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Abstract

The interpretability of medical image analysis models is considered a key research field.
We use a dataset of eye-tracking data from five radiologists to compare the outputs of
interpretability methods against the heatmaps representing where radiologists looked. We
conduct a class-independent analysis of the saliency maps generated by two methods se-
lected from the literature: Grad-CAM and attention maps from an attention-gated model.
For the comparison, we use shuffled metrics, which avoid biases from fixation locations. We
achieve scores comparable to an interobserver baseline in one shuffled metric, highlighting
the potential of saliency maps from Grad-CAM to mimic a radiologist’s attention over an
image. We also divide the dataset into subsets to evaluate in which cases similarities are
higher.

Keywords: Interpretability, XAI, Chest X-rays, Radiology, Eye Tracking, Gaze, Saliency
Maps, Grad-CAM, Attention Gated Network

1. Introduction

The interpretability of deep learning models is an essential property for their adoption in
the medical field (Kelly et al., 2019). One of the most used explanation methods in this
field (Reyes et al., 2020) is Grad-CAM (Selvaraju et al., 2017). Grad-CAM uses the gradient
of the network’s outputs with respect to a spatial feature map to generate a posthoc coarse
saliency map highlighting the areas of most importance for each of the network’s outputs.
Spatial attention maps are another method for producing saliency maps. They are included
in the forward pass of networks and are self-explanatory masks that multiply feature maps
of a network to select the most important regions for a network’s decision (Schlemper
et al., 2019). Mimicking humans is one of the motivations for their use (Xu et al., 2015).
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We propose to quantify1 the similarity between human attention and the saliency maps
produced by these methods.

We use the REFLACX dataset (Bigolin Lanfredi et al., 2021; Goldberger et al., 2000;
Lanfredi et al., 2021), which focuses on chest x-rays (CXRs), to build eye-tracking (ET)
maps from radiologists’ gazes and compare them with saliency maps from abnormality
classification models. Figure 1 shows examples of ET maps and generated saliency maps.
Differences are expected between them. Whereas a radiologist looks at multiple locations
to inspect for abnormalities, interpretability methods are expected to highlight the areas
where changes would cause a large impact on the output, i.e., abnormalities.

There are also reasons to believe humans and models might produce similar heatmaps.
The low resolution of the Grad-CAM method should provide smooth saliency maps, similar
to the ET maps. When comparing to human heatmaps, Ebrahimpour et al. (2019) showed
the superiority of the similar class activation map (CAM) (Zhou et al., 2016) method.
Since Grad-CAM provides one saliency map per class, we empirically test a few methods
of combining the class saliency map into a single saliency map. Attention maps may be
similar to ET maps since they are intrinsically class-independent and because of their human
attention inspiration.

To better understand the expected range of similarity values, we calculate an upper
bound by checking interobserver agreement and a lower bound by using a binary segmen-
tation of the lung region. Because of the close proximity of the two bounds in traditional
metrics, we use shuffled metrics to correct for center biases (Bylinskii et al., 2019). There is
a tendency for fixations, i.e., image locations gazed by radiologists, to be in central regions
of the images, and saliency maps that concentrate in these regions, independently of image
content, achieve high scores. Shuffled metrics try to fix this problem and are formulated so
that differences and similarities between heatmaps have different weights on the final scores
depending on how commonly gazed their locations are. Given the structural similarity of
CXRs, we calculate a specific center bias for this task, as shown in Figure 1(d). Finally,
we evaluate the generated saliency map, reaching scores comparable to the interobserver
agreement in one of the metrics. We further divide the dataset into subsets to understand
which ones have a higher or lower similarity. We show that similarities are higher for abnor-
mal CXRs and, in a more detailed subdivision, for parenchymal and pleural abnormalities,
depending on the saliency map being evaluated.

1.1. Related work

In the field of interpretability, a few works have used ET maps to evaluate an explanatory
saliency map (Ebrahimpour et al., 2019; Muddamsetty et al., 2020; Trokielewicz et al., 2019).
Ebrahimpour et al. (2019) collected ET maps from participants listing objects present in
natural images. They compared the data against the interpretability saliency maps for
object-detection models, using the saliency map for the class with the highest score. In
the field of medical images, Trokielewicz et al. (2019) compared the Grad-CAM (Selvaraju
et al., 2017) saliency maps against humans in the task of iris recognition. Muddamsetty
et al. (2020) did similar work for classification tasks of retinal images. These works analyzed
only binary medical tasks and did not evaluate a strong baseline related to the biases present

1. Code at https://github.com/ricbl/etsaliencymaps
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Figure 1: Examples of heatmaps over the respective CXR, and the heatmaps’ color bar. a)
ET map of a radiologist; b) average ET map of the remaining four radiologists;
c) segmentation of the lung region used as a baseline d) average ET map from
all CXRs, center bias (CB), after registration to match the location of the lungs;
e) saliency map for model without attention gates (woAG) generated by Grad-
CAM with uniform weights; f) saliency map for model with attention gates (wAG)
generated by Grad-CAM with uniform weights; g) Attention map 1 (AM1) from
wAG; h) Attention map 2 (AM2) from wAG.

in eye-tracking data. Karargyris et al. (2021) qualitatively checked the Grad-CAM saliency
maps against ET maps in CXRs, but no quantitative analysis was performed. To the best
of our knowledge, our study is the first to perform this quantitative analysis on CXRs.

The field of automatic generation of ET maps uses eye-tracking data as ground-truth
and training data (Bylinskii et al., 2019). We employ the same comparison metrics as this
field, but we do not focus on generating a saliency map that best matches ET maps.

2. Methods

2.1. Grad-CAM

Grad-CAM (Selvaraju et al., 2017) generates a saliency map for each class through the
combination of the last spatial feature maps (LSFMs) of a network and the gradient of the
network outputs with respect to each element of the LSFMs. The saliency map for each
class c is produced by

GCc = ReLU

(∑
k

αk
cLSFM

k

)
, αk

c = GAP

(
∂logit(x)c
∂LSFMk

)
, (1)
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where GCc is the saliency map provided by Grad-CAM for class c, ReLU is a rectified
linear unit, αk

c is a weight for channel k of the last spatial layer of a network, GAP is global
average pooling, logit(x)c is the logit output for the model being evaluated for class c, and
LSFMk are the activations for channel k of the last spatial feature maps of a network. To
combine the GCc from all classes, we use

1∑
c ψc

∑
c

ψc ×GCc, (2)

where ψc is a weight for the saliency map of each class. We consider three ways of choosing
the weights ψc to mix the GCc for each class c:

• Thresholded: uniformly mix the classes that are considered present in the image
based on a threshold on the model’s output, according to

ψc =

{
1, if logit(x)c > 0

0, if logit(x)c < 0
. (3)

If all ψc are 0 for an image, we assign ψc = 1 for the “No Finding” label.

• Weighted: weight the classes using the output of the model, according to ψc = σ(yc),
where σ is the sigmoid function.

• Uniform: uniformly mix all the classes: ψc = 1.

Figure 2: Overall structure of the network with attention gates (wAG). AG stands for
attention gate. The network without attention gates (woAG) follows a similar
architecture, with only LSFM3 input to the GAP operation. LSFM represents
the activation maps used for calculating the Grad-CAM saliency map.

2.2. Attention gates

Figure 2 shows the architecture of the gated convolutional neural network (CNN), including
the location of the attention gates. Figure 3 shows the employed attention gates. Each
attention gate provides a saliency map through its attention map, and the attention maps
can also be combined into a single saliency map through the use of Grad-CAM. Each channel
from the LSFMs on Figure 2 is considered as one of the k channels from Equation (1). The
output from CNN Block 3 in Figure 2 is directed to the attention gates before being called
LSFM3, so that the gradient calculation from Equation (1) is influenced by LSFM3 in only
one of the three CNN branches.
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Figure 3: Operations inside the attention gate (AG). AM stands for attention map.

3. Experiments

Experiments employed CXRs from the MIMIC-CXR-JPG dataset (Goldberger et al., 2000;
Johnson et al., 2019a,b) and eye-tracking data from the REFLACX dataset (Bigolin Lan-
fredi et al., 2021; Goldberger et al., 2000), which contains data collected while radiologists
dictated reports. We used the parts of the REFLACX dataset where the same CXRs con-
tained eye-tracking data for all five radiologists, totaling 91 CXRs. For each of the readings,
one heatmap was generated from the parsed fixations.

3.1. Classification models

We trained two types of models, with (wAG) and without attention gates (woAG). They
were trained and validated using the MIMIC-CXR-JPG dataset. For each type, we trained
five models to calculate the variability of results, which are reported with their standard
deviations. On the classification test set, woAG had an area under the receiver operating
characteristic curve (AUC), averaged over the 14 labels, of 0.774±0.003, whereas wAG had
an average AUC of 0.769±0.004. More details about the training process is presented in
Appendix A.

3.2. Metrics and baselines

ET maps were generated by drawing Gaussians centered in each fixation and combining
them through a sum weighted by the fixation duration. Following Le Meur and Baccino
(2012), the Gaussians had a standard deviation of 1 degree of visual angle in each axis to
represent location uncertainties for each fixation.

From the literature of automatic generation of human saliency maps (Bylinskii et al.,
2019), we selected two metrics to compare saliency maps: normalized cross-correlation
(NCC), i.e., Pearson’s correlation coefficient, and the Borji formulation of AUC (Borji
et al., 2013). The NCC was directly calculated between ET map and generated saliency
map. We used a smooth formulation of AUC, sampling locations from smoothed heatmaps.
For each sampled location, we picked the value of the generated saliency map at that
location as one of the scores of the classifier evaluated by AUC. The locations for positive
examples were sampled from a normalized ET map and for negative examples from the
uniform distribution. We sampled 1000 positive and 1000 negative locations. To reduce the
variability of the scores (Azam et al., 2016) and use the fact that CXRs had ET maps for
five radiologists, we calculated the metrics against the average ET map of all combinations
of four radiologists (1 vs. 4), which were considered the ground truth.
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To have an upper bound for the metrics, we measured interobserver scores. To find a
lower bound, we used an algorithm to segment the lungs and calculated the convex hull of
the segmentations to include the mediastinum and the bilateral hemidiaphragms. Scores
for the baselines are presented in Table 1. Upper and lower bounds were practically the
same for NCC. This small range was probably caused by a strong bias toward having
fixations around the lung area. To correct this bias, we used shuffled metrics (Bylinskii
et al., 2019). For the NCC calculation, we drew from a closely related metric (Bylinskii
et al., 2019), normalized scanpath saliency (NSS), and used the formulation from Gide and
Karam (2016), resulting in

sNCC(GT, SM) = NCC(GT, SM)−NCC(CB,SM), (4)

where sNCC is the shuffled NCC, GT is the ground truth saliency map, SM is the saliency
map being evaluated, and CB is a heatmap representing the center bias in the dataset. For
the shuffled AUC (sAUC), we sampled the locations for the negative examples from CB
instead of uniformly.

Table 1: Scores for the tested methods of generating saliency maps (SM). Averages and
standard deviations are calculated using 455 individual scores for the baselines
and 2275 for the models. We highlight in bold the highest-scoring saliency map
for each metric, excluding the interobserver upper bound.

SM ψc NCC AUC sNCC sAUC
Interobserver (Baseline) 0.632±0.126 0.790±0.042 0.028±0.128 0.558±0.051
Segmentation (Baseline) 0.637±0.107 0.735±0.046 -0.187±0.086 0.505±0.026
Grad-CAM Thresholded 0.252±0.253 0.596±0.109 -0.035±0.112 0.510±0.043
(woAG) Weighted 0.408±0.191 0.683±0.079 -0.060±0.106 0.521±0.046

Uniform 0.437±0.166 0.696±0.070 -0.067±0.104 0.522±0.044
Grad-CAM Thresholded 0.194±0.174 0.583±0.074 -0.002±0.105 0.512±0.036
(wAG) Weighted 0.299±0.173 0.672±0.064 0.027±0.123 0.528±0.044

Uniform 0.343±0.154 0.678±0.066 0.029±0.128 0.529±0.043
AM1 - 0.254±0.141 0.672±0.075 -0.032±0.112 0.514±0.044
AM2 - 0.359±0.160 0.684±0.064 -0.007±0.132 0.522±0.052

We used bounding box annotations for lungs and heart in the calculation of the center
bias in our dataset. We calculated the average bounding box, registered all bounding boxes
to the average, applied the same transformation to the ET map, and combined them to
get an average of the fixations. The resulting center bias is shown in Figure 1(d). For use
in the metrics, the center bias is transformed to match the bounding box location of the
respective CXR.

The results of the shuffled metrics for the baselines are presented in Table 1. The slightly
positive value of the sNCC metric shows that the ET map from each radiologist is slightly
more similar to the average of the other radiologists than to the center bias. The more
extensive range between upper and lower bound baselines shows that considering the center
bias is essential for calculating a meaningful score.
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3.3. Results and discussion

Table 1 reports the metrics for all the tested methods. Not considering the baselines, the
woAG model had the highest scores for the non-shuffled metrics and the wAG model for
the shuffled metrics. In both cases, Grad-CAM with uniform ψc had the highest score.
Uniform ψc might have achieved the best results because radiologists have to look for
all abnormalities, including those not found in a particular image. Considering the sNCC
metric, one of the models reached scores almost identical to the interobserver evaluation. For
the AUC metrics, the interobserver evaluations had the highest scores with a good margin,
highlighting that each metric measures different qualities of the heatmaps. Although the
attention maps were not the highest scoring saliency maps, the Grad-CAM method had the
highest shuffled scores when applied to the wAG model, showing a potential advantage of
attention-gated models when compared to human attention.

We also analyzed scores after splitting normal and abnormal cases. Abnormal cases had
a majority of radiologists selecting at least one abnormality for the image. As shown in Table
2, interobserver scores and the scores from a chosen interpretability method were higher
for abnormal CXRs. This difference might have been caused by normal cases not having
an evident area of interest and abnormality locations being areas of longer fixations by
radiologists and stronger saliency for Grad-CAM. The scores for the segmentation baseline
showed almost no change.

Table 2: Scores of baselines and of the Grad-CAM (wAG) with uniform ψc method when
splitting the dataset into normal (N) and abnormal (Abn) CXRs. In parenthesis,
we provide the number of 1 vs. 4 comparisons used to calculate each average.

Metric Label Interobserver (IO) Segmentation Grad-CAM (wAG)
sNCC N -0.056±0.113 (85) -0.173±0.069 (85) -0.047±0.103 (425)
sNCC Abn 0.048±0.123 (370) -0.191±0.090 (370) 0.045±0.128 (1850)
sAUC N 0.532±0.044 (85) 0.504±0.016 (85) 0.497±0.031 (425)
sAUC Abn 0.566±0.050 (370) 0.507±0.027 (370) 0.538±0.042 (1850)

To further understand our results, we separated the labels of the REFLACX dataset
into three types: parenchymal, pleural and cardiomediastinal abnormalities. Parenchymal
abnormalities involve lung tissue and can be located anywhere inside the lungs on frontal
CXRs. Pleural abnormalities involve the membrane enclosing the lungs. On a frontal CXR,
they are more commonly located near the lung apex or hemidiaphragms. Cardiomediastinal
abnormalities are located between lungs, e.g., heart abnormalities. We grouped the labels
to have a higher number of samples. Abnormality types were considered present when at
least three radiologists selected at least one of the labels of the respective type.

Since the same CXR might be associated with more than one type of label, we calcu-
lated linear regression coefficients to evaluate how much each type of label was positively
associated with the scores of each metric. We used the normal/abnormal label and the
presence of each type of abnormality as independent variables, and the similarity scores as
the dependent variable. Results are shown in Table 3. For the shuffled metrics, the intraob-
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server agreement was stronger for pleural abnormalities, followed closely by parenchymal
abnormalities. The scores for the model’s saliency maps were positively correlated mainly
with parenchymal abnormalities. Part of the differences was possibly caused by the penalty
associated with shuffled metrics, because the area associated with some types of abnormal-
ities might be fixated more often by radiologists in the average CXR. As seen in Table 3,
when comparing the scores from shuffled and non-shuffled metrics, cardiomediastinal ab-
normalities were the most penalized for intraobserver agreement, and pleural abnormalities
for the model’s saliency maps. Part of the difference between types of labels might also be
explained by the size of their visual evidence and how informative they are. Less ambiguous
labels, such as “Enlarged cardiac silhouette” (the most common cardiomediastinal label),
might have radiologists and models using fewer fixations to make their decision, leading to
a higher variance in the location of the fixations. Location variance might also be increased
for labels that occupy a large screen area, e.g., “Enlarged cardiac silhouette”. The average
areas and uncertainties for each label and type of labels are provided in Appendix B.

Table 3: Linear regression coefficients for each type of abnormality, for interobserver (IO)
and Grad-CAM (wAG) with uniform ψc saliency maps (SM). Instead of standard
deviations, we provide standard errors. Regression was performed with 455 points
for IO scores and 2275 points for wAG.

Metric SM Parenchymal Pleural Cardiomediastinal
sNCC IO 0.023±0.016 0.032±0.014 -0.021±0.013
sNCC wAG 0.069±0.007 -0.017±0.006 -0.014±0.006
sAUC IO 0.009±0.007 0.017±0.005 -0.013±0.005
sAUC wAG 0.020±0.002 0.007±0.002 -0.006±0.002
NCC IO 0.026±0.016 0.027±0.014 0.013±0.013
NCC wAG 0.075±0.008 0.041±0.007 0.003±0.007
AUC IO 0.006±0.005 0.016±0.004 0.004±0.004
AUC wAG 0.030±0.004 0.034±0.003 0.003±0.003

4. Conclusion

Using a dataset of ET data from five radiologists, we showed that, when controlling for
center bias, interpretability maps can be as similar to the ET maps from radiologists as ET
maps from other radiologists. In other words, although the tested saliency maps are not
good at highlighting areas fixated regularly in the average CXR, they excel at highlighting
the specific areas in each CXR that radiologists fixate more than average. In our evaluation,
the Grad-CAM method with uniformly weighted saliency maps of each class produced maps
more similar to the ET maps. The attention-gated model produced saliency maps with the
highest scores, and Grad-CAM outperformed the attention maps. Moreover, higher similar-
ity scores were associated with the presence of abnormalities. Separating the dataset into
types of labels showed that, for CXRs, saliency similarity potentially varies with abnormal-
ity size, ambiguity, and how much the location of an abnormality is commonly fixated.
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Appendix A. Training details for the classification models

We used the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.0001 and a
weight decay of 0.00001. After three epochs without improvement on the validation average
AUC, we multiplied the learning rate by 0.5. We trained with the binary cross-entropy loss
for 75 epochs and with a batch size of 64. The 14 labels and the data split from the
MIMIC-CXR-JPG dataset were used. All images from subjects displayed to radiologists
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were moved to the test set. The training was limited to images filtered as follows: images
without classification labels were discarded; only frontal CXRs were kept, i.e., images with
“ViewPosition” metadata property equals to “AP” (anterior-posterior) or “PA” (posterior-
anterior); and studies with more than one frontal image were excluded. The CNN blocks
from Figure 2 were built following the Sononet-16 (Baumgartner et al., 2017) architecture,
but with the modifications added by Schlemper et al. (2019) to include the attention gates.

For training, data were resized to have its shortest dimension equal to 224 pixels, rotated
between -15 and +15 degrees, translated by up to 5% of its dimensions, scaled with a scale
factor between 0.95 and 1.05, center cropped, randomly horizontally flipped, and normalized
by the average intensities and standard deviation of the ImageNet dataset. For validation,
images were scaled such that their longest dimension was a multiple of 16, and their shortest
dimension the closest to 224 while keeping the aspect ratio. The image was then padded
to a square. Saliency maps were generated with this padded version of the image and then
cropped to the original aspect ratio.

Appendix B. Details of the grouping of labels

The REFLACX dataset provides ellipses locating most of the abnormalities labeled by ra-
diologists. Each ellipse is also associated with a certainty label. We used the probabilities
associated with each certainty label (10%, 25%, 50%, 75%, 90%) to calculate the Shannon’s
entropy of the associated binomial distribution (respectively, 0.47, 0.81, 1, 0.81, 0.47). We
used the entropy as the level of uncertainty of the radiologist for that ellipse. The area of
each ellipse was calculated in megapixels (MP). Table 4 shows the calculated statistics for
the abnormality labels from the REFLACX dataset. As mentioned in Section 3.3, enlarged
cardiac silhouette is one of the labels with the least uncertainty/ambiguity and highest
area. Table 5 shows the statistics for the grouping of labels. The only label from the
REFLACX dataset that was not considered an abnormality was “Quality issue”. Cardio-
mediastinal abnormalities had the highest areas, while parenchymal abnormalities had the
highest uncertainty and pleural abnormalities the smallest areas.
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Table 4: List of abnormality labels from the REFLACX dataset, including their type, av-
erage area, uncertainty (entropy), and the number of ellipses used for the calcula-
tions.

Label Type Area (MP) Entropy # ell.
Abnormal mediastinal contour
& Wide mediastinum

Cardiomediastinal 0.51 0.686 24

Airway wall thickening Parenchymal 0.24 0.793 36
Atelectasis Parenchymal 0.42 0.657 243
Consolidation Parenchymal 0.49 0.620 194
Emphysema & High
lung volume / emphysema

- 1.15 0.690 22

Enlarged cardiac silhouette Cardiomediastinal 1.01 0.618 149
Enlarged hilum Cardiomediastinal 0.22 0.621 7
Fracture & Acute Fracture - 0.04 0.545 25
Groundglass opacity Parenchymal 0.56 0.596 106
Hiatal hernia - 0.18 0.811 1
Interstitial lung
disease & Fibrosis

Parenchymal 0.38 0.752 20

Lung nodule or mass Parenchymal 0.31 0.644 5
Mass Parenchymal 0.14 0.469 1
Nodule Parenchymal 0.02 0.598 23
Other - 0.39 0.531 14
Pleural abnormality Pleural 0.32 0.596 114
Pleural effusion Pleural 0.40 0.633 112
Pleural thickening Pleural 0.37 0.692 7
Pneumothorax Pleural 0.22 0.636 26
Pulmonary edema Parenchymal 0.50 0.708 138
Support devices - - - 0

Table 5: Statistics of the location ellipses for groups of labels.

Type Area (MP) Entropy # ell.
All Abnormalities 0.49±0.43 0.647±0.204 983
Cardiomediastinal 0.91±0.37 0.626±0.207 179
Parenchymal 0.42±0.35 0.667±0.201 536
Pleural 0.35±0.35 0.615±0.204 254
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