
Journal of Computational Science 52 (2021) 101217

Available online 10 September 2020
1877-7503/© 2020 Published by Elsevier B.V.

Translational computer science at the scientific computing and
imaging institute

Chris Johnson 1

Faculty Member and Founding Director, Scientific Computing and Imaging Institute, Distinguished Professor, School of Computing, University of Utah, United States

A R T I C L E I N F O

Keyword:
Translational computer science
Open source software development
Multidisciplinary research

A B S T R A C T

The Scientific Computing and Imaging (SCI) Institute at the University of Utah evolved from the SCI research
group, started in 1994 by Professors Chris Johnson and Rob

MacLeod. Over time, research centers funded by the National Institutes of Health, Department of Energy, and
State of Utah significantly spurred growth, and SCI became a permanent interdisciplinary research institute in
2000. The SCI Institute is now home to more than 150 faculty, students, and staff.

The history of the SCI Institute is underpinned by a culture of multidisciplinary, collaborative research, which
led to its emergence as an internationally recognized leader in the development and use of visualization, sci-
entific computing, and image analysis research to solve important problems in a broad range of domains in
biomedicine, science, and engineering. A particular hallmark of SCI Institute research is the creation of open
source software systems, including the SCIRun scientific problem-solving environment, Seg3D, ImageVis3D,
Uintah, ViSUS, Nektar++, VisTrails, FluoRender, and FEBio. At this point, the SCI Institute has made more than
50 software packages broadly available to the scientific community under open-source licensing and supports
them through web pages, documentation, and user groups.

While the vast majority of academic research software is written and maintained by graduate students, the SCI
Institute employs several professional software developers to help create, maintain, and document robust, tested,
well-engineered open source software. The story of how and why we worked, and often struggled, to make
professional software engineers an integral part of an academic research institute is crucial to the larger story of
the SCI Institute’s success in translational computer science (TCS).

1. Introduction

The Scientific Computing and Imaging (SCI) Institute at the Uni-
versity of Utah evolved from the SCI research group, started in 1994 by
Professors Chris Johnson and Rob MacLeod [1,2]. Over time, research
centers funded by the National Institutes of Health, Department of En-
ergy, and State of Utah significantly spurred growth, and SCI became a
permanent interdisciplinary research institute in 2000. The SCI Institute
is now home to more than 150 faculty, students, and staff.

The history of the SCI Institute [2] is underpinned by a culture of
multidisciplinary, collaborative research [3], which led to its emergence
as an internationally recognized leader in the development and use of
visualization, scientific computing, and image analysis research to solve
important problems in a broad range of domains in biomedicine, sci-
ence, and engineering. A particular hallmark of SCI Institute research is
the creation of open source software systems [4], including the SCIRun

scientific problem-solving environment, Seg3D, ImageVis3D, Uintah,
ViSUS, Nektar++, VisTrails, FluoRender, and FEBio. At this point, the
SCI Institute has made more than 50 software packages broadly avail-
able to the scientific community under open-source licensing and sup-
ports them through web pages, documentation, and user groups.

While the vast majority of academic research software is written and
maintained by graduate students, the SCI Institute employs several
professional software developers to help create, maintain, and document
robust, tested, well-engineered open source software. The story of how
and why we worked, and often struggled, to make professional software
engineers an integral part of an academic research institute is crucial to
the larger story of the SCI Institute’s success in translational computer
science (TCS) [25].

E-mail address: crj@sci.utah.edu.
1 www.sci.utah.edu.

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

https://doi.org/10.1016/j.jocs.2020.101217
Received 17 August 2020; Received in revised form 1 September 2020; Accepted 2 September 2020

mailto:crj@sci.utah.edu
http://www.sci.utah.edu
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2020.101217
https://doi.org/10.1016/j.jocs.2020.101217
https://doi.org/10.1016/j.jocs.2020.101217
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2020.101217&domain=pdf

Journal of Computational Science 52 (2021) 101217

2

2. Background

The SCIRun software system began in the early 1990s as a research
project in computational steering and integrated problem solving envi-
ronments [5,6]. As it evolved, SCIRun research and software develop-
ment branched in two different directions associated with two very
different research centers. In 1997, the Center for Accidental Fires and
Explosions (C-SAFE) [9], created through the U.S. Department of
Energy’s Advanced Simulation and Computing Initiative (ASCI),
comprised an interdisciplinary team of researchers in chemical engi-
neering, mechanical engineering, chemistry, mathematics, and com-
puter science. The overall goal of C-SAFE was to provide state-of-the-art,
science-based tools for the numerical simulation of accidental fires and
explosions, especially within the context of safely handling and storing
highly flammable materials. The objective of C-SAFE was to provide an
accurate, scalable software system within which fundamental chemistry
and engineering physics are fully coupled with non-linear solvers,
optimization, computational steering, visualization and experimental
data verification. The C-SAFE team performed research in large-scale
simulations of complex physical phenomena including reacting flows,
material properties, multi-material interactions, and atomic-level
chemistry. For more than a decade, the C-SAFE team performed pio-
neering work in the field of parallel computing, software frameworks,
and visualization. C-SAFE scientists also performed research into large
eddy simulations (LES) of reacting flows, immense combustion simula-
tions, heat transfer studies, validation and verification with uncertainty
quantification of simulation results, methods for modeling radiation in
complex fire simulations, expansion and validation of the material point
method (MPM), advanced chemical models of soot formation and
deposition, and composite material modeling.

The NIH Center for Bioelectric Field Modeling, Simulation, and
Visualization launched in 1999 [10] within the NIH National Center for
Research Resources. During the first five years, the Center focused on
creating an extensible, scalable, scientific problem-solving environment
(PSE) and on developing corresponding research to solve real-world
problems relating to bioelectric fields. To accomplish this goal, we
conducted research and development in advanced modeling, simulation,
and visualization methods for solving bioelectric field problems; we also
created BioPSE. An extension to the existing SCIRun software system,
BioPSE was a modular, extensible, integrated software problem-solving
environment for bioelectric field problems. While the SCIRun software
supports interaction among the modeling, computation, and visualiza-
tion phases of bioelectric field simulation, BioPSE provided specific
extensions for the Center. In 2005, the Center was renamed the Center
for Integrative Biomedical Computing (CIBC) and transitioned to the
Biomedical Technology Research Resource program within NIH NIGMS.
At this time, the Center reengineered SCIRun to separate the underlying
filters or modules from the dataflow interface. The Center also began
integrating into its tools third-party packages like the Insight Toolkit
(ITK), in turn assisting in the latest generation of Center applications,
such as map3d, ImageVis3D, Seg3D, BioMesh3D, and ShapeWorks.

For decades, applied computing researchers have created software to
solve science, engineering, and medical research problems. In the cur-
rent academic environment, this software is usually created by graduate
students and postdoctoral researchers. Needless to say, among this
group the range of software engineering expertise varies greatly. Beyond
this, because software is created within the context of very specific in-
dividual projects, in our experience the majority of scientific research
software addresses a specific short term goal such as a paper or demo
rather than being designed for long term use or more general distribu-
tion. Within the proposals to create the C-SAFE and CIBC centers, we
committed to producing open source software that would be both
available to and usable by other researchers. In making that commit-
ment, we underestimated the difficulty of the task. We knew we had
software that worked well for us, so we assumed we could just make it
available for download with some instructions on how to install it and

use it, and soon we would have thousands of happy users. We soon
learned what anyone who has successfully transitioned research soft-
ware to well designed, well-engineered, tested, documented, and sus-
tainable software already knows: the task is tremendously challenging.
For us, addressing it involved integrating professional software engi-
neers into an academic research environment. Though such integration
raises its own challenges, we have found it to be well worth the effort, as
these software engineers continue to be key to many of our research
projects.

Once we employed software developers, we discovered that incor-
porating them into a research group had its own challenges. First, the
goals of software developers working to create stable builds were often
in tension with those of graduate students, postdocs, and faculty who
constantly required and worked to create new research features. Second,
professional software developers are in high demand throughout in-
dustry, where there are more open positions for software engineers than
there are qualified people to fill them. As such, talented software de-
velopers command high salaries compared to graduate students and
postdocs; some senior software developers command salaries that are
higher even than those of junior faculty. While a few research agencies
have sometimes funded professional software developers, this is not the
norm. Even when a research group can obtain funding for good de-
velopers, they find it difficult to compete successfully against industry to
hire and retain them.

3. Translation process

Both the C-SAFE and CIBC Centers had multiple computer science
research aims including parallel adaptive mesh refinement, material
point method, parallel rendering, shape modeling, image segmentation,
uncertainty visualization, that needed to be translated from research
code into usable software. Because there is a significant difference be-
tween the research proof-of-concept software produced by labs for in-
ternal use and the robust applications that users expect when they
download a software product from the web, we proposed within the
CIBC the aim of creating Translational Software, to transform new al-
gorithms developed in Center imaging, simulation, and visualization
research cores into stable, available, documented software projects.
Once the potential of a new technology has been established, significant
additional software engineering efforts are required to generate a robust
application that interfaces well with the rest of the framework and runs
stably on multiple computer platforms. The additional software engi-
neering includes cleaning up the application’s source code, refactoring
the application for integration with the Center’s standard framework
components, documentation of the application’s functionality, and a
rigorous set of white- and black-box tests to be constructed around the
application. Although these software engineering steps do not neces-
sarily add any novel functionality to the programs, they are necessary to
ensure the sustainability of the software outside of the Center (Fig. 1)

3.1. Integrating software engineers within the research environment

It was challenging to build a robust software system that we could
maintain and distribute (i.e. real software engineering), while at the
same time supporting graduate students using it for research projects.
One solution was to build Packages. The software engineers maintained
the Datatypes, Modules, and Command-Line utilities in the main SCIRun
and BioPSE Packages, and the graduate students used a combination of
Modules from those main Packages, plus Modules/Datatypes/Utilities
that they added in their own Packages. We also relied heavily on tem-
plates, so people could extend capabilities without breaking other peo-
ple’s code. The downside of templates was that they required long
compile times, which we addressed with on-the-fly compilation. After
the usual early “build everything yourself” phase, another software
sustainability solution was to move to standards such CMake, CTest, and
CDash.

C. Johnson

Journal of Computational Science 52 (2021) 101217

3

Fig. 1. (a) The SCIRun PSE showing the network, module interfaces and visualization window. (b) The BioPSE application showing the results of a cardiac bioelectric
field simulation within the Utah torso model [28,29]. The graph on the right side shows the convergence of the iterative solution technique.

C. Johnson

Journal of Computational Science 52 (2021) 101217

4

While maintaining both stable and research software trees, moving
graduate student research code into the stable software builds remains a
challenge. No matter the level of encouragement, good software engi-
neering practices are still difficult to enforce among computational
science graduate students and postdocs, who don’t easily embrace the
rigors of the software engineering culture. One of our most gifted
graduate students announced that “great software documents itself”. He
later retracted this statement after not being able to understand some of
the many thousands of lines of optimized C++ code he himself had
written over the years.

One way we addressed this developer/researcher cultural mismatch
was to hire a technical software manager who both has a Ph.D. and
really understands software, so they have a solid foot in each “camp” and
can communicate effectively at highly technical levels between de-
velopers and researchers, often acting as a translator. The technical
manager has proved an essential person in helping to better understand
expectations and workload and also to project software personnel needs
for research projects.

An important feature of the CIBC structure was the requirement that
the Center have multiple Driving Biomedical Projects (DBPs). Driving
Biomedical Projects are biomedical research test-beds that allow Center
investigators to test nascent technologies in the context of challenging
problems in basic, translational, and clinical research, while providing
biomedical researchers with the earliest possible access to these
emerging tools. A deep understanding of needs and opportunities in the
relevant areas of biomedical research is an essential prerequisite for all
technology development. In the Center, this understanding is most
clearly expressed through successful engagement of those researchers
best positioned to benefit from early access to emerging tools. The
Center is expected to develop new technologies that will significantly
impact a broad community of biomedical researchers, and through
leadership within the relevant communities, support the integration of
those technologies into the larger context of the relevant field. To help
understand the impact of our software, as part of our annual review by
our external advisory board, we were expected to produce a summary of
software download numbers and papers that cited the use of our soft-
ware. For example, the CIBC’s Seg3D software has had more than
14,000 downloads and has been cited more than 200 times in published
papers.

To describe the translation from DBP partner to the larger biomedical
research community, we coined the phrase “Cone of Influence” (Fig. 2)
This Center structure required us to work very closely with our DBP
partners. Examples include DBP partner Natalia Trayonova, the Murray
B. Sachs Professor in the Department of Biomedical Engineering and the
Institute for Computational Medicine at Johns Hopkins University and a

leader in the application of multiscale simulation to cardiac rhythm
disturbances. She and her large group of investigators implement
computational and simulation approaches in a clinical setting. We have
worked with Professor Trayanova both in the efficient generation of
patient specific models of the human heart in patients with arrhythmias
and in shape-based analysis of cardiac structure in normal subjects and
patients with structural heart disease [23,24]. Another example is DBP
partner Gabrielle Kardon, the Director of the Kardon Laboratory in the
Department of Human Genetics at the University of Utah. She uses
multiphoton confocal microscopy for research into musculoskeletal
development and regeneration. Professor Kardon has worked with the
CIBC on the development of the FluoRender visualization software
system to understand the molecular mechanisms and cellular in-
teractions regulating musculoskeletal development and regeneration
[20]. While Professor Kardon has used FluoRender with musculoskeletal
development applications, FluoRender has now been used for a large
number of diverse applications from three-dimensional reconstruction
of Drosophila neural circuits [21] to three-dimensional imaging of plant
organs [22]. The DBP partnerships are good examples of TCS, exhibiting
the technical development within the CIBC, the back and forth inter-
action with our DBP researchers, and, in many cases, the extension of the
research and software development to the broader research community
for use in a larger application space.

The Seg3D image segmentation system [13] is a good example of the
TCS workflow in which we created a new software system from what we
learned from the process of working with our DBP research partners,
while at the same time thinking ahead to a system that could have broad
research impact. Seg3D is a volume image processing and segmentation
tool that enables researchers to quickly and easily explore and process
their 2D and 3D medical imaging data. Seg3D is both simple to use and
powerful, combining the wealth and sophistication of tools from the ITK
[14] library with simple interfaces and manual segmentation tools. This
design makes Seg3D a versatile tool for researchers working with
three-dimensional imaging data within multiple modeling and simula-
tion domains. Because of its sophisticated design, simple and intuitive
user interface, and ability to manipulate imaging data, it is often the first
tool that researchers use on their data in the image-based modeling
pipeline that we have developed within the CIBC. Additionally, the tools
in Seg3D provide a convenient platform for correcting outputs of other
automatic segmentation pipelines, which often achieve incomplete re-
sults that require additional manual editing. While Seg3D is designed to
be simple to use, advanced tools such as provenance and the Python
interface allow it to be scripted and used in automatic segmentation
workflows. Seg3D was initially developed with our research clinical
cardiology DBP partners, but soon found broader application in a wide
variety of applications including biomechanics, orthopedics, dentistry,
plant biology, entomology, and even archeology (Figs. 3, 4 and 5)

3.2. Challenges of funding, hiring, and retaining

As previously noted, funding, hiring, and retaining good software
engineers is an ongoing challenge. For computational science and en-
gineering researchers, obtaining research support for graduate students
and postdocs is standard, but most single PI grants do not have large
enough budgets for supporting a professional software engineer [11].
We continue to tackle this challenge in multiple ways. Our first software
engineers were recruited as part of the multidisciplinary research cen-
ters, C-SAFE and CIBC. As the SCI Institute faculty saw the benefits of
these developers, we worked together to hire additional software engi-
neers spread across multiple grants, finding that having one developer
working on at most two research projects is ideal. Having multiple
software developers that could be shared across multiple projects has
proved to be a great way to increase and share developer expertise. We
have software engineers with expertise in databases, graphics, and
multiple programming languages, as well as experiences with a wide
variety of architectures. Having the ability to bring in specific software

Fig. 2. Cone of influence. Translating research and development with our
driving biomedical project (DBP) partners to the larger biomedical
research community.

C. Johnson

Journal of Computational Science 52 (2021) 101217

5

engineering expertise has been a powerful asset for some larger
multi-disciplinary projects and even for smaller research projects that
need a few months of graphics or database or user interface design.

Given the demand for good software engineers, we continue to seek
creative ways to hire and retain developers. Because we are an academic
research institute, we understand that we will not be able to compete
with industry salaries, especially for more senior software engineers. We
often hire recently graduated computer scientists with the offer to
expose them to a wide variety of challenging software projects, thus
expanding their skill set and expertise and making them more valuable
to industry. Getting undergraduate computer science students involved
in programming for research projects has been another way we recruit
software engineers. As our software engineers gain experience and
expertise, they become increasingly interesting to industry, so we expect
to have many of our software engineers recruited away to higher paying
industry positions. One way we retain software engineers is to support
their continued education through specialized courses and programs
and graduate degrees; as a result, we have had multiple software engi-
neers complete MS degree programs. In the UK, the EPSRC has recog-
nized the importance of investing in software development [15] and has
recently establish a Research Software Engineering Fellowship [16] to
aid in establishing this area as a career path within academic research
universities. We hope this idea will spread globally.

3.3. Additional translational efforts

Two additional research software engineering translational efforts
include helping to set up a Software Development Center at the Uni-
versity of Utah [19] and our new collaboration with Kitware (www.kitw
are.com) to transition the CIBC’s open source software into well crafted,
validated computer code, with community-supported and sustainable
support for both users and future maintainers of the code base.

The Software Development Center (SDC) was a joint effort between
the University of Utah’s Technology Commercialization Office (TCO),
which manages all intellectual property on the University of Utah
campus, and the SCI Institute. The Software Development Center goals

Fig. 3. Visualization and segmentation from a CT scan of a healthy adult using Seg3D [13]. This segmentation was used to generated patient specific models with
many applications in cardiac electrophysiology, including predicting defibrillator efficacy, simulating cardiac potentials throughout the torso, and predicting cardiac
activity from torso measurements. The three panels on the right show the axial, coronal, and sagittal views.

Fig. 4. Visualization of a three-dimensional finite element model created from
patient images. First, a segmentation was done using Seg3D. Second, a three-
dimensional mesh was created using BioMesh. Third, a large-scale finite
element simulation was performed using BioPSE. Finally, the model and
simulation results showing multiple voltage isosurfaces were visualized
using SCIRun.

C. Johnson

http://www.kitware.com
http://www.kitware.com

Journal of Computational Science 52 (2021) 101217

6

were to:

• Help researchers and entrepreneurs develop software.
• Create a central repository for campus software projects.
• Create startup companies based on software projects.
• Commercialize software developed on campus.
• Provide students with professional software experience.
• Develop a talent pool for the state’s software industry.
• Make software developed on campus available to the public.

In the formative stages, the SDC was led by Greg Jones, then Asso-
ciate Director of the SCI Institute, who oversaw multiple professional
software engineers and coordinated with University faculty and the
TCO. The senior lead software engineering staff had PhDs in Computer
Science and multiple years of experience. Their experience and technical
expertise proved crucial in their being able to interact effectively with
faculty from different disciplines in science, engineering, and medicine
to understand how to translate research codes and ideas into well

software engineered systems. The SDC helped develop several software
systems and worked with a number of University start-up companies on
their software.

One of the positive translational consequences of both the SDC and
having multiple software engineers at the SCI Institute is the increased
interaction of graduate students with professional software developers.
One effect is that graduate students are informally mentored about
professional software practices and learn both to create high quality
software and also what is involved in creating new features and main-
taining software beyond their graduate studies. Translating our software
to a broad research community allows our graduate students to learn
valuable software engineering skills that help them in their future
research and industry positions.

The newly established CIBC software transition plan with Kitware
Inc. is to achieve long term sustainability of the software and data re-
sources that the CIBC has produced. The goal of this plan is to complete
the conversion of all the technical products achieved over the lifetime of
the Center into well crafted, validated computer code with necessary

Fig. 5. (a) Overview of Uintah software architecture [17]. The top row shows the simulation systems. Arches is a three dimensional, Large Eddy Simulation (LES)
code developed at the University of Utah. Arches is used to simulate heat, mass, and momentum transport in reacting flows [30]. The Material Point Method (MPM) is
a computationally effective particle method for solving solid mechanics problems involving large deformations [31] and ICE is an implicit continuous-fluid Eulerian
solver that can be coupled to Uintah’s particle-based solver for solids (MPM) for fluid-structure interaction problems. PIDX is a scalable and tunable adaptive
resolution parallel I/O framework [32] and VisIt is an open source, interactive, scalable, visualization, animation and analysis tool [33]. (b) Uintah simulation of coal
particles being injected into a large-scale boiler.
Collaborations

C. Johnson

Journal of Computational Science 52 (2021) 101217

7

support for both users and future maintainers of the code base. The
conversion will require the assistance of a professional software house
that is familiar with the necessary steps and with the technical domain of
our center, Kitware Inc. Kitware is a company with a 20-year history of
assisting biomedical researchers to develop highly complex software
packages and libraries, including VTK, ITK, 3D Slicer, and Paraview.
They have also developed highly flexible systems to build, deploy, and
maintain software and are well versed in the practical aspects of sup-
porting communities of users of—and contributors to—scientific soft-
ware projects.

The main innovations of this project include the transition of soft-
ware from an academic research institute to an open-source commercial
setting and the leverage of an active user community to maintain and
enhance the capabilities of the software. Past partnerships between
public academic and private companies like Kitware have been in place
from the start of the development process (e.g., 3D Slicer or ITK), while,
in our case, the CIBC has developed a rich and advanced set of software
engineering practices informed by, but separate from, other entities. The
proposed project involves seven different software packages to be
evaluated then transitioned to the Kitware infrastructure. The second
innovation will be to leverage a user community—more correctly, a set
of domain specific user communities—to provide ongoing support for
the software tools. The impact of the open-source software movement is
well documented, and recent examples of crowd-sourcing to process
scientific data have motivated us to propose such an approach. Success
in either of these innovations will open new avenues for extracting
valuable, often publicly-funded software from academic centers and
making it freely available to the scientific community. From a software
engineering perspective, we have also devised a formalized sustain-
ability matrix to characterize the state of each software system in terms
of long-term sustainability [27]. We will use this scoring approach to
deploy long-lasting, continually impactful software systems. Seg3D is
one of the first CIBC software systems that we will work with Kitware to
transition to their software infrastructure and sustainability protocols.

4. Impact and lessons learned

Investing in professional software engineers as team members within
our academic research institute has yielded multiple long-term benefits.
These engineers have helped to create and maintain more than 50 open-
source software packages that are broadly available to the scientific
community and are supported by web pages, documentation, and user
groups. Examples of TCS methodologies and impact were highlighted by
experiences with two large, long running, multidisciplinary research
centers, the CIBC and C-SAFE, that integrated cutting edge research with
multiple software projects.

The overarching goal of CIBC was to advance the state of practice in
biomedical computing and its applications both to biomedical science
and to the translation of this science to clinical practice. We achieved
this goal by making advanced computational tools, tailored to the spe-
cific domains of image-based modeling, simulation, estimation, and
visualization, accessible to scientists, engineers, and physicians, by
releasing readily usable, open-source software. We worked closely with
these users of our software, providing advice, technical support, work-
shops, and education to enhance their success with the tools we provide.

The origins of our success in developing widely-used software tools
lie in a set of strategies for algorithm research and software develop-
ment. One strategy has been the production of software tools with low
barriers to entry. This entails the release of documented, tested, com-
plete applications that do not entail learning new programming lan-
guages or complex, architecture-specific build environments. This
strategy is reflected in the complete merging of SCIRun and BioPSE,
problem-solving environments.

Another important TCS strategy for software development is to make
our tools relevant for the broader community by building and testing
them in close collaboration with specific, high-profile biomedical

groups, our DBP research partners. These practicing scientists, engineers
and physicians educated us to achieve an appropriate level of generality
to impact the largest group possible at the same time that our close
collaborations with them help us to define and solve specific, relevant
biomedical problems. These collaborators also inform us about other
tools that investigators are using, thus helping us to ensure that our
software fills a clear need in the community and remains at (or ahead of)
the state of the art. And, since the proof of the effectiveness of the Center
is in the success of our users, this collaboration strategy and the high
profile of our collaborators has also proven to be a mechanism for
dissemination of tools.

A key success of C-SAFE was that the physical science research was
greatly augmented by the underlying software framework Uintah [7,8,
17], which had its origins in SCIRun. The TCS strategy of technical
innovation within our research team, working with key application
scientists and engineering and broadening these results to larger
research communities, proved successful. Because of the utility of the
software, which scales to hundreds of thousands of processors and is
used for many large-scale simulation research applications, the devel-
opment of the Uintah computational framework continues through a
number of additional research funding sources, and the software is
constantly refined and updated. While developed primarily to run
fire/container interaction simulations, Uintah has been straightfor-
wardly applied to many other diverse applications, including simula-
tions of blood vessel growth, foam micro-structure, human torso
dynamics, industrial flares, vehicle armor plating, and oil drilling
applications.

In addition, the parallel ray tracing visualization research [12]
started in C-SAFE yielded a spinoff company, RayScale, that was ac-
quired by NVIDIA. Pieces of that technology grew along with other
NVIDIA ray tracing technology to become their RTX platform [18].

While TCS has the potential to accelerate the impact of computer and
computational science research, it has largely been implemented by
individuals and groups in ad hoc ways, and it is not usually recognized as
a specific methodology. To promote TCS and learn to apply the TCS
workflow, we will need to establish new funding and reward mecha-
nisms that encourage, support and realize TCS structures. I could ima-
gine creating a small number of distributed TCS centers to act as
“expeditions to the future,” as described in the 1999 PITAC report [26].

Author statement

Chris Johnson – single author paper.

Declaration of Competing Interest

The authors reported no declarations of interest.

Acknowledgments

The author acknowledges current research support provided by the
Intel Graphics and Visualization Institutes of XeLLENCE, the National
Institute of General Medical Sciences of the National Institutes of Health
under grant numbers P41 GM103545 and R24 GM136986 and the
Department of Energy under grant number DE-FE0031880.

References

[1] Scientific Computing and Imaging (SCI) Institute at the University of Utah, 2020.
http://www.sci.utah.edu.

[2] History of the Scientific Computing and Imaging Institute. Evert L. Cooley
Collection, Marriott Library, University of Utah, 2018. http://www.sci.utah.edu
/images/Research/SCI_History_Cooley.pdf.

[3] B. Shneiderman, The New ABCs of Research: Achieving Breakthrough
Collaborations, Case Study 3.6, Oxford University Press, 2016. http://www.cs.um
d.edu/hcil/newabcs/.

[4] SCI Institute Software, 2020. http://www.sci.utah.edu/sci-software.html.

C. Johnson

http://www.sci.utah.edu
http://www.sci.utah.edu/images/Research/SCI_History_Cooley.pdf
http://www.sci.utah.edu/images/Research/SCI_History_Cooley.pdf
http://www.cs.umd.edu/hcil/newabcs/
http://www.cs.umd.edu/hcil/newabcs/
http://www.sci.utah.edu/sci-software.html

Journal of Computational Science 52 (2021) 101217

8

[5] C.R. Johnson, S.G. Parker, A computational steering model applied to problems in
medicine, in: Supercomputing, 94, IEEE Press, 1994, pp. 540–549.

[6] S.G. Parker, D.M. Weinstein, C.R. Johnson, The SCIRun computational steering
software system, in: E. Arge, A.M. Bruaset, H.P. Langtangen (Eds.), Modern
Software Tools in Scientific Computing, Birkhauser Press, Boston, 1997, pp. 1–40.

[7] J.D. de St. Germain, J. McCorquodale, S.G. Parker, C.R. Johnson, Uintah: a
massively parallel problem solving environment. The Ninth IEEE International
Symposium on High Performance and Distributed Computing, IEEE, Piscataway,
NJ, 2000, pp. 33–41. Nov.

[8] M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey, Q. Meng,
J. Schmidt, C. Wight, Extending the uintah framework through the petascale
modeling of detonation in arrays of high explosive devices, SIAM J. Sci. Comput.
38 (5) (2016) S101–S122, https://doi.org/10.1137/15M1023270.

[9] Center for the Simulation of Accidental Fires and Explosions (C-SAFE), 2020.
http://csafe.sci.utah.edu.

[10] Center for Integrative Biomedical Computing, 2020. http://www.sci.utah.
edu/cibc.

[11] U. Rüde, K. Willcox, L.C. McInnes, H. De Sterck, G. Biros, H. Bungartz, J. Corones,
E. Cramer, J. Crowley, O. Ghattas, M. Gunzburger, M. Hanke, R. Harrison,
M. Heroux, J. Hesthaven, P. Jimack, C. Johnson, K.E. Jordan, D.E. Keyes,
R. Krause, V. Kumar, S. Mayer, J. Meza, K.M. Mørken, J.T. Oden, L. Petzold,
P. Raghavan, S.M. Shontz, A. Trefethen, P. Turner, V. Voevodin, B. Wohlmuth, C.
S. Woodward, Research and education in computational science and engineering,
Siam Rev. 60 (3) (2018) 707–754.

[12] S.G. Parker, W. Martin, P.-P. Sloan, P. Shirley, B. Smits, C.D. Hansen, Interactive
ray tracing, Symposium on Interactive 3D Graphics: Interactive 3D (1999)
119–126. April 26-28.

[13] Seg3D Image Segmentation Software, 2020. http://www.sci.utah.edu/software/s
eg3d.html.

[14] ITK: The Insight Toolkit, 2020. https://itk.org.
[15] EPSRC: Software As an Infrastructure, 2020. https://epsrc.ukri.org/newsevents

/pubs/software-as-an-infrastructure/.
[16] Research Software Engineers Fellows, 2020. https://epsrc.ukri.org/funding/calls/

rsefellowships/.
[17] Uintah Software System, 2020. http://uintah.utah.edu.
[18] NVIDIA RTX Platform, 2020. https://developer.nvidia.com/rtx.
[19] University of Utah Software Development Center, 2020. https://archive.unews.

utah.edu/news_releases/software-development-center-opens-doors/.
[20] Y. Wan, H. Otsuna, H.A. Holman, B. Bagley, M. Ito, A.K. Lewis, M. Colasanto,

G. Kardon, K. Ito, C. Hansen, FluoRender: joint freehand segmentation and
visualization for many-channel fluorescence data analysis, BMC Bioinform. 18
(May 1) (2017). Springer Nature.

[21] K. Shinomiya, M. Ito, Recent progress in the 3D reconstruction of Drosophila neural
circuits, in: A. Çelik, M. Wernet (Eds.), Decoding Neural Circuit Structure and
Function, Springer, Cham, 2017, https://doi.org/10.1007/978-3-319-57363-2_3.

[22] Junko Hasegawa, Yuki Sakamoto, Satoru Nakagami, Mitsuhiro Aida,
Shinichiro Sawa, Sachihiro Matsunaga, Three-dimensional imaging of plant organs
using a simple and rapid transparency technique, Plant Cell Physiol. 57 (March 3)
(2016) 462–472, https://doi.org/10.1093/pcp/pcw027.

[23] K.S. McDowell, S. Zahid, F. Vadakkumpadan, J. Blauer, R.S. MacLeod,
N. Trayanova, Virtual electrophysiological study of Atrial Fibrillation in fibrotic
remodeling, PLoS One 11 (5) (2016) e0156189, https://doi.org/10.1371/journal.
pone.0156189.

[24] A. Prakosa, H.J. Arevalo, D. Deng, P.M. Boyle, P.P. Nikolov, H. Ashikaga, J.
E. Blauer, E. Ghafoori, C.J. Park, R.C. Blake III, F.T. Han, R.S. MacLeod, H.
R. Halperin, D.J. Callans, R. Ranjan, J. Chrispin, S. Nazarian, N.A. Trayanova,
Personalized virtual-heart technology for guiding the ablation of infarct-related
ventricular tachycardia, Nat. Biomed. Eng. 2 (2019) 732–740.

[25] D. Abramson, M. Parashar, Translational research in computer science, Computer
52 (09) (2019) 16–23, https://doi.org/10.1109/MC.2019.2925650.

[26] Information Technology Research: Investing in Our Future, President’s Information
Technology Advisory Committee (PITAC), 1999. February, https://www.nitrd.go
v/pitac/report/pitac_report.pdf.

[27] G. Lami, L. Buglione, Measuring software sustainability from a process-centric
perspective, in: 2012 Joint Conference of the 22nd International Workshop on
Software Measurement and the 2012 Seventh International Conference on
Software Process and Product Measurement, Assisi, 2012, pp. 53–59.

[28] C.R. Johnson, Computational and numerical methods for bioelectric field
problems, Crit. Rev. Biomed. Eng. 25 (1) (1997) 1–81.

[29] C.R. Johnson, R. MacLeod, S.G. Parker, D. Weinstein, Biomedical computing and
visualization software environments, Commun. ACM 47 (11) (2004) 64–70.

[30] D. Sahasrabudhe, M. Berzins, Improving performance of the hypre iterative solver
for uintah combustion codes on manycore architectures using MPI endpoints and
kernel consolidation, in: Computational Science – ICCS 2020, 20th International
Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part I,
Springer International Publishing, 2020, pp. 175–190.

[31] M. Steffen, R.M. Kirby, M. Berzins, Analysis and reduction of quadrature errors in
the material point method (MPM), Int. J. Numer. Methods Eng. 76 (6) (2008)
922–948.

[32] PIDX Parallel I/O Framework, 2020. https://www.sci.utah.edu/software/pidx.
html.

[33] VisIt Visualization Software, 2020. https://wci.llnl.gov/simulation/computer-cod
es/visit/.

Chris R. Johnson is a Distinguished Professor of Computer
Science and founding director of the Scientific Computing &
Imaging (SCI) Institute at the University of Utah. He also holds
faculty appointments in the Departments of Physics and
Bioengineering. His research interests are in the areas of sci-
entific computing and scientific visualization. In 1992, with
Professor Rob MacLeod, Professor Johnson founded the SCI
research group, now the SCI Institute, which has grown to
employ over 150 faculty, staff and students. Professor Johnson
serves on a number of international journal editorial and
advisory boards to national and international research centers.
He is a Fellow of AIMBE (2004), AAAS (2005), SIAM (2009),
and IEEE (2014) and was recently inducted into the IEEE
Visualization Academy (2019). He has received a number of
awards including the NSF Presidential Faculty Fellow (PFF)
award from President Clinton, a DOE Computational Science
Award, the Governor’s Medal for Science and Technology, the
Utah Cyber Pioneer Award, the IEEE Visualization Career
Award, IEEE IPDPS Charles Babbage Award, the IEEE Sidney
Fernbach Award, and the Rosenblatt Prize.

C. Johnson

http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0025
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0025
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0030
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0030
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0030
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0035
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0035
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0035
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0035
https://doi.org/10.1137/15M1023270
http://csafe.sci.utah.edu
http://www.sci.utah.edu/cibc
http://www.sci.utah.edu/cibc
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0055
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0055
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0055
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0055
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0055
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0055
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0055
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0060
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0060
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0060
http://www.sci.utah.edu/software/seg3d.html
http://www.sci.utah.edu/software/seg3d.html
https://itk.org
https://epsrc.ukri.org/newsevents/pubs/software-as-an-infrastructure/
https://epsrc.ukri.org/newsevents/pubs/software-as-an-infrastructure/
https://epsrc.ukri.org/funding/calls/rsefellowships/
https://epsrc.ukri.org/funding/calls/rsefellowships/
http://uintah.utah.edu
https://developer.nvidia.com/rtx
https://archive.unews.utah.edu/news_releases/software-development-center-opens-doors/
https://archive.unews.utah.edu/news_releases/software-development-center-opens-doors/
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0100
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0100
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0100
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0100
https://doi.org/10.1007/978-3-319-57363-2_3
https://doi.org/10.1093/pcp/pcw027
https://doi.org/10.1371/journal.pone.0156189
https://doi.org/10.1371/journal.pone.0156189
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0120
https://doi.org/10.1109/MC.2019.2925650
https://www.nitrd.gov/pitac/report/pitac_report.pdf
https://www.nitrd.gov/pitac/report/pitac_report.pdf
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0135
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0135
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0135
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0135
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0140
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0140
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0145
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0145
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0150
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0150
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0150
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0150
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0150
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0155
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0155
http://refhub.elsevier.com/S1877-7503(20)30517-2/sbref0155
https://www.sci.utah.edu/software/pidx.html
https://www.sci.utah.edu/software/pidx.html
https://wci.llnl.gov/simulation/computer-codes/visit/
https://wci.llnl.gov/simulation/computer-codes/visit/

	Translational computer science at the scientific computing and imaging institute
	1 Introduction
	2 Background
	3 Translation process
	3.1 Integrating software engineers within the research environment
	3.2 Challenges of funding, hiring, and retaining
	3.3 Additional translational efforts

	4 Impact and lessons learned
	Author statement
	Declaration of Competing Interest
	Acknowledgments
	References

