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Abstract. To statistically study the variability and differences between
normal and abnormal brain connectomes, a mathematical model of the
neural connections is required. In this paper, we represent the brain
connectome as a Riemannian manifold, which allows us to model neu-
ral connections as geodesics. We show for the first time how one can
leverage deep neural networks to estimate a Riemannian metric of the
brain that can accommodate fiber crossings and is a natural modeling
tool to infer the shape of the brain from DWMRI. Our method achieves
excellent performance in geodesic-white-matter-pathway alignment and
tackles the long-standing issue in previous methods: the inability to re-
cover the crossing fibers with high fidelity.

Keywords: Deep learning · Diffusion weighted imaging · Riemannian
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1 Introduction

Diffusion-weighted magnetic resonance imaging (DWMRI) enables the non-in-
vasive study of neural connections within the living human brain. DWMRI mea-
sures the local diffusion of water within axonal bundles, allowing for local direc-
tional estimation of neural connections. Long distance structural connectivity of
the brain is inferred by the process of tractography, which estimates white mat-
ter tracts via various streamlining algorithms. Deterministic tractography [1]
computes the integral curves over the vector field associating the most likely
direction of fiber tracts with each voxel. However, the simplest deterministic
streamline tractography is sensitive to imaging noise and also easily confounded
in the crossing-fiber region. Various approaches such as Kalman filtering [4,17],
probabilistic tractography [2] and front propagation [8] have also been proposed.
The collection of tracts in an individual brain estimated by one or the other
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methods is referred to as the connectome.
Mathematical models for the shape of the connectome: To study the vari-
ability in normal populations and to find differences between neural connections
in normal and abnormal brains, we need a precise mathematical model of the
connectome. Traditionally, individual fiber tracts have been modeled as smooth
curves without any intimate link to the underlying geometry of the brain. In this
paper, we model the brain as a compact Riemannian manifold. A Riemannian
manifold is a real, differentiable manifold M , equipped with a positive-definite
inner product on the tangent space at each point. The shape of the Riemannian
manifold is captured by the local metric. Smooth Riemannian manifolds with
the same topology can have very different shapes because of the differing local
metric structure. For example, spheres and ellipsoids have identical differential
and topological structures, while the local Riemannian metric is different. In this
paper, we assume that the topology of the anatomy of the normal human brain
is consistent across individuals, yet the shape varies due to the differences in its
local metric.
Related work: DWMRI is the foundation to model an individual brain as a
Riemannian manifold. With the Riemannian-metric-equipped manifold, we can
infer the white matter pathways and also the shape of an individual’s connec-
tome. O’Donnell et al. [19] first proposed the geodesic tractography algorithm
that uses the inverse of the diffusion tensor as the Riemannian metric and treats
geodesic curves under the metric as white matter pathways. However, there is a
tendency in the inverted-tensor metrics that the geodesic under it would easily
deviate from the principal eigenvector direction in the high-curvature area. To
address this issue, Fletcher et al. [8] enhanced the metric by “sharpening” the
inverted-tensor metric, i.e., taking the eigenvalues of metric tensor to some power
so as to increase the anisotropy. But this strategy does not take into account the
spatially varying curvature of the vector field, and it increases the sensitivity to
the noise. Fuster et al. [9] demonstrated that using the adjugate of the diffusion
tensor field as the Riemannian metric gave improved geodesic tractography over
the inverted sharpened metric while being more robust to imaging noise. In or-
der to strengthen the adherence of geodesics to the white matter pathways, Hao
et al. [12] developed an adaptive Riemannian metric by applying a conformal
scalar field to the inverse of the diffusion tensor, which necessitates solving a
Poisson equation on the Riemannian manifold. Campbell et al. [3] further ad-
vanced the Riemannian formulation of structural connectomes by introducing
methods for diffeomorphic image registration and atlas building using the Ebin
metric on the space of Riemannian metrics. These geodesic approaches have
several advantages over traditional tractography, including improved robustness
to imaging noise and the ability to find tracts between two given anatomical
endpoints in cases where traditional tractography fails. However, their ability to
characterize crossing fibers and align tractography with data is severely limited,
as they are all derived from the diffusion tensor model. More modern modeling
techniques, such as HARDI [23], Q-Ball [22] and DSI [24], are able to infer mul-
tiple fiber directions at each point in the brain.



Deep Learning the Shape of the Brain Connectome 3

Contributions: In this paper, we show for the first time how one can leverage
the power of deep neural networks (DNNs) to estimate a metric structure of
the brain that can accommodate fiber crossings and is a natural modeling tool
to infer the shape of the brain from DWMRI. We formulate the metric estima-
tion problem as a solution to a nonlinear system of partial differential equations
(PDEs). DNNs have emerged as a promising tool to solve PDEs, see, e.g., [20].
In this work, we adopt convolutional encoder-decoder neural networks for esti-
mating the Riemannian metric of human brains in a self-supervised manner. By
using spatially discretized vector fields from any of the plethora of models for
local fiber directions and a flexible network architecture, our method achieves
excellent performance in terms of geodesic-white-matter-pathway alignment. In
addition to simple deployment and boundary insensitivity, our approach also
tackles the long-standing issue in previous methods: the inability to recover the
crossing fibers with high fidelity. This paper is a novel algorithmic development
paper, and as such, extensive validation of the inferred metric is beyond its scope.
We show that the metric estimation is able to faithfully represent multiple vector
fields as geodesic vector fields of the estimated metric. We inherit the validity of
the tracts from the choice of the preferred local directional estimation algorithm,
which is explicitly not the focus of this work.

2 Estimating Riemannian Metrics from Geodesics

In this section, we will introduce the inverse problem that will be at the center of
our approach: the estimation of a Riemannian metric based on the observation
of fiber directions as the tangents to geodesic curves. We will first recall some
definitions and concepts from Riemannian geometry. For further details, we refer
to classic textbooks such as [5,16]. In all of this work, our modeling space is a
finite-dimensional manifold M (possibly with boundary). In our application, the
topology of the manifold M will be rather trivial and thus we assume in the
following that M is a bounded subset of Rn with n ∈ {2, 3}. Next we introduce
the concept of an integral curve: given a vector field v ∈ X(M), i.e., a map
from M to TM , we call a curve γ : R → M an integral curve of v if γ′(t) =
v(γ(t)), i.e., the curve follows the flow lines of the vector field. A Riemannian
metric g on M is a family of inner products on each tangent space TxM that
depend smoothly on the base point, x ∈ M . Note that in local coordinates we
can identify the Riemannian metric with a field of positive-definite, symmetric
matrices g(x), and the inner product between two tangent vectors v,w ∈ TxM
is simply given by vT g(x)w. We call a curve between p and q a (minimizing)

geodesic if it minimizes the energy functional E(γ) = 1
2

∫ 1

0
gγ(∂tγ, ∂tγ)dt. Locally

length-minimizing curves satisfy an ordinary differential equation, called the
geodesic equation, which is the first-order optimality condition dE(γ) = 0.

For every Riemannian manifold there exists a unique connection ∇g, called
the Levi-Civita covariant derivative, that encodes this notion of geodesic curves.
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Given vector fields v and w, we can write a coordinate expression of ∇g via

∇gvw =
∑
k

∑
i

vi
∂wk

∂xi
+
∑
i,j

Γ kijv
iwj

 ek, (1)

where v =
∑
viei,w =

∑
wiei with ei = ∂

∂xi being the i-th basis vector.
Furthermore, Γ kij are the Christoffel symbols, which are defined as

Γ kij =
1

2

n∑
l=1

gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
, (2)

where gij denotes the entries of the Riemannian metric g, and gij represents the
entries of the inverse of metric g−1. Using this notation, the geodesic equation
can be written as ∇g∂tγ∂tγ = 0. Finally, we call a vector field a geodesic (vector)
field if all its integral curves are geodesics, i.e., v is a geodesic field if ∇gvv = 0.

We are now able to formulate the inverse problem studied in this paper as:

Unregularized, exact metric estimation: Given vector fields vi ∈
X(M), i ∈ {1, . . . ,m}, find a Riemannian metric g on M such that all vi are
geodesic vector fields, i.e., find a Riemannian metric such that ∇gvi

vi = 0
for all i ∈ {1, . . . ,m}.

Using Eq. (1) to express the condition ∇gvi
vi = 0, this can be interpreted as

a system of non-linear PDEs for the metric g. The inverse problem is in general
highly ill-posed — there might exist either many solutions or no solution at all.
Even in the case of a single vector field v, the situation is far from being trivial,
see e.g. [11] for characterization in the case of M being a surface, and [15] for
examples where no solution exists. To deal with these difficulties, we consider
instead the following variation of the above metric estimation problem:

Regularized, inexact metric estimation: Given vector fields vi ∈ X(M),
i ∈ {1, . . . ,m}, find the Riemannian metric g on M that minimizes the
energy functional

E(g) =

m∑
i=1

‖∇gvi
vi‖L2 + αReg(g), (3)

where α > 0 is a weight parameter.

Here the first term enforces the condition that the vector fields vi are close to
geodesic, while the second term is a regularization parameter that is responsible
for the solution selection. We note that this formulation relates directly to the
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physics-informed neural network formulation for solving PDEs using neural net-
works as described next. Furthermore, we will not add an explicit regularization
term for the metric g. Instead, we will implicitly regularize our problem via our
solution parameterization via a neural network.

3 Metric Estimation via Neural Networks

We now present a novel deep learning framework for solving the inverse prob-
lem formulated above. Physics-informed neural networks (PINNs), proposed by
Raissi et al. [20], leverage the universal approximation ability of DNNs to esti-
mate the solution of a PDE by encoding the inverse problem into the loss func-
tion. The automatic differentiation module embedded in most machine learning
frameworks, such as PyTorch and TensorFlow, automates the process of finding
the solution efficiently and mesh-freely. In our situation, this corresponds to the
network representing a metric field, i.e., the input of the network is the coordi-
nate x ∈ Rn and the output of the network is a symmetric matrix s ∈ Rn×n at
position x. To enforce the metric to be positive-definite, we use the matrix ex-
ponential operation to produce our final metric estimate, g = exp(s). As Eq. (2)
can be evaluated exactly by the automatic differentiation module, we can effi-
ciently evaluate our loss function. We want to repeat that we have not explicitly
added a regularization term, but instead we rely on the implicit regularization
properties of the network representation. In our experiments, the predictive abil-
ity and accuracy of PINNs decayed drastically as the dimension and complexity
of the solution increased, and in particular, the performance of this solution rep-
resentation did not scale up to the complex geometry of the human brain. To
overcome the inherent limitation of the vanilla PINNs, we followed the method
proposed by Zhu et al. [26], who employ a convolutional encoder-decoder neural
network (CEDNN) approach to construct the multi-scale features from high-
dimensional input. By incorporating the input, output fields, and corresponding
differentiation field into the loss function, the network is trained to capture
the heterogeneous mapping between the given fields and the resulting solution
field. Thus, unlike the PINN architecture, CEDNN takes the whole spatially
discretized vector fields as the input and outputs the entire metric field which
minimizes Eq. (3). DenseNet [14] is a promising network architecture for this
task. DenseNet furthers the ideas of residual learning in ResNet [13] and by-
passing paths in highway networks [21] by concatenating every previous layer’s
output as the input of the current layer in a feed-forward fashion. The dense
connectivity improves the information flow in the network, without introducing
any optimization difficulty. The encoder contracts the higher-level context and
feature of the input, while the decoder commits to recovering the location in-
formation to the same scale as the original input fields. Our network takes an
m× n-channel input, where n is the dimension of the vector fields and m is the
number of distinct geodesic vector fields vi used for the metric estimation. By
sending the concatenated vector fields into the network, CEDNN yields an out-
put of (n+1)n/2 channels which infers the (n+1)n/2 distinct entries of an n×n



6 H. Dai et al.

symmetric matrix. We then form the final estimated metric, the n×n symmetric
positive-definite matrix, also through the matrix exponential operation. As the
spatial variable x is no longer explicit in the network, to compute spatial gradi-
ents, we adopt a central finite-difference scheme to approximate the derivatives
in the loss function as given in Eq. (3). For more details on the architecture, see
Fig. 1.
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Fig. 1: The architecture of the proposed convolutional encoder-decoder neural
networks. Here, h,w, d denote the shape of the input vector fields, and m repre-
sents the number of total vector fields. The numbers in a Conv box stand for the
kernel size, stride, and padding of the convolution, respectively. The number in
a Nearest Upsampling box indicates the scaling factor.

4 Experiments

In all the experiments presented below, we used a CEDNN to represent the
metric, where we employed the Adadelta optimizer to minimize our loss function.
All computations were carried out on a Nvidia Titan RTX GPU. The runtime
for all experiments was approximately 4 seconds per iteration.
2D Brain Slice: For easy visualization and interpretability, we first compare our
method with other geodesic tractography approaches on a projected 2D brain
slice from the Human Connectome Project (HCP) [10] (subject 103818). Fig. 2
shows the geodesics w.r.t. the inverted diffusion tensor metric [19], the adjugate
of the diffusion tensor [9], the conformal metric [12], and the metric estimated
by our method. We quantitatively measured the geodesic-white-matter-pathway
alignment of these methods by integrating geodesics from 30 randomly chosen
seed points in the corpus callosum and calculating the mean error of the geodesic
as compared to the integral curve of the vector field corresponding to the same
seed point. The central panel in Fig. 2 shows one example of a geodesic, where
one can clearly see that the geodesics of the other three methods deviate from
the integral curve eventually, while ours proves a much better alignment to the
ground truth. In the right panel, this observation is quantified: one can see that
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Fig. 2: Left: axial view of an HCP brain image. Central: detailed view of the
geodesics and integral curve starting from the star. Right: Box plot of distances
between the integral curve and geodesics generated by different methods. Green
triangles stand for the mean values, and orange bars represent the median values.

our method outperforms the others in terms of both mean and median of mean
errors.
2D Synthetic “Braid”: To verify and exemplify our method’s crossing fiber
estimation ability, we synthesized two vector fields (see the first two panels in
Fig. 3). The central integral curves of the vector bundle are two trigonometric
functions: x2 = 20 cos( 1

4π (x1−60))+50 and x2 = 20 sin( 1
4πx1)+50, where x1, x2

stand for pixel coordinates. The vector along the curve aligns with the corre-
sponding tangent vector of the curve. We then constructed the vector bundle
by parallel translating the central integral curve within nine pixels horizontally.
For the solution, we used a CEDNN the following parameters: the number of
dense layers in the three dense blocks are 6, 8, 6, with a growth rate of 16,
where we used a learning rate of 0.0001 for the optimization. Fig. 3 shows the
metric fields g (second panel from right) estimated by our method and the align-
ment of ground truth integral curves (black) and geodesics (indigo). In addition
to the good alignment, our estimated metric behaves as expected even at the
crossing-fiber region — the geodesics are not confounded in our metric.

3D Brain: To validate our method’s ability to estimate 3D crossing-fiber regions
in real brain DWMRI, we used HCP subject 103818. We first reconstructed the
vector fields through the GQI method in DSI Studio with a diffusion sampling
length ratio of 1.25. We then estimated a whole-brain metric by a CEDNN fea-
turing 55, 30, 55 dense layers in each dense block, where we used a learning rate
of 0.0003 for a total of 90000 iterations. The top row in Fig. 4 shows the result-
ing connectome visualized by 3D Slicer via the SlicerDMRI project [25,18]. We
show the approximation ability of our method in real-world crossing-fiber region
in the bottom of Fig. 4.
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Fig. 3: From left to right: input vector fields v1; input vector fields v2; integral
curves (black, running on input vector fields) and geodesics (indigo) on estimated
Riemannian metric field g at iteration 5000 (background ellipses represent metric
tensors), starting from seed points (star); ∇gv1

v1 visualization at iteration 5000.

Fig. 4: Top row from left to right: coronal, sagittal, and transversal view of the
connectome generated by the proposed method, based on HCP subject 103818.
Bottom left: transversal view of the same subject. Bottom central: zoom-in view
of a 4 × 4 × 4 crossing-fiber region. Bottom right: geodesic tractography by
proposed method starting at (89, 52, 68) within the same window.
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5 Conclusion and Future Work

In this paper, we have shown for the first time how we can leverage the flexibility
of deep learning to model the shape of the human connectome by estimating a
Riemannian metric of the brain manifold. We have not yet studied the gener-
alizability of the network, i.e., it is our aim to further develop the paradigm to
train a single network that will efficiently output a metric structure directly from
DWMRI data. With the ability to robustly and efficiently model the white mat-
ter of the brain as a Riemannian manifold, one can directly apply geometrical
statistical techniques such as statistical atlas construction [3], principal geodesic
analysis [7], and longitudinal regression [6] to precisely study the variability and
differences in white matter architecture.
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