [47]. 

Approximated ODFs of images with added noise were 

compared to their corresponding noise-free ODFs using the 

scalar measures. The difference in anisotropies, measured using 

GFA, was used to determine significant differences. A one-way 

ANOVA was performed on the anisotropy differences versus 
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the SNR values followed by a Holm-Sidak post hoc analysis. 

The level of significance was set at p = 0.05. The analysis 

included harmonic orders L = 10, 30, 40, 50, and 70, at each 

level of SNR. Another one-way ANOVA was performed on the 

maximum spherical harmonic order versus the distance from 

the noise-free approximation. All statistical tests were 

conducted using OriginPro (Northampton, MA, version 2021). 

Algorithm Precision. The precision of this technique was 

determined empirically by quantifying the spread of a sample 

of approximated ODFs belonging to an identical underlying 

ODFs. This was tested by designating an exact ODF, simulating 

multiple images, approximating their ODFs, and comparing the 

spread of the approximated ODFs using the statistical measures. 

The “true” ODF, from which simulated fibers were generated, 

were oriented along the x-axis with symmetrical dispersion of 

0°, 1°, 2°, 5°, and 8° (Supp. Mat. – Figures).  

D. Application to Biomedical Image Data  

The algorithm was applied to experimental images to 

demonstrate its utility in characterizing biomaterials. The 

datasets were obtained from lattice light sheet microscopy and 

focused ion beam scanning electron microscopy [5] (Fig. 4 and 

5). The lattice sheet microscopy data contained chondrocytes 

isolated from human articular cartilage and labelled for F-actin, 

while the electron microscopy data showed a network of type I 

collagen fibrils in a collagen hydrogel.  

The dataset of the chondrocyte actin filaments exhibited 

highly aligned structures, and were used to demonstrate the 

simplicity of the technique along with a measure of validity of 

the approximation. The ODF was approximated and compared 

with the maximum probability direction computed with 

analysis of the moment of inertia. To obtain this auxiliary 

direction, the image was segmented, and the moment of inertia 

tensor was computed for each connected component. Then the 

eigenvector corresponding to the smallest eigenvalue of the 

inertia tensor was computed to represent the direction of each 

component. Next, an ODF was constructed from the moment 

analysis by the same procedure used for synthetic fiber 

generation. The direction of highest probability was then 

compared with the maximum direction obtained with the 

methodology described in this article. 

The dataset of the type I collagen hydrogel contained a 

complex network of fibrils that vary with position. This dataset 

was used to demonstrate the ability to quantify material 

properties with spatial variation by analyzing subsets of the 

data. This allows quantification of the spatial variation of fiber 

orientations within a tissue sample.  

III. RESULTS 

Nonparametric fiber ODFs are directly obtained from image 

data without prior assumptions about the distribution. Our 

algorithm estimates a fiber ODF without assuming a particular 

parametric form or introducing directional bias (Fig. 2). Image 

data are transformed with the Fourier transform and the Funk-

Radon transform. These well-established transforms do not 

introduce directional bias, as they cover the entire orientation 

domain. More importantly, the process does not assume any 

parametric form. The result is a probability distribution function 

on a unit sphere, which assigns a probability value to every 

orientation. The orientations can be readily visualized as 

vectors emanating from the origin of the sphere (Fig. 2C). 

Resolution of approximated ODFs depend on spherical 

harmonic order. The resolution of approximated fiber ODFs is 

determined by the number of terms in the spherical harmonic 

expansion. Higher order terms enable representation of 

increased angular resolution. This increases the accuracy of the 

approximated ODFs and allows for representation of functions 

that vary more sharply. Additionally, increased sampling of 

points on the unit sphere allows for higher order spherical 

harmonic terms to be computed, similar to discrete Fourier 

analysis of signals. A sampling of N = 2,562 points on the unit 

sphere afforded a maximum spherical harmonic order L = 46, 

N = 10,242 points allowed L = 78, and N = 40,962 points 

allowed L = 84. Approximated fiber ODF were examined with 

parallel fibers, which have a true ODF of the Dirac delta 

function (Fig. 3B). The approximated ODFs converged towards 

Fig. 3.  Angular resolution of approximated ODFs. (a) Graph comparing 
approximated ODFs with increasing maximum spherical harmonic 
order (x-axis) to the underlying ODF (panel b). The left y-axis is the 
distance of the approximated ODF from the exact ODF (Methods – 
statistical Analysis of ODFs). The right y-axis, in blue, denotes the 
anisotropy of each ODF. The ODFs were approximated with a 
maximum spherical harmonic order L = 6 to 84, and 40962 spherical 
sampling points. As the harmonic order increased, the distance from 
the exact ODF decreased monotonically. By contrast, the anisotropy 
increased with spherical harmonic order and tended toward a constant 
value of 1. (b) Exact ODF of parallel fibers aligned along the X-axis. 
The green arrow stretching along the X – axis represents the direction 
of the fibers. (c) Approximated ODF using spherical harmonic order, L 
= 84. The general shape of the approximated ODF converges towards 
the true ODF, as reflected in the anisotropy and qualitatively in panels 
b and c. However, the approximated ODFs is not the same as the true 
ODF, as reflected in the distance. This is because the true ODF mostly 
consists of high frequency content, and this content is incrementally 
captured as higher order terms are added to the approximation. 
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the exact ODF with increasing maximum harmonic order L 

(Fig. 3A). The anisotropy, and the general shape, of the 

approximated ODFs asymptotically converged to 1 (Fig. 3A). 

As the spherical harmonic order was increased, the distance 

from the exact ODF decreased monotonically (Fig. 3A).  
Number of harmonic terms to retain for experimental image 

data. The effect of the number of harmonic terms on 

experimental data was examined using biomedical images of 

actin filaments (Fig. 5a). ODFs were compared with the high 

approximation, using L = 52, and the “previous 

approximation,” of (L – 2) (Supp. Fig. 1). The distance from the 

high order approximation, L = 52, decreased from 16.3° at L = 

2 to 7.58° at L = 6 and 5.46° at L = 14. The distance from (L – 

2) decreased from 21.4° at L = 4 to 13.4° at L = 6 and 5.54° at 

L = 8. The change in anisotropy decreased from 0.166 at L = 4 

to 0.01 at L = 8. The comparisons are graphically displayed in 

the supplementary materials (Supp. Mat. Fig. 1).  
 Effects of noise on integrity of ODF approximation. The 

robustness of the algorithm in the presence of noise was 

determined using both simulated and biomedical image data. 

The simulated images consisted of aligned fibers with addition 

of Gaussian noise to vary the signal to noise (SNR) ratio (Fig. 

4b-d). Their approximated ODFs with added noise closely 
resembled the ODF approximated of the noise-free image. The 

difference between the approximated ODFs with additional 

noise and the noise-free ODF approximation decreased rapidly 

with increasing SNR, as  images with SNR ≥ 1.0 were within 

2.0° of the noise-free ODF approximation (Fig. 4a). This 

includes ODF approximations at different spherical harmonic 

orders demonstrating the inclusion of higher frequency content 

did not corrupt the resultant ODF. The difference in 

anisotropies among the approximations revealed there is only a 

significant difference at SNR values of 0.4 and below (Supp. 

Mat. Fig. 2). The magnitude of the anisotropy difference was 

below 0.01 for all SNR values above 0.4, indicating the general 

shape of the ODF was similar (Supp. Mat. Fig. 2). The 

biomedical image data consisted of actin filaments of a 

chondrocyte that were similarly corrupted with Gaussian noise 

(Fig. 4e-g). Their approximated ODFs with SNR > 1.0 were all 

within 0.85° of the noiseless ODF (Fig. 4a). The difference in 

anisotropies also revealed a significant effect at SNR values of 

0.4 or below, and the difference of anisotropies above was low 

(<0.005), indicating similar shapes. The spherical harmonic 

order did not have a significant effect on the distance from the 

noise-free approximation.  
Precision of the Algorithm. The consistency of this approach 

was determined by inspecting the precision of the 

approximation process. Synthetic fiber image data were 

simulated from identical underlying distributions, the “true” 

ODFs, and images were blurred and corrupted with noise to 

mimic realistic imaging conditions. The population statistics of 

the approximated ODFs were then analyzed to determine the 

consistency of the measurement. Five groups were tested of x-

aligned fibers with true ODF containing symmetrical dispersion 

of 0°, 1°, 2°, 5°, and 8°. The average deviations from the mean 

ODF, indicating the precision of the approximation process, 

were 6.32°, 5.06°,  4.47°, 2.87°, and 2.57° respectively (Supp. 

Fig. 3a). The deviations from the population mean provide 

baseline measures to determine statistically significance 

differences. The standard deviation of the approximated 

anisotropy of each group were 0.012, 0.016, 0.018, 0.02, 0.02 

respectively (Supp. Fig. 3b). Because the anisotropy is a 

descriptive statistic, the standard deviation of the anisotropies 

serves as the measure of precision. 

Application to Biomedical Image Data. The utility of the 

algorithm was demonstrated by application to image data from 

lattice sheet microscopy of actin filaments in a chondrocyte, 

and focused ion beam SEM of a type I collagen network in a 

hydrogel [5]. The datasets contain filamentous structures with 

a clear preferred direction (Fig. 5 and 6).  

Fig. 4.  Analysis of the effect of noise on approximated ODFs. (a) Graph exhibiting the distance from the noise-free ODF approximations. Image 
data were modified to include varying signal to noise ratios (SNR), graphed along the x axis, sampled from a minimum of 0.2 to a maximum of 4. 
SNR is defined as the ratio of the variance of the noise-free image to the variance of the added noise. (b - d) Simulated fibers aligned along one axis 
with varying SNR. As the amount of noise increases, the SNR decreases, and the image content is corrupted. (e - g) Biomedical image data of actin 
filaments of a chondrocyte with varying levels of SNR. The distance was measured between an image corrupted with noise at every SNR and the 
ODF approximation of the noise-free image. 
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The analysis of the actin filaments provided accurate 

quantitative and qualitative results (Fig. 5). As expected, the 

approximated ODF contains a single mode of concentrated 

probabilities and a high anisotropy with GFA of 0.7883 (Fig. 

5b). These statistics were obtained without making any 

assumption about the material symmetry, the underlying form 

of the ODF, or the need to conduct any substantial pre-

processing on the image. Furthermore, the maximum ODF 

direction and the direction of the principal moment of inertia 

were almost identical, with an angle of 8.538 ∙ 10−7° between 

the axes. In contrast to the results obtained using our algorithm, 

the moment of inertia analysis required time-intensive 

segmentation and image pre-processing. 

The analysis of type I collagen made use of focused ion beam 

scanning electron microscopy (FIB-SEM) image data [5]. The 

microstructural properties of biological tissues are highly 

complex and vary with position (Fig. 6). Two sub-volumes 

from the dataset were selected to demonstrate the tissue’s 

spatial variation of fibril orientations. The subsets consisted of 

500 voxels cubed and are highlighted in green and white (Fig. 

6c,e). Both ODFs displayed a single mode of preferred fiber 

orientation that appears to be consistent with the image data. 

However, one ODF approximation displays deviation from the 

ODF mode along a preferred plane (Fig. 6c), while the other 

ODF displays deviation relatively isotropic (Fig. 6e). The 

distance between the maximum direction of the ODFs was 

57.10° and their Riemannian distance was 42.76°.  

IV. DISCUSSION 

This algorithm provides a straightforward approach to obtain 

nonparametric 3D fiber orientation distributions from image 

volumes. It is simple and efficient because its mathematical 

underpinnings are the Fourier transform and the Funk-Radon 

transform. This essentially decomposes an image into its 

rudimentary structures continuously along all orientations and 

counts the structures pointing along a given direction relative to 

all other directions. The process does not require costly pre-

processing or segmentation, and provides an objective means to 

compare fiber ODFs. Other algorithms exist for the purpose of 

quantifying the orientation of fibers in 3D images, yet previous 

approaches contain a priori assumptions about the distribution 

[22], ignore orientations along the depth of the image [34], or 

quantify voxel-wise fiber directions [23, 36, 41] that are not 

optimal to capture the statistical distribution over a volume. 

Examining approaches that have been used for the extraction 

of fiber orientation from 2D images can offer an insight into the 

utility of multiple methods. Several methods for 2D analysis 

exist and are regularly used in a field-specific manner. For 

example fabric tensors in cancellous bone [48, 49], the line 

fraction deviation used on bone microstructures [50, 51], and 

Fourier transform-based methods used with collagen fibrils, 

cell alignment, and textiles [52-54]. The Fourier transform 

based methods have emerged as the most reliable in capturing 

the anisotropy and orientation distribution and are the fastest 

and most accurate [50]. Our proposed methodology generalizes 

the utilities of the 2D technique to 3D analysis.  

Our approach was rigorously tested to enable adoption 

amongst experimental scientists. The accuracy of the resultant 

ODF was determined with respect to the Dirac delta 

XY
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Fig. 5. Application to chondrocyte actin filaments. (a)  Volume 
rendering of lattice sheet microscopy data of a chondrocyte stained for 
actin intermediate filaments. (b) Approximated ODF of the image 
dataset using spherical harmonic order, L = 16. The ODF contains a 
single mode of concentrated probabilities that is visually consistent with 
the direction of actin fibers in panel a. 

 

Fig. 6. Application to biomedical image data of scanning electron 
microscopy images of a type I collagen hydrogel. (a) Volume rendering 
of the microscopy data of seen in red. Two subvolumes of 500 voxels 
cubed are displayed in white and green. (b) Expanded view of the 
subvolume displayed in white. (c) Expanded view of the green 
subvolume. (d) Approximated orientation distribution function (ODF) of 
the subvolume exhibited in panel b using maximum spherical harmonic 
order, L = 16. (e) Approximated ODF using maximum spherical 
harmonic order, L = 16. The two ODFs had a distance of 42.76°, 
indicating they are different. 
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distribution. This true ODF presents the most extreme 

possibility of high frequency content that would be a challenge 

to estimate using this processing pipeline since our solution 

consists of smooth waves. The precision of the approach was 

measured by empirical means and depends on the nature of the 

underlying, true ODF. The analysis utilized highly aligned fibril 

configurations and further analysis is needed to rigorously 

quantify the precision. Notwithstanding, the results provide an 

indication of the consistency and serve as practical guidance for 

determining confidence in measurements. Moreover, the 

approach was applied to experimental image data of actin 

filaments to provide some quantitative verification of the 

approximated ODF. The result was assessed relative to the 

principal moment of inertia, which only measures the preferred 

direction. Experimental data are difficult to validate as the 

underlying ODF is unknown, and there is no gold standard 

technique for extraction 3D fiber ODFs from volumetric 

images. Nevertheless, the analysis with biomedical image data 

show the technique can be effectively used to obtain 

experimentally derived fiber ODFs. These tests, along with the 

simplicity of the algorithm and its utility, will enable 

straightforward adoption by experimental scientists and yield 

more specific data about tissues’ microstructural organization.  

The Riemannian metric provides a scalar metric to compare 

ODFs objectively. This enables objective quantification of 

experimental differences that will lead to clear diagnostic 

standards amongst fibrillar structures deviating from 

physiologic ranges. In addition, this metric may be useful in 

optimization tasks and spatial interpolation for biophysical 

modeling. The objective nature of the metric affords the 

capability to compute a mean and variance from a sample of 

ODFs (Supp. Mat. – Fig. 3), interpolation between spatial 

locations of measurement [46], and a framework for 

infinitesimal perturbations that could be used in optimization 

routines such as synthetic fabrication of soft tissues with 

designated mechanical criteria.  

The approximated ODFs provide structural characteristics 

inside a given volume that are indicators of physical properties 

of materials. These attributes may dictate stiffness, diffusivity, 

electrical conduction, and other physical properties. This is of 

particular interest in biological tissues, where the information 

could advance our knowledge of tissue function and 

dysfunction during age, growth, injury, and disease. 

The fiber ODFs that can be quantified using the approach in 

this paper are useful in constitutive modeling of materials. Prior 

studies incorporating experimentally derived fiber orientations 

involved assumptions about the form of the probability 

distribution, such as ellipsoidal or Von-Mises [18, 22], or 

ignored fibers with orientations along the depth of an image 

stack [34]. However, constitutive formulations that incorporate 

distributions of fibers do not require a specific form of 

distribution. In fact, nonparametric ODFs can readily be 

incorporated with existing strain energy formulations. The 

algorithm developed in the present research provides the 

framework to derive highly complex ODFs directly from image 

data and use them as input to constitutive models of materials. 

The spherical harmonic representation allows a concise 

representation of orientation distributions that can be used to 

store the probability densities for every direction at a given 

volumetric element of a material. Incorporating these ODFs 

will refine the structural information and increase constitutive 

specificity to further advance structural approaches. 

3D fiber orientations are also of interest in other fields of 

study including diffusion in a porous medium, cellular growth 

inside tissues, and electrical conduction in neuronal pathways 

and muscle tissues. Biological tissues are porous media, where 

water comprises the highest percentage by weight and volume, 

and transport of molecules through the fibrillar matrix is an 

important mode of biological activity [55, 56]. The 

quantification of fiber ODFs from microscopic images to 

validate diffusion MRI data has been sought as it provides a 

comparison of data across imaging modalities [20, 23]. The 

spatial distribution of diffusivity is important to the functions of 

tissues in health and disease, and an anisotropic distribution of 

fibers is associated with anisotropic diffusion profile [57, 58]. 

Further, the local fiber arrangement provides attachment sites 

to cells during migration and growth, acting as a contact 

guidance mechanisms that modulates cellular phenotypes and 

intracellular signaling [59, 60]. The conduction of electrical 

signals is of particular interest in myocardial and nerve tissues. 

The myocardium contains muscle fibers that vary in orientation 

to enable the heart to contract and twist during systole [3]. The 

muscle fibers act as both contractile and conductive units. 

Similarly, neural pathways also act as conductive units, among 

other functions, to carry signals for the body’s motor systems, 

and within specific pathways within the brain. 

The study has several limitations. The images under analysis 

need to contain an equal number of pixels along the height, 

width, and depth. This ensures there is no bias in the directions 

presented in the power spectrum, and the same frequencies are 

present in all directions. Further, the aspect ratio of voxels also 

needs to be isotropic to ensure there is no directional bias. Both 

of these limitations are inherent in the use of the 3D FFT 

method, regardless of the application. However, the size of the 

image and the voxel aspect ratio may be adjusted by use of 

resampling or selection of regions of interest.  

The filtering of the power spectrum is determined by the 

analyst, introducing some subjectivity. This feature of Fourier 

transform-based methods enables simple application to 

complex experimental data to gain reasonably accurate results. 

It is also the reason Fourier transform methods have become so 

wide-spread and effective compared with other methods [50]. 

While there is some inherent subjectivity to this stage of 

processing, there are guiding principles. The impact on the 

original image can be observed with an inverse transform, 

allowing visual inspection after filtering. As a starting point, the 

frequencies pertaining to twice the average fiber cross section 

diameter plus or minus 10% should be isolated [61]. Guidance 

for use of user-determined variables involved in this technique 

are summarized in Table 1 of the Supplementary Materials.  

The spherical harmonic decomposition utilized the least 

squares method [42] and more efficient harmonic 

decomposition algorithms have been published [62]. Use of 

these more efficient methods could allow greater angular 

resolution with decreased computations and memory. However, 

this process currently runs on images up to 7003 voxels while 

retaining terms up to the 84th harmonic order, on a desktop 

CPU where the computational time was approximately 2.5 
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hours using N = 40,962 sampling points without substantial 

parallelization. As an example of a more reasonable 

approximation, the actin filaments dataset (Fig. 5) was 

processed in 13.01 seconds using L = 18 and N = 40,962. 

Estimation of fiber ODFs is likely to result in some blurring. 

The approximation depends on decomposition of the image into 

waves of varying wavelengths. Spurious signal or sharp edges 

in the ODF will be smoothed. We have employed post-

processing on the ODF to ensure the low frequencies are 

anchored at zero (Supp. Mat. – Methods). This is a crude 

measure to undo some of the deterministic underperformance 

of this method. This approach needs to be further studied and 

refined to ensure there is no loss of information. Additionally, 

this has been remedied in the MRI literature by applying 

spherical deconvolution to sharpen the ODF signal [32]. 
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