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A B S T R A C T   

The Scientific Computing and Imaging (SCI) Institute at the University of Utah evolved from the SCI research 
group, started in 1994 by Professors Chris Johnson and Rob 

MacLeod. Over time, research centers funded by the National Institutes of Health, Department of Energy, and 
State of Utah significantly spurred growth, and SCI became a permanent interdisciplinary research institute in 
2000. The SCI Institute is now home to more than 150 faculty, students, and staff. 

The history of the SCI Institute is underpinned by a culture of multidisciplinary, collaborative research, which 
led to its emergence as an internationally recognized leader in the development and use of visualization, sci-
entific computing, and image analysis research to solve important problems in a broad range of domains in 
biomedicine, science, and engineering. A particular hallmark of SCI Institute research is the creation of open 
source software systems, including the SCIRun scientific problem-solving environment, Seg3D, ImageVis3D, 
Uintah, ViSUS, Nektar++, VisTrails, FluoRender, and FEBio. At this point, the SCI Institute has made more than 
50 software packages broadly available to the scientific community under open-source licensing and supports 
them through web pages, documentation, and user groups. 

While the vast majority of academic research software is written and maintained by graduate students, the SCI 
Institute employs several professional software developers to help create, maintain, and document robust, tested, 
well-engineered open source software. The story of how and why we worked, and often struggled, to make 
professional software engineers an integral part of an academic research institute is crucial to the larger story of 
the SCI Institute’s success in translational computer science (TCS).   

1. Introduction 

The Scientific Computing and Imaging (SCI) Institute at the Uni-
versity of Utah evolved from the SCI research group, started in 1994 by 
Professors Chris Johnson and Rob MacLeod [1,2]. Over time, research 
centers funded by the National Institutes of Health, Department of En-
ergy, and State of Utah significantly spurred growth, and SCI became a 
permanent interdisciplinary research institute in 2000. The SCI Institute 
is now home to more than 150 faculty, students, and staff. 

The history of the SCI Institute [2] is underpinned by a culture of 
multidisciplinary, collaborative research [3], which led to its emergence 
as an internationally recognized leader in the development and use of 
visualization, scientific computing, and image analysis research to solve 
important problems in a broad range of domains in biomedicine, sci-
ence, and engineering. A particular hallmark of SCI Institute research is 
the creation of open source software systems [4], including the SCIRun 

scientific problem-solving environment, Seg3D, ImageVis3D, Uintah, 
ViSUS, Nektar++, VisTrails, FluoRender, and FEBio. At this point, the 
SCI Institute has made more than 50 software packages broadly avail-
able to the scientific community under open-source licensing and sup-
ports them through web pages, documentation, and user groups. 

While the vast majority of academic research software is written and 
maintained by graduate students, the SCI Institute employs several 
professional software developers to help create, maintain, and document 
robust, tested, well-engineered open source software. The story of how 
and why we worked, and often struggled, to make professional software 
engineers an integral part of an academic research institute is crucial to 
the larger story of the SCI Institute’s success in translational computer 
science (TCS) [25]. 
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2. Background 

The SCIRun software system began in the early 1990s as a research 
project in computational steering and integrated problem solving envi-
ronments [5,6]. As it evolved, SCIRun research and software develop-
ment branched in two different directions associated with two very 
different research centers. In 1997, the Center for Accidental Fires and 
Explosions (C-SAFE) [9], created through the U.S. Department of 
Energy’s Advanced Simulation and Computing Initiative (ASCI), 
comprised an interdisciplinary team of researchers in chemical engi-
neering, mechanical engineering, chemistry, mathematics, and com-
puter science. The overall goal of C-SAFE was to provide state-of-the-art, 
science-based tools for the numerical simulation of accidental fires and 
explosions, especially within the context of safely handling and storing 
highly flammable materials. The objective of C-SAFE was to provide an 
accurate, scalable software system within which fundamental chemistry 
and engineering physics are fully coupled with non-linear solvers, 
optimization, computational steering, visualization and experimental 
data verification. The C-SAFE team performed research in large-scale 
simulations of complex physical phenomena including reacting flows, 
material properties, multi-material interactions, and atomic-level 
chemistry. For more than a decade, the C-SAFE team performed pio-
neering work in the field of parallel computing, software frameworks, 
and visualization. C-SAFE scientists also performed research into large 
eddy simulations (LES) of reacting flows, immense combustion simula-
tions, heat transfer studies, validation and verification with uncertainty 
quantification of simulation results, methods for modeling radiation in 
complex fire simulations, expansion and validation of the material point 
method (MPM), advanced chemical models of soot formation and 
deposition, and composite material modeling. 

The NIH Center for Bioelectric Field Modeling, Simulation, and 
Visualization launched in 1999 [10] within the NIH National Center for 
Research Resources. During the first five years, the Center focused on 
creating an extensible, scalable, scientific problem-solving environment 
(PSE) and on developing corresponding research to solve real-world 
problems relating to bioelectric fields. To accomplish this goal, we 
conducted research and development in advanced modeling, simulation, 
and visualization methods for solving bioelectric field problems; we also 
created BioPSE. An extension to the existing SCIRun software system, 
BioPSE was a modular, extensible, integrated software problem-solving 
environment for bioelectric field problems. While the SCIRun software 
supports interaction among the modeling, computation, and visualiza-
tion phases of bioelectric field simulation, BioPSE provided specific 
extensions for the Center. In 2005, the Center was renamed the Center 
for Integrative Biomedical Computing (CIBC) and transitioned to the 
Biomedical Technology Research Resource program within NIH NIGMS. 
At this time, the Center reengineered SCIRun to separate the underlying 
filters or modules from the dataflow interface. The Center also began 
integrating into its tools third-party packages like the Insight Toolkit 
(ITK), in turn assisting in the latest generation of Center applications, 
such as map3d, ImageVis3D, Seg3D, BioMesh3D, and ShapeWorks. 

For decades, applied computing researchers have created software to 
solve science, engineering, and medical research problems. In the cur-
rent academic environment, this software is usually created by graduate 
students and postdoctoral researchers. Needless to say, among this 
group the range of software engineering expertise varies greatly. Beyond 
this, because software is created within the context of very specific in-
dividual projects, in our experience the majority of scientific research 
software addresses a specific short term goal such as a paper or demo 
rather than being designed for long term use or more general distribu-
tion. Within the proposals to create the C-SAFE and CIBC centers, we 
committed to producing open source software that would be both 
available to and usable by other researchers. In making that commit-
ment, we underestimated the difficulty of the task. We knew we had 
software that worked well for us, so we assumed we could just make it 
available for download with some instructions on how to install it and 

use it, and soon we would have thousands of happy users. We soon 
learned what anyone who has successfully transitioned research soft-
ware to well designed, well-engineered, tested, documented, and sus-
tainable software already knows: the task is tremendously challenging. 
For us, addressing it involved integrating professional software engi-
neers into an academic research environment. Though such integration 
raises its own challenges, we have found it to be well worth the effort, as 
these software engineers continue to be key to many of our research 
projects. 

Once we employed software developers, we discovered that incor-
porating them into a research group had its own challenges. First, the 
goals of software developers working to create stable builds were often 
in tension with those of graduate students, postdocs, and faculty who 
constantly required and worked to create new research features. Second, 
professional software developers are in high demand throughout in-
dustry, where there are more open positions for software engineers than 
there are qualified people to fill them. As such, talented software de-
velopers command high salaries compared to graduate students and 
postdocs; some senior software developers command salaries that are 
higher even than those of junior faculty. While a few research agencies 
have sometimes funded professional software developers, this is not the 
norm. Even when a research group can obtain funding for good de-
velopers, they find it difficult to compete successfully against industry to 
hire and retain them. 

3. Translation process 

Both the C-SAFE and CIBC Centers had multiple computer science 
research aims including parallel adaptive mesh refinement, material 
point method, parallel rendering, shape modeling, image segmentation, 
uncertainty visualization, that needed to be translated from research 
code into usable software. Because there is a significant difference be-
tween the research proof-of-concept software produced by labs for in-
ternal use and the robust applications that users expect when they 
download a software product from the web, we proposed within the 
CIBC the aim of creating Translational Software, to transform new al-
gorithms developed in Center imaging, simulation, and visualization 
research cores into stable, available, documented software projects. 
Once the potential of a new technology has been established, significant 
additional software engineering efforts are required to generate a robust 
application that interfaces well with the rest of the framework and runs 
stably on multiple computer platforms. The additional software engi-
neering includes cleaning up the application’s source code, refactoring 
the application for integration with the Center’s standard framework 
components, documentation of the application’s functionality, and a 
rigorous set of white- and black-box tests to be constructed around the 
application. Although these software engineering steps do not neces-
sarily add any novel functionality to the programs, they are necessary to 
ensure the sustainability of the software outside of the Center (Fig. 1) 

3.1. Integrating software engineers within the research environment 

It was challenging to build a robust software system that we could 
maintain and distribute (i.e. real software engineering), while at the 
same time supporting graduate students using it for research projects. 
One solution was to build Packages. The software engineers maintained 
the Datatypes, Modules, and Command-Line utilities in the main SCIRun 
and BioPSE Packages, and the graduate students used a combination of 
Modules from those main Packages, plus Modules/Datatypes/Utilities 
that they added in their own Packages. We also relied heavily on tem-
plates, so people could extend capabilities without breaking other peo-
ple’s code. The downside of templates was that they required long 
compile times, which we addressed with on-the-fly compilation. After 
the usual early “build everything yourself” phase, another software 
sustainability solution was to move to standards such CMake, CTest, and 
CDash. 
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Fig. 1. (a) The SCIRun PSE showing the network, module interfaces and visualization window. (b) The BioPSE application showing the results of a cardiac bioelectric 
field simulation within the Utah torso model [28,29]. The graph on the right side shows the convergence of the iterative solution technique. 
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While maintaining both stable and research software trees, moving 
graduate student research code into the stable software builds remains a 
challenge. No matter the level of encouragement, good software engi-
neering practices are still difficult to enforce among computational 
science graduate students and postdocs, who don’t easily embrace the 
rigors of the software engineering culture. One of our most gifted 
graduate students announced that “great software documents itself”. He 
later retracted this statement after not being able to understand some of 
the many thousands of lines of optimized C++ code he himself had 
written over the years. 

One way we addressed this developer/researcher cultural mismatch 
was to hire a technical software manager who both has a Ph.D. and 
really understands software, so they have a solid foot in each “camp” and 
can communicate effectively at highly technical levels between de-
velopers and researchers, often acting as a translator. The technical 
manager has proved an essential person in helping to better understand 
expectations and workload and also to project software personnel needs 
for research projects. 

An important feature of the CIBC structure was the requirement that 
the Center have multiple Driving Biomedical Projects (DBPs). Driving 
Biomedical Projects are biomedical research test-beds that allow Center 
investigators to test nascent technologies in the context of challenging 
problems in basic, translational, and clinical research, while providing 
biomedical researchers with the earliest possible access to these 
emerging tools. A deep understanding of needs and opportunities in the 
relevant areas of biomedical research is an essential prerequisite for all 
technology development. In the Center, this understanding is most 
clearly expressed through successful engagement of those researchers 
best positioned to benefit from early access to emerging tools. The 
Center is expected to develop new technologies that will significantly 
impact a broad community of biomedical researchers, and through 
leadership within the relevant communities, support the integration of 
those technologies into the larger context of the relevant field. To help 
understand the impact of our software, as part of our annual review by 
our external advisory board, we were expected to produce a summary of 
software download numbers and papers that cited the use of our soft-
ware. For example, the CIBC’s Seg3D software has had more than 
14,000 downloads and has been cited more than 200 times in published 
papers. 

To describe the translation from DBP partner to the larger biomedical 
research community, we coined the phrase “Cone of Influence” (Fig. 2) 
This Center structure required us to work very closely with our DBP 
partners. Examples include DBP partner Natalia Trayonova, the Murray 
B. Sachs Professor in the Department of Biomedical Engineering and the 
Institute for Computational Medicine at Johns Hopkins University and a 

leader in the application of multiscale simulation to cardiac rhythm 
disturbances. She and her large group of investigators implement 
computational and simulation approaches in a clinical setting. We have 
worked with Professor Trayanova both in the efficient generation of 
patient specific models of the human heart in patients with arrhythmias 
and in shape-based analysis of cardiac structure in normal subjects and 
patients with structural heart disease [23,24]. Another example is DBP 
partner Gabrielle Kardon, the Director of the Kardon Laboratory in the 
Department of Human Genetics at the University of Utah. She uses 
multiphoton confocal microscopy for research into musculoskeletal 
development and regeneration. Professor Kardon has worked with the 
CIBC on the development of the FluoRender visualization software 
system to understand the molecular mechanisms and cellular in-
teractions regulating musculoskeletal development and regeneration 
[20]. While Professor Kardon has used FluoRender with musculoskeletal 
development applications, FluoRender has now been used for a large 
number of diverse applications from three-dimensional reconstruction 
of Drosophila neural circuits [21] to three-dimensional imaging of plant 
organs [22]. The DBP partnerships are good examples of TCS, exhibiting 
the technical development within the CIBC, the back and forth inter-
action with our DBP researchers, and, in many cases, the extension of the 
research and software development to the broader research community 
for use in a larger application space. 

The Seg3D image segmentation system [13] is a good example of the 
TCS workflow in which we created a new software system from what we 
learned from the process of working with our DBP research partners, 
while at the same time thinking ahead to a system that could have broad 
research impact. Seg3D is a volume image processing and segmentation 
tool that enables researchers to quickly and easily explore and process 
their 2D and 3D medical imaging data. Seg3D is both simple to use and 
powerful, combining the wealth and sophistication of tools from the ITK 
[14] library with simple interfaces and manual segmentation tools. This 
design makes Seg3D a versatile tool for researchers working with 
three-dimensional imaging data within multiple modeling and simula-
tion domains. Because of its sophisticated design, simple and intuitive 
user interface, and ability to manipulate imaging data, it is often the first 
tool that researchers use on their data in the image-based modeling 
pipeline that we have developed within the CIBC. Additionally, the tools 
in Seg3D provide a convenient platform for correcting outputs of other 
automatic segmentation pipelines, which often achieve incomplete re-
sults that require additional manual editing. While Seg3D is designed to 
be simple to use, advanced tools such as provenance and the Python 
interface allow it to be scripted and used in automatic segmentation 
workflows. Seg3D was initially developed with our research clinical 
cardiology DBP partners, but soon found broader application in a wide 
variety of applications including biomechanics, orthopedics, dentistry, 
plant biology, entomology, and even archeology (Figs. 3, 4 and 5 ) 

3.2. Challenges of funding, hiring, and retaining 

As previously noted, funding, hiring, and retaining good software 
engineers is an ongoing challenge. For computational science and en-
gineering researchers, obtaining research support for graduate students 
and postdocs is standard, but most single PI grants do not have large 
enough budgets for supporting a professional software engineer [11]. 
We continue to tackle this challenge in multiple ways. Our first software 
engineers were recruited as part of the multidisciplinary research cen-
ters, C-SAFE and CIBC. As the SCI Institute faculty saw the benefits of 
these developers, we worked together to hire additional software engi-
neers spread across multiple grants, finding that having one developer 
working on at most two research projects is ideal. Having multiple 
software developers that could be shared across multiple projects has 
proved to be a great way to increase and share developer expertise. We 
have software engineers with expertise in databases, graphics, and 
multiple programming languages, as well as experiences with a wide 
variety of architectures. Having the ability to bring in specific software 

Fig. 2. Cone of influence. Translating research and development with our 
driving biomedical project (DBP) partners to the larger biomedical 
research community. 
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engineering expertise has been a powerful asset for some larger 
multi-disciplinary projects and even for smaller research projects that 
need a few months of graphics or database or user interface design. 

Given the demand for good software engineers, we continue to seek 
creative ways to hire and retain developers. Because we are an academic 
research institute, we understand that we will not be able to compete 
with industry salaries, especially for more senior software engineers. We 
often hire recently graduated computer scientists with the offer to 
expose them to a wide variety of challenging software projects, thus 
expanding their skill set and expertise and making them more valuable 
to industry. Getting undergraduate computer science students involved 
in programming for research projects has been another way we recruit 
software engineers. As our software engineers gain experience and 
expertise, they become increasingly interesting to industry, so we expect 
to have many of our software engineers recruited away to higher paying 
industry positions. One way we retain software engineers is to support 
their continued education through specialized courses and programs 
and graduate degrees; as a result, we have had multiple software engi-
neers complete MS degree programs. In the UK, the EPSRC has recog-
nized the importance of investing in software development [15] and has 
recently establish a Research Software Engineering Fellowship [16] to 
aid in establishing this area as a career path within academic research 
universities. We hope this idea will spread globally. 

3.3. Additional translational efforts 

Two additional research software engineering translational efforts 
include helping to set up a Software Development Center at the Uni-
versity of Utah [19] and our new collaboration with Kitware (www.kitw 
are.com) to transition the CIBC’s open source software into well crafted, 
validated computer code, with community-supported and sustainable 
support for both users and future maintainers of the code base. 

The Software Development Center (SDC) was a joint effort between 
the University of Utah’s Technology Commercialization Office (TCO), 
which manages all intellectual property on the University of Utah 
campus, and the SCI Institute. The Software Development Center goals 

Fig. 3. Visualization and segmentation from a CT scan of a healthy adult using Seg3D [13]. This segmentation was used to generated patient specific models with 
many applications in cardiac electrophysiology, including predicting defibrillator efficacy, simulating cardiac potentials throughout the torso, and predicting cardiac 
activity from torso measurements. The three panels on the right show the axial, coronal, and sagittal views. 

Fig. 4. Visualization of a three-dimensional finite element model created from 
patient images. First, a segmentation was done using Seg3D. Second, a three- 
dimensional mesh was created using BioMesh. Third, a large-scale finite 
element simulation was performed using BioPSE. Finally, the model and 
simulation results showing multiple voltage isosurfaces were visualized 
using SCIRun. 

C. Johnson                                                                                                                                                                                                                                       

http://www.kitware.com
http://www.kitware.com


Journal of Computational Science 52 (2021) 101217

6

were to:  

• Help researchers and entrepreneurs develop software.  
• Create a central repository for campus software projects.  
• Create startup companies based on software projects.  
• Commercialize software developed on campus.  
• Provide students with professional software experience.  
• Develop a talent pool for the state’s software industry.  
• Make software developed on campus available to the public. 

In the formative stages, the SDC was led by Greg Jones, then Asso-
ciate Director of the SCI Institute, who oversaw multiple professional 
software engineers and coordinated with University faculty and the 
TCO. The senior lead software engineering staff had PhDs in Computer 
Science and multiple years of experience. Their experience and technical 
expertise proved crucial in their being able to interact effectively with 
faculty from different disciplines in science, engineering, and medicine 
to understand how to translate research codes and ideas into well 

software engineered systems. The SDC helped develop several software 
systems and worked with a number of University start-up companies on 
their software. 

One of the positive translational consequences of both the SDC and 
having multiple software engineers at the SCI Institute is the increased 
interaction of graduate students with professional software developers. 
One effect is that graduate students are informally mentored about 
professional software practices and learn both to create high quality 
software and also what is involved in creating new features and main-
taining software beyond their graduate studies. Translating our software 
to a broad research community allows our graduate students to learn 
valuable software engineering skills that help them in their future 
research and industry positions. 

The newly established CIBC software transition plan with Kitware 
Inc. is to achieve long term sustainability of the software and data re-
sources that the CIBC has produced. The goal of this plan is to complete 
the conversion of all the technical products achieved over the lifetime of 
the Center into well crafted, validated computer code with necessary 

Fig. 5. (a) Overview of Uintah software architecture [17]. The top row shows the simulation systems. Arches is a three dimensional, Large Eddy Simulation (LES) 
code developed at the University of Utah. Arches is used to simulate heat, mass, and momentum transport in reacting flows [30]. The Material Point Method (MPM) is 
a computationally effective particle method for solving solid mechanics problems involving large deformations [31] and ICE is an implicit continuous-fluid Eulerian 
solver that can be coupled to Uintah’s particle-based solver for solids (MPM) for fluid-structure interaction problems. PIDX is a scalable and tunable adaptive 
resolution parallel I/O framework [32] and VisIt is an open source, interactive, scalable, visualization, animation and analysis tool [33]. (b) Uintah simulation of coal 
particles being injected into a large-scale boiler. 
Collaborations 
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support for both users and future maintainers of the code base. The 
conversion will require the assistance of a professional software house 
that is familiar with the necessary steps and with the technical domain of 
our center, Kitware Inc. Kitware is a company with a 20-year history of 
assisting biomedical researchers to develop highly complex software 
packages and libraries, including VTK, ITK, 3D Slicer, and Paraview. 
They have also developed highly flexible systems to build, deploy, and 
maintain software and are well versed in the practical aspects of sup-
porting communities of users of—and contributors to—scientific soft-
ware projects. 

The main innovations of this project include the transition of soft-
ware from an academic research institute to an open-source commercial 
setting and the leverage of an active user community to maintain and 
enhance the capabilities of the software. Past partnerships between 
public academic and private companies like Kitware have been in place 
from the start of the development process (e.g., 3D Slicer or ITK), while, 
in our case, the CIBC has developed a rich and advanced set of software 
engineering practices informed by, but separate from, other entities. The 
proposed project involves seven different software packages to be 
evaluated then transitioned to the Kitware infrastructure. The second 
innovation will be to leverage a user community—more correctly, a set 
of domain specific user communities—to provide ongoing support for 
the software tools. The impact of the open-source software movement is 
well documented, and recent examples of crowd-sourcing to process 
scientific data have motivated us to propose such an approach. Success 
in either of these innovations will open new avenues for extracting 
valuable, often publicly-funded software from academic centers and 
making it freely available to the scientific community. From a software 
engineering perspective, we have also devised a formalized sustain-
ability matrix to characterize the state of each software system in terms 
of long-term sustainability [27]. We will use this scoring approach to 
deploy long-lasting, continually impactful software systems. Seg3D is 
one of the first CIBC software systems that we will work with Kitware to 
transition to their software infrastructure and sustainability protocols. 

4. Impact and lessons learned 

Investing in professional software engineers as team members within 
our academic research institute has yielded multiple long-term benefits. 
These engineers have helped to create and maintain more than 50 open- 
source software packages that are broadly available to the scientific 
community and are supported by web pages, documentation, and user 
groups. Examples of TCS methodologies and impact were highlighted by 
experiences with two large, long running, multidisciplinary research 
centers, the CIBC and C-SAFE, that integrated cutting edge research with 
multiple software projects. 

The overarching goal of CIBC was to advance the state of practice in 
biomedical computing and its applications both to biomedical science 
and to the translation of this science to clinical practice. We achieved 
this goal by making advanced computational tools, tailored to the spe-
cific domains of image-based modeling, simulation, estimation, and 
visualization, accessible to scientists, engineers, and physicians, by 
releasing readily usable, open-source software. We worked closely with 
these users of our software, providing advice, technical support, work-
shops, and education to enhance their success with the tools we provide. 

The origins of our success in developing widely-used software tools 
lie in a set of strategies for algorithm research and software develop-
ment. One strategy has been the production of software tools with low 
barriers to entry. This entails the release of documented, tested, com-
plete applications that do not entail learning new programming lan-
guages or complex, architecture-specific build environments. This 
strategy is reflected in the complete merging of SCIRun and BioPSE, 
problem-solving environments. 

Another important TCS strategy for software development is to make 
our tools relevant for the broader community by building and testing 
them in close collaboration with specific, high-profile biomedical 

groups, our DBP research partners. These practicing scientists, engineers 
and physicians educated us to achieve an appropriate level of generality 
to impact the largest group possible at the same time that our close 
collaborations with them help us to define and solve specific, relevant 
biomedical problems. These collaborators also inform us about other 
tools that investigators are using, thus helping us to ensure that our 
software fills a clear need in the community and remains at (or ahead of) 
the state of the art. And, since the proof of the effectiveness of the Center 
is in the success of our users, this collaboration strategy and the high 
profile of our collaborators has also proven to be a mechanism for 
dissemination of tools. 

A key success of C-SAFE was that the physical science research was 
greatly augmented by the underlying software framework Uintah [7,8, 
17], which had its origins in SCIRun. The TCS strategy of technical 
innovation within our research team, working with key application 
scientists and engineering and broadening these results to larger 
research communities, proved successful. Because of the utility of the 
software, which scales to hundreds of thousands of processors and is 
used for many large-scale simulation research applications, the devel-
opment of the Uintah computational framework continues through a 
number of additional research funding sources, and the software is 
constantly refined and updated. While developed primarily to run 
fire/container interaction simulations, Uintah has been straightfor-
wardly applied to many other diverse applications, including simula-
tions of blood vessel growth, foam micro-structure, human torso 
dynamics, industrial flares, vehicle armor plating, and oil drilling 
applications. 

In addition, the parallel ray tracing visualization research [12] 
started in C-SAFE yielded a spinoff company, RayScale, that was ac-
quired by NVIDIA. Pieces of that technology grew along with other 
NVIDIA ray tracing technology to become their RTX platform [18]. 

While TCS has the potential to accelerate the impact of computer and 
computational science research, it has largely been implemented by 
individuals and groups in ad hoc ways, and it is not usually recognized as 
a specific methodology. To promote TCS and learn to apply the TCS 
workflow, we will need to establish new funding and reward mecha-
nisms that encourage, support and realize TCS structures. I could ima-
gine creating a small number of distributed TCS centers to act as 
“expeditions to the future,” as described in the 1999 PITAC report [26]. 
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