
 
 J

ou
rn

al
 o

f M
at

er
ia

ls
 R

es
ea

rc
h 

 2
02

2 
 w

w
w

.m
rs

.o
rg

/jm
r

Vol.:(0123456789)

 DOI:10.1557/s43578-022-00557-7

Integrating atomistic simulations and machine learning 
to design multi‑principal element alloys with superior 
elastic modulus
Michael Grant1, M. Ross Kunz2, Krithika Iyer3, Leander I. Held4, Tolga Tasdizen5, 
Jeffery A. Aguiar6, Pratik P. Dholabhai4,a) 
1 School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA
2 Energy & Environment Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83402, USA
3 School of Computing, Scientific Computing Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
4 School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
5 Electrical and Computer Engineering, Scientific Computing Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
6 Nuclear Science and Technology Division, Idaho National Laboratory, Idaho Falls, ID 83415, USA
a) Address all correspondence to this author. e-mail: pratik.dholabhai@rit.edu

Received: 22 January 2022; accepted: 7 April 2022

Multi-principal element, high entropy alloys (HEAs) are an emerging class of materials that have found 
applications across the board. Owing to the multitude of possible candidate alloys, exploration and 
compositional design of HEAs for targeted applications is challenging since it necessitates a rational 
approach to identify compositions exhibiting enriched performance. Here, we report an innovative 
framework that integrates molecular dynamics and machine learning to explore a large chemical-
configurational space for evaluating elastic modulus of equiatomic and non-equiatomic HEAs along 
primary crystallographic directions. Vital thermodynamic properties and machine learning features have 
been incorporated to establish fundamental relationships correlating Young’s modulus with Gibbs free 
energy, valence electron concentration, and atomic size difference. In HEAs, as the number of elements 
increases, interactions between the elastic modulus values and features become increasingly nested, but 
tractable as long as non-linearity is accounted. Basic design principles are offered to predict HEAs with 
enhanced mechanical attributes.

Introduction
Multi-principal element, high entropy alloys (HEAs) are an 
emerging class of materials defined as containing multiple prin-
cipal elements in equiatomic or near-equiatomic ratios ranging 
from 5 to 35 at.% that exhibit wide-ranging applications [1–5]. 
HEAs are highly stable at elevated temperatures with promising 
hardness, tensile strength, and corrosion resistance for poten-
tial structural applications in extreme environments. Since first 
being proposed by Yeh et al. in 2004 [6], the research interest 
in these alloyed systems has garnered significant attention due 
to their propensity to exhibit enhanced physical properties 
[7–10]. Expected as a leading contributor towards the success-
ful synthesis of solid-phase solution face-centered cubic (FCC) 
or body-centered cubic (BCC) crystalline structures is the high 
configurational entropy. Other factors credited for stability and 

enhanced physical properties are enthalpy of mixing, valence 
electron concentration (VEC), sluggish diffusion, lattice distor-
tion, and cocktail effects [9, 11–15].

Extensive experimental and computational efforts have 
focused on investigating differing compositions. Yeh et al. first 
studied FeNiCrCoCuAlx alloys (where x = 0.5%, 1.0%, 2.0%) [6]. 
They found that the FeNiCrCoCuAl0.5 yield strength remained the 
same from room temperature up to 800 °C. Varying amounts of 
HEAs have exhibited exceptionally high hardness and resistance 
to softening at higher temperatures. Cantor et al. attempted to 
investigate a 16 and 20 element HEAs [16]. They found both alloys 
to be multiphase and brittle. To their surprise, a single-phase FCC 
structure rich in Cr, Mn, Fe, Co, and Ni was present within the 
alloys. Since this discovery, FeNiCrCoMn FCC HEAs and deriva-
tives have received considerable attention [7, 8, 10, 14, 17–19].
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Most literature has predominantly focused on the original 
definition of equiatomic or near-equiatomic alloys. This is due 
to the idea that a high entropy of mixing term lowers Gibbs 
free energy:

where �Gmix is Gibbs free energy, �Hmix is the enthalpy of mix-
ing, �Smix is the entropy of mixing, and T is the temperature. A 
minimized �Gmix leads to the most thermodynamically stable 
phase. Little is known about the varying atomic weight percent 
of alloyed systems. This is due to the hypothesis stated previ-
ously; entropy drives single-phase stability. By ensuring the HEA 
is equiatomic, the entropy of mixing is maximized as

where R is the ideal gas constant, and ci is the mole fraction of 
component i.

Failure to generate a single-phase 20 element HEA was 
reported by Cantor et al. [16], which could be attributed to the 
high energetic barrier towards the desired atomic randomization 
resulting in a multiphase formation. However, for HEAs with 
fewer elements (4 or 5 or 6 elements) such as CoCrFeMnNi, 
Otto et al. [12] have reported the formation of ideal solid solu-
tion. In addition, Sarker et al. [20] predicted high-entropy high-
hardness metal carbides using entropy descriptors and reported 
the formation of single-phase solid solution for MoNbTaVWC5. 
It has also been shown by Rost et al. [21] that configurational 
entropy can stabilize oxides. Explored by Guo et al., the effects 
of enthalpy of mixing, atomic size difference, VEC, the entropy 
of mixing, and electronegativity differences have been reported 
[13]. Moreover, Guo et al. [13], as well as Zhang et al. [11] con-
cluded that the three main driving factors of solid solution phase 
stability are the enthalpy of mixing, the entropy of mixing, and 
the atomic size difference among the atoms. Furthermore, Guo 
et al. reported that the effect of the VEC term was associated 
with the determination of whether the alloy would favor an 
FCC or BCC phase. Sarker et al. predicted high-entropy high-
hardness metal carbides using entropy descriptors.

Among the various groups that have experimentally 
explored non-equiatomic HEAs, the criteria for a stable solid 
solution HEA are more lenient than previously reported. Yao 
et al. synthesized a novel Fe40Mn27Ni26Co5Cr2 stable FCC alloy 
and tested its tensile ductility [22]. In the same year, Tasan et al. 
synthesized the same HEA and confirmed a stable FCC lattice 
structure [23]. Tasan et al. reported that the four-component 
equiatomic CoCrFeMn alloy forms a multiphase material, 
whereas non-equiatomic Fe37Mn45Co9Cr9 forms a single FCC 
phase [23]. Zhang et al. synthesized a stable non-equiatomic 
alloy consisting of Fe27.5Ni16.5Co10Al2.2Ta0.04B, which exemplified 

(1)�Gmix = �Hmix − T�Smix,

(2)�Smix = −R

n
∑

i=1

cilnci ,

the idea that non-equiatomic HEAs can compete with equia-
tomic HEAs in terms of mechanical properties [24]. Feng et al. 
found that short-range order has a significant impact on the 
magnetic and mechanical properties of HEAs [25]. Short-range 
order can arise in HEAs if the differences of the binary mixing 
enthalpies are greater between certain alloying pairs than others. 
This ordering decreases the entropy of mixing but is offset by an 
overall reduction in the potential energy of the system, giving 
rise to improved mechanical properties.

Classical molecular dynamics simulations have emerged as 
an effective discovery and screening method for studying the 
underlying mechanisms of atomic-scale deformation as well as 
strengthening mechanisms for HEAs via solute addition [19, 26, 
27]. Micro-structures and stress on the atomic level are essen-
tial to study the mechanical behavior of different materials [6]. 
However, the tradeoff is high computational cost, limited to 
small systems (typically several thousand atoms) and limitations 
on the granularity of the principal component composition [8]. 
Hence, we cannot simulate all possible combinations of alloys 
as the number of principal components increases.

Machine and deep learning approaches to predict proper-
ties can accelerate the screening and discovery process as the 
models train over the simulations, and can explore a much larger 
chemical-configurational space than is practically possible using 
DFT or exhaustive molecular dynamics simulations [7]. Fur-
thermore, the trained models must be robust in prediction with 
a finite number of samples due to overall computational cost of 
building the model based on synthetic atomistic simulations. 
Trained models are expected to uncover correlations between 
materials-aware features (e.g., configurational entropy, valence 
electron count, and element type) and target properties, which 
may not be apparent among numerous alloys [9].

Machine learning [28–33] and materials informatics [34, 35] 
provide an innovative means of screening for and predicting the 
properties of HEAs through the use of data-rich computational 
and experimental sources [36]. Machine learning is a robust 
method of automating analytical model building and evaluation. 
Using algorithms that iteratively learn from data allows comput-
ers to find insights without being explicitly programmed. Com-
bining materials science with machine learning in the future is 
actively building on the use of computational and experimen-
tal data through quantifiable means of connecting properties 
through structure–property and performance activity relation-
ships [37–39]. Machine learning has also been used effectively 
to predict phases of HEAs [40–43]. Several published attempts 
and works have been made to approach the problems of applying 
knowledge using various symbolic methods, and later, classifi-
cation methods such as neural network and perceptrons. Addi-
tional integration with integrated computational materials engi-
neering (ICME) and other models now provides an additional 
means of not only predicting the properties of these exciting 
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class of alloys but a byway for further exploring and sharing new 
compositional sets and relationships [44]. In exploring the vast 
compositional and phase space associated with HEAs sharing 
the evolving generation of materials descriptors that connect 
composition, structure, phase, and orientation with micro and 
macroscale mechanical and thermal phenomenon are of keen 
interest [45]. A very good review of DFT-based studies and 
mechanical property predictions of HEAs is offered in a recent 
review article [46].

The screening for HEAs through computational material 
science is an established field of materials, with several prior 
works including the use of ICME, imaging, techniques, and 
advanced manufacturing [47–49]. Several prior works focused 
on HEAs are not only scientifically important but also identify 
unresolved bottlenecks and challenges that suggest the use of 
repetitive studies of varying composition, structure, and mor-
phology to clarify assumptions made on activity relationships 
with mechanical properties, including ultimate tensile strength, 
compression, and elastic or bulk modulus [45]. Unfortunately, 
finding trends that ultimately connect composition and micro-
structure demand repetitive experimental and theoretical stud-
ies that are often time-consuming, especially given the focus on 
capturing trends pertaining to mechanical, thermal, and elec-
tronic properties. Recent work focusing on combining atomis-
tic simulations with machine learning to design HEAs has also 
been reported in the literature [50–52]. As listed above, although 
several state-of-the-art machine learning models have focused 
on designing HEAs, studies dedicated to understanding the 
mechanical properties of non-equiatomic HEAs are still scarce.

With high configurational entropy shown as not the only 
driving metric for single-phase solid solutions of HEAs, and 
with evidence that stable solid-phase solutions can be synthe-
sized, the opportunity to study the physical properties of non-
equiatomic systems presents itself. In this study, to assess the 
mechanical properties of HEAs, Young’s modulus of FeNiCr, 

FeNiCrCo, and FeNiCrCoCu multicomponent alloys were 
investigated via a coupled framework of molecular dynamics 
simulations and machine learning. The Young’s modulus of 
each equiatomic alloy was tested as a baseline metric. From 
then, each element was taken to be the dominant species in 
the alloy (i.e., Fe64Ni12Cr12Co12), and the testing repeated. This 
was accomplished along crystallographic directions [100], 
[110], and [111]. In this work, we establish mechanical prop-
erty trends of non-equiatomic HEAs in comparison to their 
equiatomic counterparts. Overall, this work offers fundamental 
design principles to predict alloys with enhanced equilibrated 
mechanical attributes.

Results
Atomistic simulations of ternary, quaternary, 
and quinary alloys

Figure 1 displays characteristic crystal directions and respective 
nearest neighbor atomic environment along the [100], [110], 
and [111] directions. Due to altered bonding, HEAs are expected 
to demonstrate varied response to the applied stress along these 
three crystal directions. Figure 2 depicts Young’s modulus as 
a function of varying temperatures for various compositions 
of the ternary (FeNiCr), quaternary (FeNiCrCu), and quinary 
(FeNiCrCuCo) alloys, respectively. In Fig. 2, a common nota-
tion scheme is used. For instance, for ternary alloys, equiatomic 
alloys indicate that all three elements are 33.33% weight frac-
tion; Fe70NiCr alloys indicate that Fe is 70% and Ni and Cr at 
15% each. Similar scheme is used for quaternary and quinary 
alloys. To facilitate clear comparison in these figures, only extre-
mal values for Young’s modulus along [100] and [111] direc-
tions are given in the same plot, whereas those along [110] are 
not included, which fall somewhere in the middle of the pack. 
However, in Supplementary Information Tables S1, S2, and S3, 
the numerical values of Young’s modulus for each composition 

(a) [100] (b) [110] (c) [111]

Figure 1:   Atomic arrangement in quinary (FeNiCrCuCo) alloys as viewed along crystal directions (a) [100], (b) [110], and (c) [111]. View is normal to the 
respective direction.
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Figure 2:   Chart of Young’s modulus (GPa) plotted against the temperature (K) for various compositions in the (a) ternary alloys, (b) quaternary alloys, 
and (c) quinary alloys. Straight lines correspond to the [111] direction, whereas dashed lines correspond to the [100] direction.
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corresponding to Fig. 2 are presented, which includes values 
along the [110] direction.

As compared to deformation along the [100] direction, the 
Young’s modulus and overall stability to temperature change 
consistently improved in all alloys when deformation was along 
the [111] direction. For all HEAs except FeNi70Cr, Young’s 
modulus (E) along different crystallographic directions reveal 
a common trend, i.e., E111 > E110 > E100, which is also observed 
in reported trends for metals [53], alloys [54], ceramics [55], 
and aluminum nitride [56]. Although the particular reasons for 
departure from this observed trend are not obvious, there are 
some basic effects that could potentially explain this anomaly. 
In ternary FeNiCr alloys, Ni is the smallest element. In addi-
tion, the planar packing density of [110] is the lowest among the 
three crystallographic directions considered. A combination of 
these two effects lead to significant relaxation in the FeNi70Cr 
alloys, which could possibly influence the Young’s modulus since 
similar effect of atomic relaxation on elastic properties has been 
reported in Ni nanofilms [57].

In ternary alloys [Fig. 2(a)], along the [100] direction, equi-
atomic and nickel-dominant alloys show somewhat enhanced 
modulus at lower temperatures, whereas at higher temperatures, 
high-concentration iron alloys show superior modulus. This is 
due to the high-concentration iron alloys having the greatest sta-
bility of the ternary alloys. High-concentration chromium alloys 
have a reduced modulus when compared to the other ternary 
alloys along the [100] direction.

When the deformation was applied in the [111] direc-
tion, iron-rich alloys again displayed the greatest modulus, 
while nickel-rich alloys shifted to having the lowest values. The 
reduction in rank for nickel is offset by its superb resistance 
to temperature changes. When comparing the Young’s modu-
lus at 100 K to that at 1000 K, the modulus remains relatively 
unchanged, with a difference of 2.28% from maximum modulus 
to the lowest modulus. The equiatomic and high-concentration 
iron alloys both demonstrate an enhancement in stability when 
compared to deformation along the [100] direction. The equia-
tomic alloys exhibit an increase in stability of roughly 21% and 
high-concentration iron alloys demonstrate an increase of 8%. 
The high-concentration chromium alloys displayed similar 
performance as the equiatomic alloys from room temperature 
through roughly 700 K, after which, the modulus decreased at a 
faster rate than the equiatomic alloys.

In quaternary alloys [Fig.  2(b)], along the [100] direc-
tion, the modulus for each alloy decreases with the addition 
of cobalt into the system. High-concentration iron alloys dem-
onstrate enhanced modulus at lower temperatures, while this 
enhancement transitions to high-concentration nickel alloys at 
temperature 300 K and above. High-concentration nickel alloys 
show the greatest stability of any alloys along the [100] direc-
tion, changing 14.9% over the 1000 K temperature range. The 

iron-dominant quaternary alloys experience a massive reduction 
in stability, changing by roughly 40% over the same temperature 
range. Cobalt- and chromium-dominant alloys showed the low-
est modulus of quaternary alloys in the [100] direction.

Along the [111] direction, high-concentration nickel alloys 
reveal superior modulus across the entire temperature range as 
well as an increase in stability when compared to its [100] defor-
mation (14.9–14.1%). Iron-dominant quaternary alloys along 
the [111] direction exhibit a massive reduction in modulus when 
compared to its ternary counterpart, but displayed superior 
stability, changing only 4.6% when increasing the temperature 
from 100 to 1000 K. From the ternary nickel-dominant alloy and 
the quaternary iron dominant system, a trade off in modulus 
and stability is present along the [111] direction. Cobalt-rich 
alloys demonstrate a relatively consistent modulus from 100 K 
through 400 K, but were not stable to elevated temperatures as 
both moduli depreciated considerably after 500 K.

As shown in Fig. 2(c), addition of copper into the alloys 
allowed the testing of quinary systems. Along the [100] direc-
tion, the high-concentration nickel alloys showed the greatest 
modulus. It also experienced a reduction in stability (roughly 
an 8% decrease) when compared to the ternary and quaternary 
nickel-dominant alloys. Each alloy demonstrated a further 
decrease in Young’s modulus when compared to its respective 
ternary and quaternary counterpart.

When deformation was applied along the [111] direction, 
high-concentration nickel alloys exhibited superior stability, 
changing 3.5% over the tested temperature range. When com-
pared to its quaternary counterpart, the quinary iron-dominant 
alloys had an increase in stability of 1.1%. The nickel-based 
alloys again outperformed all other quinary alloys in terms of 
greatest overall elastic modulus across all temperatures chang-
ing only 12.8% along the temperature gradient. The biggest 
improvement observed was with the high-concentration cobalt 
alloys, which displayed the second greatest modulus over all 
temperatures behind only the nickel-dominant alloys. However, 
its stability was somewhat lackluster (20.1%). Copper-dominant 
quinary alloys had the lowest modulus across all temperatures as 
well as a similar stability to the cobalt-dominant alloys (19.1%).

Physical attributes vs Young’s modulus

Utilizing enthalpy of mixing, entropy of mixing, atomic size dif-
ference (ASD), and valence electron configuration (VEC), the 
change in elastic modulus and thermal stability can be explained. 
Using calculated values from Takeuchi et al. for enthalpy of mix-
ing for atomic pairs [58] and the equations outlined by Guo et al. 
[13], these four values were calculated for the alloys studied. 
Enthalpy and entropy of mixing are used to satisfy the Gibbs free 
energy equation outlined in the introduction. Table 1 reports 
the alloys tested, and their calculated thermodynamic values 
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as well as reiterating the maximum Young’s modulus for each 
crystallographic directions.

To uncover the trends in results presented in Table 1, we 
attempted to understand the dependence of Young’s modulus 
on VEC, ASD, and Gibbs free energy. Finding trends concern-
ing E100 was first attempted, and as shown in Supplementary 
Information Fig. S1, an insignificant correlation between ASD, 
VEC, and Gibbs free energy and Young’s modulus was found. 
When switching from [100] crystallographic direction to [111] 
in the FCC solid, a reduction in surface energy is anticipated, 
reducing the overall energy, giving a more stable structure [59]. 
With a reduction in surface energy, enthalpy and entropy will 
play a larger role and thus the Gibbs free energy, will have a 
larger effect on Young’s modulus of the alloy. When deforma-
tion along the [111] direction was measured, clear trends were 
observed. VEC and ASD become more actively correlated with 
the Young’s modulus, whereas the correlation with Gibbs free 
energy greatly increases, which is evident in Fig. 3.

To further test the reduction of external energy contributions 
and their effects on the Young’s modulus, further testing was done 
at 0.15 K. An increase in the correlation of VEC, ASD, and Gibbs 
free energy was observed (Supplementary Information Fig. S2). 
These differing correlations show that the Young’s modulus is con-
nected to various physical attributes of the alloys. Each attribute 
contributes to the overall modulus, wherein the contribution from 
Gibbs free energy is the greatest, followed by ASD and VEC.

The prominence of Gibbs free energy as a descriptor vali-
dates that the stabilities of HEA are primarily governed by the 
interplay between the enthalpy and entropy of mixing. Fig-
ure 4(a) shows the Young’s modulus along the [111] face as a 
function of entropy. An inverse relationship emerges between 
entropy and the Young’s modulus, which contradicts the fun-
damental idea of entropy being a dominant driving force for 

stability. When comparing the equiatomic (increased entropy) 
alloys to their non-equiatomic counterparts, a near aver-
age Young’s modulus is observed. This demonstrates that the 
entropy of mixing could offset the Young’s modulus if one were 
interested in utilizing a metal with a lower Young’s modulus 
that offers some other enhanced feature. Figure 4(b) depicts 
the inverse relationship of the Young’s modulus as a function of 
enthalpy. This graph correlates strongly to the Gibbs free energy 
trend and shows that the enthalpy of mixing is a prominent fac-
tor in determining the stability of multicomponent alloys. Given 
the discrete nature of the entropies in the systems studied, we 
took a deeper look into the Young’s modulus as a function of 
enthalpy for the quinary system while holding entropy constant. 
The results indicate that given similar entropies, the Young’s 
modulus of the quinary alloy is strongly governed by its enthalpy 
of mixing (Supplementary Information Fig. S3). Overall, these 
results reveal that enthalpy is a vital thermodynamic quantity 
that plays a somewhat greater role than entropy in governing 
the stability of multicomponent alloys considered in this work.

Machine learning

Starting with the prediction of the [111] direction, the set of 
elementary features are pruned for accuracy and bias through 
backwards stepwise selection. This results in a total of four 
selected features: atomic radius (AR), VEC, cohesive energy 
(CE), and shear modulus (SM). Note that mean AR feature dif-
fers from the previously discussed ASD, but describes similar 
behavior since the ASD is just the ratio of the atomic radius vari-
ance and mean. The addition of CE and SM shows how the vari-
ance in the Young’s modulus is well represented by atomic strain. 
The automatic tuning of the smoothing functions shows that 
only CE exhibits a significant non-linear effect with an effective 

TABLE 1:   VEC, ASD, entropy (J/K), 
enthalpy (kJ), and maximum 
Young’s modulus (E111, E110, or E100) 
for each crystallographic direction 
for all alloys studied.

Composition VEC ASD Entropy (J/K) Enthalpy (kJ) E111 (GPa) E110 (GPa) E100 (GPa)

FeNiCr 7.92 1.04 9.13 − 4.36 350 306 167

Fe70NiCr 8 0.25 6.81 − 1.89 385 259 153

FeNi70Cr 9.1 0.18 6.81 − 3.87 283 323 173

FeNiCr70 6.9 0.23 6.81 − 3.54 351 271 121

FeNiCrCo 8.25 0.3 11.53 − 3.75 344 287 125

Fe64NiCrCo 8.12 0.31 8.72 − 1.86 283 277 155

FeNi64CrCo 9.16 0.21 8.72 − 3.11 375 308 137

FeNiCr64Co 7.08 0.23 8.72 − 3.84 343 263 104

FeNiCrCo64 8.64 0.27 8.72 − 2.12 366 265 85

FeNiCrCoCu 8.8 1.03 13.38 3.20 300 256 121

Fe60NiCrCoCu 8.6 0.88 10.21 2.60 261 239 131

FeNi60CrCoCu 9.4 0.78 10.21 − 0.20 350 293 141

FeNiCr60CoCu 7.4 0.78 10.21 0.80 321 253 108

FeNiCrCo60Cu 8.9 0.74 10.21 1.00 345 255 89

FeNiCrCoCu60 9.9 1.22 10.21 7.8 234 196 92
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degrees of freedom of 2.9. The importance of the linear features 
result in the following equation:

resulting in 97.3% of the variation being explained when com-
bined with the CE non-linearities. For example, for every one 
increase in the mean atomic radius, the Young’s modulus will 
increase by 184. As such, these relationships provide direct and 
interpretable prediction of the Young’s modulus. When the 
model is applied to the validation data, the Root Mean Square 
Error (RMSE) results in a value of 0.19 with an R2 of 0.96 for the 
observed vs predicted Young’s modulus.

As the GAM model only takes the elemental features into 
account, rather than the weight fraction and composition, fur-
ther analysis is performed on the residuals to verify the physics 
are being captured. First, the residuals are subset by the existence 
of each element in a sample. An Analysis of Variance (ANOVA) 
is applied to the subset MSE to reveal that the samples includ-
ing Fe have a significant reduction in error compared to the 
other elements. More specifically, the Fe sample MSE is 0.025 
compared to the overall MSE of 0.036. Next, each sample is a 
subset by the total number of elements within the composition. 
Again, ANOVA is applied to determine if there is a significant 
difference in errors between composition, but the test fails to 

(3)y = −19077+ 184AR − 175VEC− 30SM,

reject the null hypothesis. Finally, when an OLS is applied to 
the residuals where the predictors are the individual element 
weight fractions, the regression coefficients indicate that the Fe 
and Cu samples tend to be underpredicted, the Cr and Ni are 
overpredicted, while Co does not significantly impact the model. 
This indicates that the overpredicted samples in the observed vs 
predicted of the validation data shown in Fig. 5 could be poten-
tially due to not capturing all of the Cr and Ni effects. However, 
with an overall R2 of 0.05 in the residual OLS model, the GAM 
model captures most of the variance (97.3%) with respect to the 
Young’s modulus while considering the elemental and compo-
sitional influence.

To verify the accuracy of the GAM model across all planes, 
GAM is compared to several other common machine learning 
models. More specifically, these models include Multi-layer Per-
ceptron (MLP) with four nodes and the tanh activation function, 
random forest (RF) with 500 trees, and support vector machine 
(SVM). As reported in Table 2, each respective model is trained 
using the same original set of features and compared against the 
ability to predict on the validation data set. As a result, the GAM 
model outperforms the other models with respect to the RMSE 
and R2 of the validation data. The MLP does well in training the 
limited number of samples, but overfits on the validation data. 
Furthermore, when examining the residuals within the training 
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Figure 3:   The maximum Young’s modulus (E111) along the temperature gradient as a function of (a) VEC, (b) ASD, and (c) Gibbs free energy.
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data set, RF and SVM exhibit poor prediction of the Young’s 
modulus as it deviates from the mean similar to that found in 
machine learning model development (‘Methods’ section).

Discussion
One of the most crucial concerns while building a machine 
learning model is the availability of sufficient quantities of 
training data that span the entire design space. If the training 
data are clustered around one or several specific regions of the 
design space, machine learning might suffer from lower accu-
racy in other parts of the design space. Selective to specific 

alloys and compositions, clustered experimental data also 
represent the current state among the physical metallurgy 
community. This situation can be overcome by employing 
atomistic simulations such as molecular dynamics to gen-
erate training data [9, 10]. By initially simulating the HEAs 
with extreme variances in the atomic weight percent for each 
system using molecular dynamics, it allowed for the machine 
learning data set to investigate a wide range of alloys. This is a 
powerful approach for rational materials design since machine 
learning reduces the time and computational resources needed 
to test a large number of systems as compared to using molec-
ular dynamics.
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Figure 4:   (a) Young’s modulus as a function of entropy. The red squares represent the ternary alloys, green triangles represent quaternary alloys, and 
blue circles represent quinary alloys. (b) Young’s modulus as a function of enthalpy.
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Each property shows moderate correlations towards the 
overall physical property. This is promising for alloy develop-
ment because it shows that each metric plays a role in the struc-
ture–property relationship of a material allowing for greater 
refinement when tuning a material to the desired properties. The 
most correlated relationship is the Gibbs free energy with the 
Young’s modulus. The Young’s modulus of the alloys drop when 
increasing the energy of the system. Increasing the energy of the 
system imparts more kinetic energy into the individual atoms, 

increasing equilibrium bond length and reducing the barrier of 
stress needed to overcome the bond dissociation energies. This 
causes alloys with an elevated Gibbs free energy contribution to 
more easily deform to an applied stress.

ASD is the next most correlated metric when concerning 
the Young’s modulus. When lattice distortion was first discussed 
as playing a major role in enhancing the physical properties of 
HEAs, ASD was thought to be a leading contributor. Nonethe-
less, studies have shown that ASD itself is not [10]. ASD only 

Figure 5:   The observed vs predicted plot of the validation data Young’s modulus colored by the total number of elements in a sample composition. 
Subfigures (a–d) correspond to binary, ternary, quaternary, and quinary systems, respectively. The overall R2 for the [111] direction is 0.96 and a 
validation RMSE of 0.19. In this case, “observed” indicates values obtained using molecular dynamics simulations.

TABLE 2:   The comparison of 
multiple machine learning 
algorithms in predicting the held-
out validation data.

Plane Training RMSE Validation RMSE Validation R2

100 110 111 100 110 111 100 110 111

MLP 0.11 0.05 0.07 0.48 0.39 0.49 0.71 0.84 0.75

RF 0.28 0.20 0.26 0.73 0.45 0.50 0.32 0.79 0.74

SVM 0.59 0.30 0.01 0.77 0.46 0.44 0.25 0.78 0.80

GAM 0.50 0.37 0.16 0.47 0.36 0.19 0.72 0.86 0.96
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considers atomic radius and not the desired bond lengths of the 
nearest neighbor and the next nearest neighbors. Repulsion of 
atoms can occur if the lattice constant is lower than the expected 
metallic bond length [60]. This in turn will cause an attraction 
towards the next nearest neighbor as the lattice constant will 
be greater than the expected bond length. These electrostatic 
forces will cause an atomic-level pressure on the atom observed. 
Though the net force will be zero, the individual stresses further 
cause distortion to the lattice as the individual elements deviate 
from their Bravais lattice sites. These local atomic-level pres-
sures are correlated to the charge transfer among the neighbor-
ing atoms and thus the electronegativity differences between the 
adjacent atoms also play a role [61]. The localized stresses will 
increase the resistance to the motion of the lattice dislocations 
during deformation. During the elastic deformation regime, 
the bonding between atoms impacts the Young’s modulus. If 
increasing the ASD increases the local atomic stress, this bond-
ing will be slightly disrupted and the Young’s modulus will 
decrease, supporting the inverse relationships found in Supple-
mentary Information Figs. S1(b) and S2(b).

The role of VEC in phase stability is the determination of 
whether an FCC, BCC, or mixed structure will dominate in 
the solid-phase solution. A VEC value greater than or equal 
to 8.0 favors an FCC lattice structure while a VEC value less 
than or equal to 6.7 favors BCC. Values in between represent 
an intermixed lattice structure comprised of both FCC and 
BCC components [13]. While every alloy tested is above the 6.7 
threshold, a few alloys were tested that may have BCC character 
if not forced to fit a FCC lattice (i.e., high-concentration chro-
mium alloys). Supplementary Information Figure S4 depicts the 
same trends outlined in the ‘Results’ section, showing that the 
inclusion of these lower VEC alloys has no significant impact 
on the overall results. The VEC contribution towards Young’s 
modulus increases, while the Gibbs free energy and ASD slightly 
decreases when considering FCC-dominated structures.

Previous work has shown that tuning the VEC can directly 
effect physical properties of the alloys. Chen et al. explored the 
effects of decreasing the VEC of an FCC HEA by increasing the 
concentration of nickel in an AlCoCrFeNi alloy and increasing 
the VEC in a BCC structure through addition of molybdenum 
in a CoCrFeNiCu system [62]. They found that decreasing the 
VEC in an FCC favoring alloy and increasing it in a BCC alloy 
promotes dual phasic systems that enhanced the compressive 
fracture strain of the respective materials while exhibiting suit-
able ductility. Jin et al. designed eutectic HEAs that showed 
improved stability by tuning VEC and enthalpy of mixing [63]. 
Li et al. found that the Young’s modulus of polycrystalline CrM-
nFeCoNi HEAs decreases while increasing the VEC [64]. Our 
results support the findings of Li et al. and provide further evi-
dence of the role of VEC in influencing the Young’s modulus 
of HEAs.

By merging the machine learning approaches with high-
throughput molecular dynamics simulations, we have developed 
a quantitatively accurate model to predict elastic moduli of HEA 
according to the physical descriptors based on the composition. 
The generated training set using molecular dynamics simula-
tions homogenously sample elastic properties of a part of the 
constituent ternary, quaternary, and quinary systems. Explain-
able machine learning models have offered useful insights into 
the underlying physics that govern the behavior, which can 
guide us for adjusting the compositions and features while 
designing new HEAs with the desired target properties. From 
the regression coefficients, we can ascertain the most important 
features which are related to the elastic modulus values—the 
mean radii, VEC, shear modulus, and cohesive energy. From 
molecular dynamics simulations, we observe that high weight 
percentage values of Fe and Ni content lead to higher elastic 
modulus values which concur with the machine learning efforts.

From the results, we infer that as the number of elements 
increases, the interactions between the elastic modulus values 
and features become increasingly nested, but tractable as long as 
non-linearity is accounted. Hence, we require non-linear models 
to capture and represent these interactions. In the future, more 
physical and chemical features can be included to make the 
models more robust and accurate. The proposed and discussed 
method of predicting material property can help enable quicker 
deployment and wider-scale use of trained models in the design 
of new high-temperature materials.

Conclusions
By varying equiatomic and non-equiatomic FCC HEAs, gen-
eral trends for future alloy development have been reported. 
The diverse alloys were minimized to an FCC lattice structure 
and subject to uniaxial compression. Through the utilization 
of thermodynamic properties, fundamental relationships were 
established between the elastic modulus and varying known 
alloy metrics. It was shown that by measuring the Young’s 
modulus along the [111] crystallographic direction the over-
all energy of the alloy will reduce allowing one to observe the 
trends about structure–property relationships. By further reduc-
ing external energy contributions via lowering the simulation 
temperature to near absolute zero, Gibbs free energy, enthalpy, 
entropy, VEC, and ASD exhibit an inverse relationship with 
the Young’s modulus; an increase in any of these metrics would 
decrease the Young’s modulus. Four features, namely atomic 
radius, VEC, cohesive energy, and shear modulus play a vital 
role in predicting elastic modulus of HEAs. These findings fur-
ther demonstrate that multi-principle element systems garner 
their interesting properties from a number of different sources. 
We reveal in general, compositions that exhibit higher Young’s 
modulus. Fe-dominant ternary alloys show superior elastic 
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modulus, whereas Ni-dominant quaternary and quinary alloys 
demonstrate enhanced elastic modulus. By utilizing the connec-
tion established in this work between mechanical properties and 
differing metrics, future alloy development can be more easily 
tuned to achieve the desired properties.

Methods
Atomistic simulations

Atomistic simulations with 3D periodic boundary conditions 
(PBC) were conducted within the framework of Large-scale 
Atomic/Molecular Massively Parallel Simulator (LAMMPS) 
[65]. The interatomic potentials governing minimization and 
physical property testing of each structure were based off the 
embedded-atom method (EAM) [66, 67]. The total energy (Etot) 
of the system takes the form

where F represents the embedding energy, ρβ represents the 
atomic electron density, ∅α,β is the short-range pair potential 
interaction and α , and β are the element types of atoms i and 
j, respectively. The interatomic potentials implemented in this 
work to simulate material systems FeNiCr, FeNiCrCo, and FeNi-
CrCoCu were taken from Farkas et al. [68]

Surface energy varies with orientation as do other mechani-
cal properties [69]. In cubic materials, the main elastic anisot-
ropy axes are the crystallographic [100], [110], and [111] direc-
tions. To establish the structure–property relationships, it was 
imperative to perform the calculations for each composition 
along these three directions. Fundamentally, among these three 
directions, [100] and [111] are where the Young’s modulus are 
at extremal values [70]. As discussed earlier, this trend is also 
observed in the present work. As a result, while we have com-
puted Young’s modulus along these three axes, for brevity and 
clarity in figures, we focus on data along the [100] and [111] 
directions.

To study various HEA compositions, large supercells were 
implemented, which resulted in 4000 atoms, 8000 atoms, and 
16,000 atoms in supercells for [100], [110], and [111] oriented 
structures, respectively. The atoms were randomly placed on an 
FCC lattice structure with the desired atomic fraction for each 
element. Each structure was minimized via the same process, 
wherein energy minimization was performed using a stopping 
tolerance of 10−6 eV for the energy differential between each 
timestep. The system was annealed, wherein it was brought 
to 1000 K at a rate of 0.001 K  fs−1 and subsequently cooled 
to 10−5 K using the Langevin function with a microcanonical 
(NVE) ensemble at a rate of 0.0002 K fs−1. Finally, the structure 
was equilibrated using an isobaric-isothermal (NPT) ensemble, 

(4)Etot = Fα(
∑

j �=i

ρβ
(

Ri,j
)

)+
1

2

∑

j �=i

∅α,β

(

Ri,j
)

,

followed by an NVE ensemble over 1 ps each. Each minimized 
structure was visually assessed using Visual Molecular Dynam-
ics software prior to additional testing [71].

It is imperative to note that the EAM interatomic potential 
used in this work was developed to model FCC near-equiatomic 
mixtures of FeNiCrCoCu [68]. Since we have used this potential 
to mimic non-equiatomic compositions, all simulated composi-
tions were tested to ensure that they are stable FCC structures 
as explained later using the radial distribution function (RDF) 
analysis. In addition, as explained earlier, a robust scheme of 
annealing was implemented for each composition to test the 
adequacy of the EAM potential.

We further performed RDF analysis [Fig. 6] to ensure the 
structural stability and verify if the structures were significantly 
disordered from the FCC lattice. RDF provides a numerical 
description of the arrangement of atoms relative to an arbitrary 
central atom. In crystalline materials, the general shape of an 
RDF plot can be used to identify the crystal system due to the 
ordered nature of individual unit cells. An FCC unit cell is more 
densely packed than a BCC unit cell, producing more peaks 
of high probability within a certain range of radii. As a result, 
molecular dynamics simulations can be structurally tracked and 
verified by comparing the RDF plots of HEAs to standard plots 
of an FCC element (e.g., nickel) and a BCC element (e.g., iron). 
Since we have simulated FCC-based HEAs, closer analysis of the 
widths and heights of the RDF peaks gives an indication of how 
well the structure compares to an ideal FCC lattice. A narrower 
peak is a result of a better FCC fit, while a broader peak implies 
more atoms are displacing from their ideal FCC locations.

The RDF calculations for the ternary, quaternary, and qui-
nary structures show convincing patterns. Perhaps, the most 
important realization is that none of the generated structures 
deviate from their FCC behavior at any temperature, ranging 
from 0 to 1000 K. As shown in Fig. 6, the plots of g(r)—the 
calculated value of the total RDF at a given radius—versus 
r all show five distinct peaks within a range of 7 Å. Respec-
tive coordination numbers are also given for all cases and 
elemental RDF is shown for one of the cases. Analysis of a 
pure Ni and a pure Fe shows that five peaks are representa-
tive of an FCC structure, whereas three peaks imply a BCC 
lattice. However, an increase in temperature is accompanied 
by a decrease in peak sharpness and the occurrence of overlap 
in adjacent probability peaks. While at 0 K [Fig. 6(a, c)], the 
space between peaks has a zero percent chance of being occu-
pied by an atom, the outer peaks lack this forbidden region 
at higher temperatures. Additionally, the graphs at 800 K 
[Fig. 6(b)] and 400 K [Fig. 6(d)] display significantly shorter 
and broader peaks than those at 0 K of the same composition, 
a trend explained by the tendency for atoms to vibrate as their 
internal energy increases and phonon loses coherence with 
temperature. As a particle vibrates more vigorously, there is 
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a lower chance it will be found in the ideal FCC position. In 
general, as evident in Fig. 6, the RDF plots show that the vari-
ous equiatomic and non-equiatomic compositions used in the 
present work are stable FCC structures. When comparing dif-
ferent compositions to each other, the same trends take shape 
at each temperature. For each of the three categories of com-
pounds—ternary, quaternary, and quinary—the Ni-dominant 
structures exhibit the narrowest RDF peaks, indicative of a 
very stable FCC structure. In contrast, the Fe-dominant struc-
tures as well as the equiatomic alloys (for example, equiatomic 
FeNiCr) consistently have the broadest and shortest peaks, 
by a significant margin. One exception to this trend is the 
Cu-dominant quinary alloy, wherein RDF plot shows abnor-
mally short peaks. In general, the RDF analysis indicates that 
Ni-dominant alloys are most stable in an FCC arrangement, 
followed by Co, Cr, Fe, and Cu.

Each alloy was fully minimized, and later subjected to 
a compressive Young’s modulus simulation at temperatures 
ranging from 100 to 1000 K. Thermal effects were mitigated 
using the NPT ensemble for each structure. The simulation box 
was deformed along the x-axis at an engineering strain rate of 
0.001% fs−1, and the change of pressure (stress) was monitored 
in order to simulate the elastic deformation range of the alloy. 
From the change in pressure and change in the size of the simu-
lation box, Young’s modulus was calculated from the stress vs. 
strain curve according to the classical mechanics’ definition:

where σ is the stress due to the deformation, and ε is the strain 
present in the system. An example for calculation of Young’s 
modulus using the stress vs. strain curve is given in Supple-
mentary Information Fig. S5. Final results reported herein were 
obtained by using three different initial configurations for each 
data point have discrepancies, which are shown by the use of 
error bars.

Machine learning and design of experiments

Data set

We consider alloys that belong to the FexNiyCrzCouCuw systems, 
where the weight percentage values of each element specified by 
x, y, z, u, and w are constrained by x + y + z + u + w = 100% at 5% 
weight increments. The compositions span each ternary, qua-
ternary, and quinary system resulting in a total of 877 samples. 
The weighted compositions were incorporated as initial, starting 
randomly arranged cell structures on a per-atom basis. A rig-
orous assessment was performed to ensure randomization was 
truly random, and sensitivity analysis was considered. The ran-
domization seed value was altered for every single atomic struc-
ture, which ensured that the starting configurations were indeed 
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Figure 6:   Total RDF and coordination number plots for (a) Cr-dominant tertiary HEA at 0 K, (b) Ni-dominant quaternary alloy at 800 K, (c) Cu-dominant 
quinary alloy at 0 K, and (d) elemental RDF and coordination number for Fe-dominant quinary alloy at 400 K.
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different. This aspect of randomization was also visualized for 
several structures, wherein the variation in starting configura-
tions was evident as well as the random placement of atoms on 
the FCC lattice was verified. Importantly, the presence of error 
bars in the results is evidence that the starting configurations 
generated via this process were dissimilar. In addition, elemental 
coordination number analysis [Fig. 6(d)] was also performed 
for all alloys, which reveal that the atomic fractions are aptly 
accommodated. Pressure displacement values are converted to 
stress–strain based on their elastic modulus values, described in 
detail by Plimpton et al. [72]. Results of the simulations which 
were performed at room temperature (300 K) were considered 
for building the machine learning models.

Machine learning model

An important goal of implementing machine learning is to pre-
dict the Young’s modulus with a minimal number of training 
samples while using data that can be collected with little effort. 

As such, the features used in building the predictor matrix will 
be collected from summary statistics or transformations of ele-
mental properties based on the weight fraction. More specifi-
cally, Wen et al. [39] introduced a 20 feature set for predicting 
hardness values of HEAs, 11 of which described the formation of 
different phases (i.e., phase parameters), and the other nine were 
related to the mechanical properties (i.e., mechanical param-
eters). Note that the features generated will use many of the same 
elemental properties but transformed in a different manner. As 
such, the features must be reduced in the final machine learning 
model to account for any multicollinearity. The Young’s modulus 
is the response variable that will be predicted and the only mate-
rial property that will be calculated from molecular dynamics.

To ensure the robustness of the machine learning model to 
predict multiple compositions, a random subset 90% of the total 
number of synthetic samples are used as a training data set while 
the remaining samples are held-out as a validation. Each feature 
in both sets of data are normalized by their respective mean and 
standard deviation from the training data set. This ensures there 

Figure 7:   Plot of the residuals fitting Young’s modulus using an ordinary least squares model over all simulated compositions. Subfigures (a–d) 
correspond to binary, ternary, quaternary, and quinary systems, respectively. The residuals clearly show a non-linear trend within the data.
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is no information in the validation data set that could influence 
the training data. Choice of the machine learning model must be 
able to account for potential non-linear behavior in the Young’s 
modulus. This negates many of the standard machine learning 
approaches due to the assumption of linearity. For example, in 
Fig. 7, when Ordinary Least Squares (OLS) regression is applied 
to the prediction of the [111] direction Young’s modulus, there 
are clear signs of non-linearity.

Furthermore, the model must be interpretable, i.e., a well-
defined relationship to the Young’s modulus may be understood 
with a small subset of features. Due to these constraints, the 
algorithm chosen in this application is the Generalized Additive 
Model (GAM) [73]. The GAM is an extension of the OLS model, 
but includes non-linear effects, i.e.,

 where E is the Young’s modulus, si is a smoothing spline, and 
Xi is a feature. In this paper, each smoothing spline is optimized 
using a combination penalized smoothing regression and the 
restricted maximum likelihood [74]. The interpretability of 
the model is addressed through the combination of the linear 
regression coefficients, the statistical significance of a spline 
smoother, and the selection of the features through backward 
stepwise selection [75]. Note that this process does require inter-
action with the user to finalize the model, but ensures interpret-
able results.
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