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ABSTRACT

Deep learning has shown recent success in classifying anomalies in chest x-rays, but datasets are still small compared
to natural image datasets. Supervision of abnormality localization has been shown to improve trained models, partially
compensating for dataset sizes. However, explicitly labeling these anomalies requires an expert and is very time-consuming.
We propose a method for collecting implicit localization data using an eye tracker to capture gaze locations and a microphone
to capture a dictation of a report, imitating the setup of a reading room, and potentially scalable for large datasets. The resulting
REFLACX (Reports and Eye-Tracking Data for Localization of Abnormalities in Chest X-rays) dataset was labeled by five
radiologists and contains 3,032 synchronized sets of eye-tracking data and timestamped report transcriptions. We also provide
bounding boxes around lungs and heart and validation labels consisting of ellipses localizing abnormalities and image-level
labels. Furthermore, a small subset of the data contains readings from all radiologists, allowing for the calculation of inter-rater
scores.

Background & Summary
Deep learning has been successfully applied to medical image analysis, including abnormality detection in chest x-rays
(CXRs)1, 2. However, even though, in the medical image context, very large published CXR datasets are available3–6, with
sizes in the hundreds of thousands of images, they are much smaller than some published natural images datasets7, 8. These
large CXR datasets were labeled through the mining of clinical reports. However, given the relatively small size of the datasets,
additional labels may contribute to the training of data-demanding deep convolutional neural networks. We present a dataset
named REFLACX containing eye-tracking data collected from radiologists while they dictate reports. This dataset was built as
a proof-of-concept for a data collection method that expands the labels of a medical dataset, providing additional supervision
during deep learning training.

Li et al. have shown that bounding boxes localizing abnormalities on CXRs can be weakly used to supervise a convolutional
neural network (CNN) to improve accuracy and localization scores9. They used the manually annotated bounding boxes
provided for 880 images of the 112,200 CXRs from the ChestX-ray14 dataset5. Even though other datasets provide similar
labels10, 11, such localization labels are rare, and when present, are usually provided in limited quantities, showing the difficulty
of scaling up the manual labeling. To try to solve this issue, and in accordance with the prioritization of the development of
automated image labeling and annotation methods of the NIH’s roadmap for AI in medical imaging12, we collected eye-tracking
data from radiologists for implicit localization of anomalies. We believe that the proposed collection method has the potential
to be scaled up and used as a nonintrusive annotation approach deployed in a radiology reading room.

Other works have used eye-tracking data to support models in training or inference. Templier et al. and Stember et al. used
eye tracking for interactive segmentation of biological/medical images, intending to achieve faster labeling13, 14. Khosravan et al.
proposed a method of integrating an eye tracker into the reading room to combine a radiologist’s reading with computer-aided
diagnosis (CAD) systems15. Gecer et al. used the navigation behavior of pathologists during readings to improve the detection
of cancer in histopathology images16. Stember et al. showed that the gaze of a radiologist when dictating standardized sentences
for presence/absence of brain tumors in MRIs could be used to localize lesions17. In parallel to our project, Karargyris et al.
built a dataset of eye-tracking data and respective dictation of CXR reports, containing 1,083 readings by only one radiologist18.
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Saab et al. built a dataset of eye-tracking data for the task of identifying pneumothoraces for 1,170 CXRs19. Still, their dataset
does not contain dictations and focuses on the general differences in eye-tracking data for normal and abnormal images.

To collect the proposed dataset, as described in Figure 1, five board-certified subspecialty-trained thoracic radiologists,
who closely worked on aspects of the study design, used a custom-built user interface mimicking some of the functionalities
from clinical practice. They dictated reports for images sampled from the MIMIC-CXR dataset6 while eye-tracking data
were collected, including gaze location and pupil area. The audio of the dictation was automatically transcribed and manually
corrected. The transcriptions included word timestamps for synchronization with the rest of the data. During dictation, we also
recorded the zooming, panning, and windowing state of the CXR at all times. After dictating each case, radiologists provided a
set of manual labels: the abnormalities they found, selected from a list, and the location of those abnormalities. These manual
labels were collected to validate the data collection method and any automatically extracted labels generated from the dataset.
Radiologists also drew a bounding box around the heart and lungs for normalization of chest position.

The collection of data was separated into three phases. The two first preliminary phases were used to adjust minor data
collection details and to estimate inter-rater scores for the labels of the dataset, with radiologists reading a shared set of images.
For the third and main phase, the sets of CXRs for each radiologist were independent. Considering all phases, REFLACX
contains 3,052 cases, for a total of 2,616 unique CXRs. Of the 3,052 cases, 3,032 contain eye-tracking data.

Methods
Data collection was divided into three phases. Phases 1 and 2 were preliminary phases where five radiologists read the same set
of 59 and 50 CXRs, respectively. The set of possible image-level labels was chosen after a discussion among radiologists. After
estimating the inter-rater reliability for phase 1, as shown in Table 1, a meeting was organized where radiologists discussed the
labeling differences for the five cases that had the most negative impact on the reliability scores. The set of labels for phase 2
was slightly modified to clarify labeling and reduce its complexity. An electronic document, included as Supplementary File
1, was distributed to all radiologists with labeling instructions. A glossary by Hansell et al. provided some of the labeling
definitions for this document20. Phase 3 had the same five radiologists reading independent sets of around 500 CXRs each and
used the same set of anomaly labels as phase 2. This phase constitutes the main content of the dataset and has a slightly higher
quality of eye-tracking data. The set of labels used for each phase is listed in Table 2. Phase 1 went from November 11, 2020 to
January 4, 2021, phase 2 from March 1, 2021 to March 11, 2021, and phase 3 from March 24, 2021 to June 7, 2021. Data
collection sessions took on average 2.21 hours, with a maximum of 3.92 hours and a minimum of 0.2 hours.

Image data
CXRs were sampled from the MIMIC-CXR dataset6, 21, 22, a publicly available deidentified dataset. Before sampling, the
dataset was filtered for including only CXRs that contained “ViewPosition” metadata with value “PA” or “AP”, were the only
frontal CXRs in their study, and were present in the label table from the MIMIC-CXR-JPG dataset22–24. After sampling, we
excluded outlier images that, according to the radiologists, had major parts of the lung missing from the field of view, were
digitally horizontally flipped, or had a rotation of 90◦. For phase 3, images with anonymizing black boxes that intersected the
lungs were also excluded. Images were sampled to include 20% of images from the test set of the MIMIC-CXR dataset and
80% from the other splits, and uniformly at random from each of these two splits.

Data-collection sessions
Data collection for each CXR involved two main parts: a dictation and transcription of a free-form radiology report while
collecting eye-tracking data, and the selection of labels and ellipses to use as evaluation ground-truth for anomalies present in
a CXR and their location. The data collection interface was developed in MATLAB R2019a/Psychtoolbox 3.0.1725–27. The
code for the interface is available at https://github.com/ricbl/eyetracking28. The interface is shown in Figure 2 and as a video
in Supplementary File 2, where the moving semitransparent red ellipse, with an axis length of 1◦ of visual angle, represents
stabilized gaze, i.e., fixations, and the moving blue ellipse represents the instantaneous gaze location sample. The cursor was
not drawn in the video and the audio is a digitally generated voice representing the timestamped transcription. We did not
include the original dictation in the video for anonymization purposes. This interface allowed for:

• Dictation of reports. A CXR was displayed to radiologists, and they dictated a report using a handheld microphone while
eye-tracking data were collected.

• Editing of mistakes of the automated transcription.

• Selection of image-level labels and ellipses localizing each label, including assessing the certainty of the presence of
anomaly for each ellipse. Following Panicek et al.29, the allowed certainties were: Unlikely (<10%), Less Likely ( 25%),
Possibly ( 50%), Suspicious for/Probably ( 75%), Consistent with (>90%).

2/16

https://github.com/ricbl/eyetracking


• Image windowing, zooming, and panning. These features were available while dictating and labeling, mimicking features
available to radiologists in their clinical practice.

• Drawing of chest bounding boxes that encompass lungs and heart, for normalization of the variations in CXRs.

• Calibration of pupil size and access to the eye-tracker calibration screens.

In more detail, at the beginning of the session, the calibration interaction adopted the following order:

1. Eye-tracking calibration screen, where 13 circles, distributed throughout the screen, are displayed in random order for
the radiologists to fixate.

2. Calibration of pupil size.

For the rest of the session, for each reading of CXR, the interaction of radiologists followed:

1. Dictation of report. Radiologists were not allowed to return to this screen for changes in dictation.

2. Image-level label selection.

3. Text input for “Other” label, in case it was selected as an image-level label.

4. Localization of image-level labels by the drawing of ellipses and choice of certainty for each ellipse.

5. Drawing of a chest bounding box including lung and heart.

6. Text editing to correct transcription errors.

7. Screen allowing proceeding to the subsequent CXR, displaying warnings for low-quality eye-tracking data, and optional
return to calibration screens.

Equipment
To collect eye-tracking data, we used an Eyelink 1000 Plus equipped with a 25 mm lens and managed by an Eyelink 1000 Host
PC recording gaze at 1,000 Hz. The eye tracker was configured in the remote setup, for which the radiologists put a sticker
on their forehead. Radiologists had the freedom to move their heads as long as the sticker and tracked eye stayed within the
camera’s field of view, and the sticker stayed between 55 cm and 65 cm from the camera. The camera was positioned below a
27 inches BenQ PD2700U, 3,840×2,160 pixels, 60 Hz screen, connected to a Display PC running Ubuntu 18.04. For phase 3,
the camera was positioned 11 cm in front of the screen. Eye distance to the bottom of the screen was around 71 cm, while it
was around 65 cm to the top of the screen.

Calibration
Eye-tracker calibrations are necessary for finding the correspondence between pupil and cornea positions in the image captured
by the eye tracker’s camera and locations on the screen where the radiologists are looking. During the calibration, radiologists
had to look at 13 targets in several locations on the screen for the eye-tracker to register the pupil and cornea positions for each
location and interpolate for other intermediate locations on the screen. We performed an eye-tracker calibration at the beginning
of each session, every 25 cases, every time radiologists took a break, or when noticeable quality problems with the data could
be solved with a new calibration. During calibration, radiologists were positioned such that the forehead sticker was between
59 cm and 61 cm away from the camera. For phases 1 and 2, calibrations were not performed at a regular 25-case interval. For
phase 3, the calibration was considered successful if the average error was less than 0.6◦, and the maximum error was less than
1.5◦. The left eye was tracked by default, and the right eye was only tracked when the left eye calibration was repeatedly faulty.
At each session beginning, radiologists were asked to look at the center of the screen for 15 s for measuring a constant used to
normalize the pupil size.

Report transcription
We collected the dictation audio at 48,000 Hz using a handheld PowerMic II microphone. The audio was transcribed using the
IBM Watson Speech to Text service, which provides timestamps for each transcribed word, with the “en-US_BroadbandModel”
model. Before phase 1, the service’s custom language model was trained with sentences from the “Findings” and “Impressions”
sections of the MIMIC-CXR reports, which were filtered to remove sentences that referenced other studies of a patient through
the search of keywords. For phase 2 and phase 3, in addition to language training with the filtered MIMIC-CXR reports, models
had language and acoustic training with the collected audio and corrected transcriptions from phase 1. Audio files had silence
trimmed from the start and end of the file to speed up transcriptions. Silence was detected using Otsu’s thresholding over the
average audio level (dBFS) of 500 ms chunks. Word timestamps were adjusted for the trimming of the beginning of the audio.
After the report transcription was received from the cloud service, radiologists could make minor changes to it. Several of the
common mistakes of the cloud service were programmatically corrected before providing transcriptions to the radiologists.
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Postprocessing
The eye-tracking gaze samples were parsed for fixations, i.e., locations where gaze was spatially stabilized for a certain period;
blinks, i.e., moments when the eye tracker did not capture pupil or cornea; and saccades, i.e., fast eye movements between
fixations. Parsing was done in real time by the EyeLink 1000 Host PC, using a saccade velocity threshold of 35◦/s, a saccade
motion threshold of 0.2◦, and a saccade acceleration threshold of 9,500◦/s2. Fixation locations were converted from screen
space to image space by recording, at the start of the fixation, what image part was shown at what screen section. Fixations
were synchronized with the transcriptions and other recorded data by synchronization messages sent by the Display PC to the
EyeLink 1000 Host PC.

Pupil area data, captured by the eye tracker, was normalized by the average value of pupil area from the calibration screen
from the beginning of the session. Radiologists were asked to look directly at the center of the screen, marked by a cross. The
average value was weighted by fixation durations and calculated only for fixations at most 2◦ from the screen center.

After all data-collection sessions, transcriptions were checked and corrected by another person, who looked for additions of
content during the radiologist correction screen, which were not allowed, and for out-of-context words and other clear mistakes,
which were corrected by relistening to the recorded audios of those cases. During this process, spellings of a few words were
standardized. The labels listed as “Other” were also standardized. Since the transcriptions were corrected for mistakes after
receiving the output from the cloud service, timestamps had to be adapted to the new set of words. We used the counting of
syllables to perform a linear interpolation between the times of both texts. Interpolations were calculated for each difference
found between strings, as given by the difflib Python library. When there was an addition of words with no removal, the new
words used the time range defined by the end time of the previous word and the start time of the next one, making it possible
for words to have the same timestamp for start and end.

Data quality
Readings were evaluated for the quality of eye-tracking data by measuring the times that data were classified as a blink during
collection. Eye-tracking data were discarded in cases with a blink longer than 3 s or when blinks corresponded to more than
15% of the data. Warnings were shown between cases for blinks longer than 1.5 s or when blinks corresponded to more than
10% of the data. Cases that had eye-tracking data discarded were not included in the dataset for phase 3 but were included
for phases 1 and 2 to make possible the evaluation of inter-rater scores for other labels. The threshold values were chosen by
qualitative observation of blink data histograms from phases 1 and 2 before collecting phase 3 data. Eye-tracking data were
also discarded when the radiologist unintentionally clicked the “Next Screen” button before completing the dictation, when the
eye-tracking data were not correctly saved because of various software problems, and when the eye tracker identified the glasses
of the radiologist as their eyes. We discarded eye-tracking data for 7 cases for incomplete dictation, 6 for software problems
when saving the data, 2 for large parts of the lungs missing, 1 for a horizontally flipped image, 1 for extreme rotation of the
MIMIC-CXR image, 41 for low data quality, and 2 for glasses being confused for eyes. The total of discarded eye-tracking data
was 10 cases for phase 1, 10 cases for phase 2, and 40 cases for phase 3. Additionally, one CXR in phase 1 had large parts of
the lung missing and is not included in the 59 images present in the dataset.

Data Records
For each reading of a MIMIC-CXR image, the labels of this dataset consist of eye-tracking data, formatted as fixations and as
gaze position samples, a timestamped report transcription, ellipses localizing anomalies associated with a certainty, and a chest
bounding box. For each case/reading, there is a folder containing these labels, separated into individual tables. Metadata tables,
associated with each phase of data collection, list all folders and metadata for each folder. The statistics of the resulting dataset
are presented in Table 2. Genotypical sex information was extracted from the MIMIC-IV dataset22, 30, and was missing for
around 0.35% of the 2,199 unique subjects. The dataset is available at https://doi.org/10.13026/e0dj-849822, 31.

Description of tables and their columns
• main_data.zip/main_data/metadata_phase_<phase>.csv: list of all the folders/cases corresponding to a specific phase

and their metadata.

– id: folder name and unique identifier for a reading of a specific CXR by a specific radiologist.

– split: the split given by the MIMIC-CXR dataset for that specific image. The possible valus are “train”, “validate”,
“test”. Images were sampled so that 20% of the images were from the test set of the MIMIC-CXR dataset.

– eye_tracking_data_discarded: for phases 1 and 2, even when the eye-tracking data were discarded for low
quality, the anomaly labels, localizing ellipses, and chest bounding box were collected and included in the dataset.
This column is “True” when the eye-tracking data has been discarded, and “False” otherwise. Transcriptions are
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also not included for these cases. Such cases should not be used for analysis if eye-tracking data or transcription
are required. For phase 3, no case with discarded eye-tracking data is included.

– image: path to the DICOM file from the MIMIC-CXR dataset used in this reading, with the same folder structure
as provided by that dataset.

– dicom_id: unique identifier of the image that can be used to join tables with the metadata from MIMIC-CXR.

– subject_id: unique identifier for the patient of that study.

– image_size_x: horizontal size of the CXR in pixels

– image_size_y: vertical size of the CXR in pixels

– Other columns: the rest of the columns represent the possible presence of anomaly evidence in the image, as
selected by the radiologist. Most of these columns contain values between 0 and 5, representing a certainty of the
presence of such anomaly, according to the scale:

* 0: not selected by radiologist,

* 1: Unlikely,

* 2: Less Likely,

* 3: Possibly,

* 4: Suspicious for/Probably,

* 5: Consistent with.

Certainties were associated with each localizing ellipse in the image, so each label’s maximum certainty is reported.
Radiologists were asked not to draw ellipses for the anomaly labels “Support devices,” “Quality issue” and “Other,”
so there is no certainty associated with these labels.

– Support devices and Quality issue: the presence of these labels is reported, using “True” or “False.”

– Other: A list of the other anomalies reported by radiologists not included in the rest of the labels, separated by “|.”
If empty, no other anomaly was reported.

• main_data.zip/main_data/<id>/fixations.csv: eye-tracking data summarized as fixations and collected during the
dictation of the report.

– timestamp_start_fixation / timestamp_end_fixation: the time in seconds when the fixation started/ended, count-
ing from the start of the case.

– average_x_position / average_y_position: average position for the fixation, given in pixels and in the image
coordinate space, where (0,0) is the top left corner.

– pupil_area_normalized: pupil area, normalized by the calibration performed at the beginning of each session.

– window_level / window_width: average values of the windowing used for the image during a fixation.

– angular_resolution_x_pixels_per_degree / angular_resolution_y_pixels_per_degree: number representing
how many image pixels fit in 1◦ of visual angle for each axis (x or y). It is dependent on the position of the fixation
and the zoom applied to the image.

– xmin_shown_from_image / ymin_shown_from_image / xmax_shown_from_image /
ymax_shown_from_image: bounding box given in image-space representing what part of the image was shown
to the radiologist at the start of the fixation. The reading/case always started with the whole image being shown,
but zooming and panning were allowed.

– xmin_in_screen_coordinates / ymin_in_screen_coordinates / xmax_in_screen_coordinates /
ymax_in_screen_coordinates: bounding box given in screen space representing where the part of the image was
shown.
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• gaze_data.zip/gaze_data/<id>/gaze.csv: complete eye-tracking data during the dictation of the report, collected at
1,000 Hz. Even though this data are not necessary for accomplishing the main research goals of this dataset, these
data are included for any other analyses that need the gaze location in more detail than provided by the fixations.csv
table. Compared to the fixations.csv table, the timestamp_start_fixation and timestamp_end_fixation columns were
replaced by the timestamp_sample column. The remaining columns are the same in both tables, but they represent
values when the eye tracker’s camera captured the gaze sample in gaze.csv.

– timestamp_sample: timestamps do not start at 0 because audio recording started before gaze recording.

– x_position / y_position / pupil_area_normalized / angular_resolution_x_pixels_per_degree /
angular_resolution_y_pixels_per_degree: these columns are empty for timestamps when the eye tracker could
not find the radiologist’s pupil or cornea, making it impossible to calculate gaze at that moment. These rows are
usually associated with moments when radiologists blinked.

• main_data.zip/main_data/<id>/timestamps_transcription.csv: timestamped corrected transcriptions of the reports.
Radiologists were allowed to delete parts of the report and to modify transcription errors but not to add content.

– word: the word that was spoken. Periods (.), commas (,) and slashes (/) occupy one row.

– timestamp_start_word/timestamp_end_word: the time in seconds when the dictation of each word started/
ended, counting from the start of the case.

• main_data.zip/main_data/<id>/transcription.txt: the transcription in text form, without timestamps.

• main_data.zip/main_data/<id>/anomaly_location_ellipses.csv: bounding ellipses drawn by radiologists for each
label present in the image. Each label may appear in more than one ellipse, and each ellipse may contain more than
one label. Radiologists were instructed to select more than one label for an ellipse when a single image finding may be
evidence of one or another label. Each row of the table represents one ellipse.

– xmin / ymin / xmax / ymax: coordinates representing the extreme points, in image pixels, of the full horizontal
and vertical axes of the ellipse. Coordinate (0,0) represents the top left corner of the image.

– certainty: value from 0 to 5 representing a certainty of the finding presence, according to the same scale as in the
metadata table.

– Other columns: the rest of the columns have a Boolean value representing the presence of evidence for each
anomaly label in the ellipse. Since radiologists were asked not to draw ellipses for “Support devices”, “Quality
issue”, and “Other,” most of the rows have the value “False” for these labels. For all other labels present in the
image, at least one ellipse is drawn.

• main_data.zip/main_data/<id>/chest_bounding_box.csv: single-row table containing information for the bounding
box drawn around the lungs and the heart.

– xmin / ymin / xmax / ymax: coordinates representing the extreme points, in image pixels, of the bounding box.
Coordinate (0,0) represents the top left corner of the image.

Technical Validation
For all reported technical validation values, we also report standard error and sample size when applicable. Standard errors
wereonly reported for n > 10. For measurements that had more than one score for the same CXR, e.g., intersection over union
(IoU) calculated for all pairs of radiologists, we averaged the scores for each CXR before calculating the final average. The
sample size given is the number of independent CXRs involved in the calculation.
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Eye-tracking data
Considering the errors provided by each of the calibrations used in data collection, we calculated the average and maximum
calibration errors for each phase. Phase 1 had an average calibration error of 0.43±0.02◦ (n=25) and a maximum error of 2.79◦,
whereas, for phase 2, it was 0.43±0.03◦ (n=13) and 1.09◦, respectively. Phase 3 had an average error of 0.44±0.01◦ (n=128)
and a maximum error of 1.5◦.

To validate the presence of abnormality location information in the eye-tracking data, we calculated the presence of fixations
inside the abnormality ellipses for each reading, as exemplified in Figure 3. For each reading that had at least one drawn ellipse,
we calculated the normalized cross-correlation (NCC) between a heatmap generated from the eye-tracking fixations and a mask
generated from the ellipses. The heatmaps were generated by drawing Gaussians centered on every fixation, with the standard
deviation equal to 1◦ in each axis and with intensity proportional to the fixation duration. This heatmap was compared against
the union of the abnormality ellipses for all readings that had at least one ellipse drawn. After calculating the average NCC for
each CXR, the average achieved over all applicable CXRs was 0.380±0.014 (n=96).

We calculated a baseline for the NCC value that considers the average heatmap of all cases. Since there is variation in
the location of the lungs for each CXR, we normalized all heatmaps to the same location using the labeled chest bounding
boxes. We calculated the average chest bounding box, transformed all heatmaps to this same space, and averaged the heatmaps.
We finally transformed the average heatmap back to the space of each CXR to calculate the NCC against the labeled ellipses.
The final score for the baseline was 0.326±0.013 (n=96), showing that there is more abnormality location information in the
fixations for each CXR than on a heatmap built from the usual areas looked by a radiologist on a CXR. The transcription and its
timestamps can be used to get label-specific localization information. We leave this use to future works.

Validation labels
Image-level labels
The inter-rater reliability was measured through Fleiss’ Kappa32 for the image-level labels, calculated using the statsmodels
library in Python33. Image-level labels were considered positive when the maximum certainty, among all ellipses of a given
label, was “Possibly” or higher. The inter-rater reliability scores for phases 1 and 2 are shown in Table 1. The achieved
inter-rater reliability scores are relatively low but in line with scores obtained in other similar studies for readings of CXR34, 35.
Some of the low values might be caused by the low prevalence of some of the labels36, 37.

Localization ellipses
For each CXR, for each label with more than one radiologist selecting certainty “Possibly” or higher, we calculated the average
paired IoU between all pairs of respective radiologists. We then calculated the average IoU over all CXRs of each phase, with
results presented in Table 1. Between phases 1 and 2, we discussed a few examples of CXR that had low IoU.

Chest bounding boxes
Similar to the localization ellipses, the quality of the bounding boxes containing the heart and the lungs was measured through
IoU. IoU was calculated between all the pairs of radiologists for every CXR of the preliminary phases. For phase 1, the average
IoU was 0.917±0.004 (n=59), and for phase 2, it was 0.920±0.004 (n=50). We organized no discussion for improvement of
this label between phases 1 and 2.

Usage Notes

To have access to the CXRs that the radiologists read, access to the MIMIC-CXR dataset6, 21–23 is necessary. Both datasets are
accessible only on Physionet, requiring the signature of a data use agreement by a logged-in user. Access to the MIMIC-CXR
dataset requires free online courses in HIPAA regulations and human research subject protection.

The main uses intended for our data include:

• combining fixations into heatmaps, for use as an attention label and research on saliency maps and related subjects;

• using the fixations as a nonuniformly sampled sequence of attention locations;

• combining the timestamped transcriptions with the fixations for more specific localization to each abnormality;

• associating the pupil data with the fixations for more information on the cognitive load of each fixation;

• validating abnormalities parsed from the transcriptions using the image-level labels;

• validating the locations found from the eye-tracking data through the abnormality ellipses;

• using the chest bounding boxes for normalizing the location of the lungs while performing other analyses; and
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• using the chest bounding boxes for training a model to output bounding boxes for unseen data.

Other possible uses of the data may include using the certainties provided by the radiologists in uncertainty quantification
research and the reports and their transcriptions in image captioning for chest x-rays. In https://github.com/ricbl/
eyetracking, we provide examples on how to generate heatmaps, how to normalize the location of heatmaps using the chest
bounding box, how to filter the fixations, how to calculate brightness of the shown CXR in any given time during dictation, and
how to load and use the tables from the dataset.

Eye-tracking data
There are uncertainties in the eye-tracking measurement pipeline. To represent them, we suggest following a method used in
the generation of heatmaps in the visual attention modeling literature and modeling the location of each fixation as a Gaussian
with a standard deviation of 1◦ of visual angle38. We provide pixel resolution per visual angle for each axis of the image, so the
Gaussian will be slightly anisotropic in the image space. For some applications, e.g., when generating one embedding vector
per fixation for sequence analysis, it might be beneficial to filter out fixations that happened outside of the image. Among
other reasons, fixations may have happened outside of the image because there were two buttons in the dictation screen: one to
indicate that the dictation was over, and one to reset the windowing, zooming, and panning of the image.

Abnormality labels
Figure 4 shows the hierarchy between the labels of our study and the labels from the MIMIC-CXR dataset. This hierarchy was
produced to the best of their understanding of the MIMIC-CXR labels. Supplementary File 1 provides the definition of the
labels agreed upon among the radiologists who participated in the study.

Pupil data
Brunyé et al.39 showed that the pupil diameter of pathologists reliably increased for more difficult cases, providing an indicator
of cognitive engagement. In our dataset, we provide the normalized pupil area, whose square root is equivalent to the normalized
pupil diameter. The normalization was performed by a division by the area of the pupil in a standardized screen. However,
the variation of the screen brightness, caused by windowing, zooming, and panning, may cause more variation in pupil area
than psychological reasons. We suggest including another normalization, using the division by a value representing the screen
brightness at each moment, similarly to what was done by Brunyé et al.39. For the calculation of this value, we suggest summing
the intensity of pixels of the shown CXR. The part of the image shown in each moment and the part of the screen where it was
shown are provided in the dataset. When considering the windowing of the CXR, images are shown following

shown_image = min
(

max
(

original_image−window_level
window_width

+0.5,0
)
,1
)
, (1)

where window_width can have values from 1.5e-05 to 2 and is usually initialized to 1, window_level can have values from 0
to 1 and is usually initialized to 0.5, shown_image is the image sent to the screen, and original_image is the loaded DICOM
image normalized so that its possible range is from 0 to 1, which usually means dividing the image intensities by 4,096. The
initial window_width, window_level, and the maximum intensity value were loaded from the DICOM tags of each image file.

Limitations of the study
• Limited information presented to radiologists: our setup used a single screen, but multiple screens are used in a clinical

setting. With multiple screens, the eye-tracker setup is more complex and would have to be validated. We limited the
study to show only frontal CXR. Lateral views, past CXRs, and clinical information were not presented.

• Report: in clinical practice, reports can be modified after a first transcription. We limited the editing to corrections of the
transcription of the original dictation and deletions of dictation mistakes. This limitation was needed to assign timestamps
to each word and ensure the radiologist saw the finding while the eye tracker was on. Several radiologists use templates
for their reports in clinical practice, only dictating small parts of the report. We did not test such a dictation method.

• Head position: even though we used the remote mode for the eye tracker, which allows for some freedom of movement,
the head movement, posture, and the distance from head to the screen were still more limited than in clinical practice,
when radiologists can get closer to the screen to see a detail, for example. Because of this limitation, the use of zooming
was probably more frequent than in clinical practice. Furthermore, radiologists mentioned that, with the limitations in
position, they became fatigued faster than usual.

• CXR dataset: we collected readings for images of only one dataset, so the current dataset may have ensuing biases. The
radiologists also characterized images from the MIMIC-CXR dataset as having lower quality than usual for their practice,
in aspects like the field-of-view excluding small parts of the lung and the blurring present in some images.
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• Display: the GPU of the computer used to display the CXRs supported only 8-bit display, so not all intensities of the
original DICOM were shown, reducing the image quality and possibly changing the way radiologists interacted with the
CXR. This limitation was partially remediated by allowing the windowing of the image to be changed.

• Calibration cost: calibrations happened every 45 to 60 minutes, and sometimes more than five retries were needed
to reach quality thresholds. The clinical implementation of the data collection method described in this paper for the
collection of larges quantities of data might cause an undesired cost to the radiologist reading process.

• Unautomated processes: another person was in the room coordinating calibrations and checking for low data quality.
This same person raised the need for a recalibration or a change in position of the radiologist. This person might have to
be replaced by automated processes if this data collection method is implemented in clinical practice.

Code availability
The code used for all automatic processes described in this paper, involving sampling, collection, processing, and validation
of data, is available at https://github.com/ricbl/eyetracking28. The software and versions we used were:
MATLAB R2019a, Psychtoolbox 3.0.1725–27, Python 3.7.7, edfapi 3.1, EYELINK II CL v5.15, Eyelink GL Version 1.2
Sensor=AC7, EDF2ASC 3.1, librosa 0.8.040, numpy 1.19.141, pandas 1.1.142, 43, statsmodels 0.12.233, shapely 1.7.144, scikit-
image 0.17.245, pyrubberband 0.3.0, pydicom 2.1.246, pydub 0.24.1, soundfile 0.10.3.post1, pyttsx3 2.90, pillow 8.0.147,
scikit-learn 0.23.248, nltk 3.549, syllables 1.0.0, moviepy 1.0.350, opencv 3.4.251, Ubuntu 18.04.5 LTS, espeak 1.48.04, ffmpeg
3.4.8, and rubberband-cli 1.8.1.

References
1. Rajpurkar, P. et al. CheXNet: Radiologist-level pneumonia detection on chest x-rays with deep learning. Preprint at

http://arxiv.org/abs/1711.05225 (2017).

2. Lakhani, P. & Sundaram, B. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by
using convolutional neural networks. Radiology 284, 574–582, https://doi.org/10.1148/radiol.2017162326 (2017).

3. Bustos, A., Pertusa, A., Salinas, J. M. & de la Iglesia-Vayá, M. Padchest: A large chest x-ray image dataset with multi-label
annotated reports. Med. Image Anal. 66, 101797, https://doi.org/10.1016/j.media.2020.101797 (2020).

4. Irvin, J. et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, 590–597, https://doi.org/10.1609/aaai.v33i01.3301590
(AAAI Press, 2019).

5. Wang, X. et al. ChestX-Ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and
localization of common thorax diseases. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, 3462–3471, https://doi.org/10.1109/CVPR.2017.369 (IEEE Computer Society,
2017).

6. Johnson, A. E. W. et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text
reports. Sci. Data 6, 317, https://doi.org/10.1038/s41597-019-0322-0 (2019).

7. Deng, J. et al. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255, https://doi.org/10.1109/CVPR.2009.5206848 (IEEE, 2009).

8. Wu, B. et al. Tencent ML-Images: A large-scale multi-label image database for visual representation learning. IEEE
Access 7, https://doi.org/10.1109/ACCESS.2019.2956775 (2019).

9. Li, Z. et al. Thoracic disease identification and localization with limited supervision. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, 8290–8299,
https://doi.org/10.1109/CVPR.2018.00865 (IEEE Computer Society, 2018).

10. Shih, G. et al. Augmenting the national institutes of health chest radiograph dataset with expert annotations of possible
pneumonia. Radiol. Artif. Intell. 1, e180041, https://doi.org/10.1148/ryai.2019180041 (2019).

11. Nguyen, H. Q. et al. Vindr-cxr: An open dataset of chest x-rays with radiologist’s annotations. Preprint at https:
//arxiv.org/abs/2012.15029 (2021). 2012.15029.

12. Langlotz, C. P. et al. A roadmap for foundational research on artificial intelligence in medical imaging: From the 2018
NIH/RSNA/ACR/The Academy Workshop. Radiology 291, 781–791, https://doi.org/10.1148/radiol.2019190613 (2019).

9/16

https://github.com/ricbl/eyetracking
http://arxiv.org/abs/1711.05225
https://doi.org/10.1148/radiol.2017162326
https://doi.org/10.1016/j.media.2020.101797
https://doi.org/10.1609/aaai.v33i01.3301590
https://doi.org/10.1109/CVPR.2017.369
https://doi.org/10.1038/s41597-019-0322-0
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/ACCESS.2019.2956775
https://doi.org/10.1109/CVPR.2018.00865
https://doi.org/10.1148/ryai.2019180041
https://arxiv.org/abs/2012.15029
https://arxiv.org/abs/2012.15029
2012.15029
https://doi.org/10.1148/radiol.2019190613


13. Templier, T., Bektas, K. & Hahnloser, R. H. R. Eye-trace: Segmentation of volumetric microscopy images with eyegaze.
In Kaye, J., Druin, A., Lampe, C., Morris, D. & Hourcade, J. P. (eds.) Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, San Jose, CA, USA, May 7-12, 2016, 5812–5823, https://doi.org/10.1145/2858036.2858578
(ACM, 2016).

14. Stember, J. N. et al. Eye tracking for deep learning segmentation using convolutional neural networks. J. Digit. Imaging
32, 597–604, https://doi.org/10.1007/s10278-019-00220-4 (2019).

15. Khosravan, N. et al. A collaborative computer aided diagnosis (C-CAD) system with eye-tracking, sparse attentional
model, and deep learning. Med. Image Anal. 51, 101–115, https://doi.org/10.1016/j.media.2018.10.010 (2019).

16. Gecer, B. et al. Detection and classification of cancer in whole slide breast histopathology images using deep convolutional
networks. Pattern Recognit. 84, 345–356, https://doi.org/10.1016/j.patcog.2018.07.022 (2018).

17. Stember, J. N. et al. Integrating eye tracking and speech recognition accurately annotates mr brain images for deep learning:
Proof of principle. Radiol. Artif. Intell. 3, e200047, https://doi.org/10.1148/ryai.2020200047 (2021).

18. Karargyris, A. et al. Creation and validation of a chest x-ray dataset with eye-tracking and report dictation for AI
development. Sci. Data 8, https://doi.org/10.1038/s41597-021-00863-5 (2021).

19. Saab, K. et al. Observational supervision for medical image classification using gaze data. In Medical Image Computing
and Computer Assisted Intervention - MICCAI 2021, 603–614, https://doi.org/10.1007/978-3-030-87196-3_56 (Springer
International Publishing, 2021).

20. Hansell, D. M. et al. Fleischner society: Glossary of terms for thoracic imaging. Radiology 246, 697–722, https:
//doi.org/10.1148/radiol.2462070712 (2008).

21. Johnson, A. E. W., Pollard, T., Mark, R., Berkowitz, S. & Horng, S. The MIMIC-CXR database (version 2.0.0). PhysioNet
https://doi.org/10.13026/C2JT1Q (2019).

22. Goldberger, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex
physiologic signals. Circulation 101, e215–e220, https://doi.org/10.1161/01.CIR.101.23.e215 (2000).

23. Johnson, A. et al. MIMIC-CXR-JPG - chest radiographs with structured labels (version 2.0.0). PhysioNet https:
//doi.org/10.13026/8360-t248 (2019).

24. Johnson, A. E. W. et al. MIMIC-CXR: A large publicly available database of labeled chest radiographs. Preprint at
https://arxiv.org/abs/1901.07042 (2019).

25. Brainard, D. H. The Psychophysics Toolbox. Spatial Vis. 10, 433 – 436, https://doi.org/10.1163/156856897X00357 (1997).

26. Pelli, D. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial vision 10,
437—442, https://doi.org/10.1163/156856897x00366 (1997).

27. Kleiner, M. et al. What’s new in psychtoolbox-3. Perception 36, 1–16, https://doi.org/10.1177/03010066070360S101
(2007).

28. Bigolin Lanfredi, R. ricbl/eyetracking: Code for REFLACX dataset v1.0, https://doi.org/10.5281/zenodo.5501093 (2021).

29. Panicek, D. M. & Hricak, H. How sure are you, doctor? a standardized lexicon to describe the radiologist’s level of
certainty. AJR. Am. journal roentgenology 207, 2—3, https://doi.org/10.2214/ajr.15.15895 (2016).

30. Johnson, A. et al. MIMIC-IV (version 1.0). PhysioNet https://doi.org/10.13026/S6N6-XD98 (2021).

31. Bigolin Lanfredi, R. et al. Reflacx: Reports and eye-tracking data for localization of abnormalities in chest x-rays,
https://doi.org/10.13026/E0DJ-8498 (2021).

32. Fleiss, J. Measuring nominal scale agreement among many raters. Psychol. Bull. 76, 378–382, https://doi.org/10.1037/
h0031619 (1971).

33. Skipper Seabold & Josef Perktold. statsmodels: Econometric and statistical modeling with python. In Stéfan van der
Walt & Jarrod Millman (eds.) Proceedings of the 9th Python in Science Conference, 92 – 96, https://doi.org/10.25080/
Majora-92bf1922-011 (2010).

34. Balabanova, Y. et al. Variability in interpretation of chest radiographs among russian clinicians and implications for
screening programmes: observational study. BMJ 331, 379–382, https://doi.org/10.1136/bmj.331.7513.379 (2005).

35. Quekel, L. G., Kessels, A. G., Goei, R. & van Engelshoven, J. M. Detection of lung cancer on the chest radiograph: a
study on observer performance. Eur. J. Radiol. 39, 111–116, https://doi.org/10.1016/S0720-048X(01)00301-1 (2001).

10/16

https://doi.org/10.1145/2858036.2858578
https://doi.org/10.1007/s10278-019-00220-4
https://doi.org/10.1016/j.media.2018.10.010
https://doi.org/10.1016/j.patcog.2018.07.022
https://doi.org/10.1148/ryai.2020200047
https://doi.org/10.1038/s41597-021-00863-5
https://doi.org/10.1007/978-3-030-87196-3_56
https://doi.org/10.1148/radiol.2462070712
https://doi.org/10.1148/radiol.2462070712
https://doi.org/10.13026/C2JT1Q
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.13026/8360-t248
https://doi.org/10.13026/8360-t248
https://arxiv.org/abs/1901.07042
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1163/156856897x00366
https://doi.org/10.1177/03010066070360S101
https://doi.org/10.5281/zenodo.5501093
https://doi.org/10.2214/ajr.15.15895
https://doi.org/10.13026/S6N6-XD98
https://doi.org/10.13026/E0DJ-8498
https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.1136/bmj.331.7513.379
https://doi.org/10.1016/S0720-048X(01)00301-1


36. Wongpakaran, N., Wongpakaran, T., Wedding, D. & Gwet, K. L. A comparison of cohen’s kappa and gwet’s AC1
when calculating inter-rater reliability coefficients: a study conducted with personality disorder samples. BMC Med. Res.
Methodol. 13, https://doi.org/10.1186/1471-2288-13-61 (2013).

37. Sim, J. & Wright, C. C. The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys.
Ther. 85, 257–268, https://doi.org/10.1093/ptj/85.3.257 (2005).

38. Le Meur, O. & Baccino, T. Methods for comparing scanpaths and saliency maps: strengths and weaknesses. Behavior
Research Methods 1–16, https://doi.org/10.3758/s13428-012-0226-9 (2012).

39. Brunyé, T. T. et al. Pupil diameter changes reflect difficulty and diagnostic accuracy during medical image interpretation.
BMC Med. Informatics Decis. Mak. 16, https://doi.org/10.1186/s12911-016-0322-3 (2016).

40. McFee, B. et al. librosa/librosa: 0.8.0, https://doi.org/10.5281/zenodo.3955228 (2020).

41. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2
(2020).

42. Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt & Jarrod Millman (eds.)
Proceedings of the 9th Python in Science Conference, 56 – 61, https://doi.org/10.25080/Majora-92bf1922-00a (2010).

43. Reback, J. et al. pandas-dev/pandas: Pandas 1.1.1, https://doi.org/10.5281/zenodo.3993412 (2020).

44. Gillies, S. et al. Shapely: manipulation and analysis of geometric objects. GitHub https://github.com/Toblerity/Shapely
(2007–).

45. van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453, https://doi.org/10.7717/peerj.453 (2014).

46. Mason, D. et al. pydicom/pydicom: pydicom 2.1.2, https://doi.org/10.5281/zenodo.4313150 (2020).

47. van Kemenade, H. et al. python-pillow/pillow 8.0.1, https://doi.org/10.5281/zenodo.4118627 (2020).

48. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

49. Bird, S., Klein, E. & Loper, E. Natural language processing with Python: analyzing text with the natural language toolkit
(" O’Reilly Media, Inc.", 2009).

50. Zulko et al. johncooper199/moviepy:, https://doi.org/10.5281/zenodo.4781125 (2021).

51. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000).

Acknowledgements
This research was funded by the National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of
Health under Award Number R21EB028367. Christine Prickett provided copyediting support, Lauren Williams provided help
in using Psychtoolbox 3, David Alonso provided advice in running eye-tracking sessions, and Howard Mann was one of the
five radiologists to read images.

Author contributions statement
R.B.L. wrote the manuscript, did all the coding in the project, conducted the data-collection sessions, and ran the analyses. M.Z.
participated in the design of the technical validation analysis. W.A. participated in the study design, was one of the readers and
provided feedback for data-collection processes. J.C. was one of the readers and provided feedback for data-collection processes.
P.A.D. was one of the readers and provided feedback for data-collection processes. V.S. participated in the study design. T.D.
participated in the study design, and conceived the fundamental parts of the eye-tracking side of the data-collection sessions.
J.S. participated in the study design, guided the clinical decisions for the data collection, produced the clinical instructions, was
one of the readers, and provided feedback for data-collection processes. T.T. is the PI of the project, coordinating the study
design, leading discussions about the project, and editing the manuscript. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Figures & Tables

11/16

https://doi.org/10.1186/1471-2288-13-61
https://doi.org/10.1093/ptj/85.3.257
https://doi.org/10.3758/s13428-012-0226-9
https://doi.org/10.1186/s12911-016-0322-3
https://doi.org/10.5281/zenodo.3955228
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/zenodo.3993412
https://github.com/Toblerity/Shapely
https://doi.org/10.7717/peerj.453
https://doi.org/10.5281/zenodo.4313150
https://doi.org/10.5281/zenodo.4118627
https://doi.org/10.5281/zenodo.4781125


Fixations
Gaze 

(1000 Hz)
Timestamped
transcription

Localization
ellipses and

certainty

MIMIC-CXRSample
images

Tr
an

sc
rip

tio
ns Correct transcriptions (additions

and errors) and standardize spellings

Adapt timestamps for corrected transcription

Ey
e-

tra
ck

in
g 

da
ta

Evaluate data quality

Convert positions to image space

Synchronize timestamps

Low

Normal

Quality of
data?

Calibrate
pupil sizeYes

No

Start of  
session?

Calibrate
eye tracking

Start custom
MATLAB interface

Display new  
chest x-ray

Yes
Is it a 

preliminary 
phase?

Calculate
inter-rater 
reliabiliy

Discuss possible
improvements with

radiologists
Yes

No

Is it 
phase 1 and is

reliability  
low?

Start preliminary
phase 2

<25

>=25
Cases 

since last  
calibration

Start main phase

Yes
No

Does 
radiologist need

a break?

Take a break

No Yes
Target  

#cases achieved for all
radiologists?

Ph
as

e

Start preliminary
phase 1

Se
ss

io
n

C
as

e/
R

ea
di

ng

No

Yes

Is it time to end 
session?

No

Exclude outlier
MIMIC-CXR images

Start session with
single radiologist

Dictate
report

Select image-
level labels

Localize labels
and certainties

Draw chest
bounding box

Correct transcription
errors

Fix problem or
recalibrate eye

tracking

Standardize 
"Other"
labels

Image-
level labels

Chest
bounding

box

Filter dataset

Figure 1. Overview of the steps in the building of the dataset.

12/16



Figure 2. Screens of the data-collection interface in the sequence they are presented to a radiologist, including instruction
screens, calibration of pupil size, dictation of reports, choice of global labels, selection of ellipses and certainties, drawing of
lung/heart box, and editing of transcription. Digital visualization is recommended for reading the content.
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(a) (b) (c) (d)

Figure 3. Example of the localization information provided by the eye-tracking data and how it was validated. (a) CXR read
by the radiologist. (b) Union of the abnormality ellipses selected by radiologists used to compare against heatmaps. (c)
Heatmap generated by the fixations made by the radiologist while dictating the report. (d) Average heatmap for all radiologists
and CXRs read in phases 1 and 2, normalized to the location of lung and heart of the CXR.
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Figure 4. Hierarchy of the labels of all the phases of our dataset and the labels of the MIMIC-CXR dataset. Arrows point to a
subset of the originating label.
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Label FK P1 FK P2 IoU P1 IoU P2

Airway wall thickening 0.03±0.20
0.28

(n=4)

Atelectasis 0.34±0.05 0.25±0.08
0.29±0.03

(n=33)
0.37±0.04

(n=19)

Consolidation 0.36±0.07 0.50±0.07
0.36±0.04

(n=25)
0.37±0.04

(n=17)
Emphysema (P1)
& High lung volume / emphysema (P2) 0.26±0.32 0.10±0.34

0.43
(n=3)

0.53
(n=2)

Enlarged cardiac silhouette 0.56±0.07 0.55±0.08
0.75±0.02

(n=20)
0.75±0.02

(n=20)
Enlarged hilum -0.03±0.36 Undefined

Fibrosis (P1) & Interstitial lung disease (P2) 0.29±0.44 0.16±0.57
0.53

(n=1)
0.23

(n=1)

Fracture (P1) & Acute fracture (P2) 0.25±0.25 0.71±0.36
0.42

(n=4)
0.21

(n=1)

Groundglass opacity 0.10±0.17 0.21±0.11
0.42

(n=6)
0.38±0.05

(n=16)
Hiatal hernia Undefined Undefined
Mass -0.01±0.70 Undefined

Nodule 0.29±0.25
0.38

(n=2)

Lung nodule or mass 0.36±0.49
0.83

(n=1)

Pleural abnormality 0.67±0.07
0.27±0.02

(n=18)

Pleural effusion 0.53±0.06
0.37±0.03

(n=22)

Pleural thickening 0.06±0.40
0.29

(n=1)

Pneumothorax 0.55±0.25 0.62±0.28
0.41

(n=3)
0.27

(n=3)

Pulmonary edema 0.22±0.13 0.10±0.14
0.25±0.03

(n=11)
0.36±0.06

(n=11)
Quality issue 0.02±0.30
Support devices 0.77±0.05 0.47±0.06
Wide mediastinum (P1)
& Abnormal mediastinal contour (P2) 0.23±0.34 0.05±0.25

0.57
(n=2)

0.58
(n=3)

Table 1. Inter-rater scores for validation of the quality of the data. For phases 1 (P1) and 2 (P2), we present reliability on
image-level labels, calculated using Fleiss’ Kappa (FK), and average IoU of the abnormality ellipses. All scores are paired with
standard errors. The number of samples given for the IoU values represents the number of independent CXRs used in the
calculation.
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Dataset
Phase 1

(P1)
Phase 2

(P2)
Phase 3

(P3)
MIMIC-CXR filtered

(M)
# cases 295 250 2,507 194,495
# cases studies with eye-tracking data 285 240 2,507 0
# MIMIC-CXR images 59 50 2,507
# subjects 58 50 2,110 60,018
% female 63.8 54.0 50.7 53.9
% male 36.2 46.0 49.1 45.7
% test set 15.3 14.0 20.2 1.4
% Normal Radiograph (P1, P2, P3) & No Finding (M) 18.0 24.4 22.8 32.9
% Abnormal mediastinal contour (P2,P3) &
Wide mediastinum (P1) 2.7 5.6 2.7

% Acute fracture (P2,P3) & Fracture (P1, M) 2.8 1.0 1.9
% Airway wall thickening (P1) 7.1
% Atelectasis (P1,P2,P3,M) 41.4 27.6 25.8 20.5
% Cardiomegaly (M) 19.8
% Consolidation (P1,P2,P3,M) 28.5 28.8 25.9 4.7
% Enlarged cardiac silhouette (P1,P2,P3) 28.1 28.4 21.8
% Enlarged Cardiomediastinum (M) 3.2
% Enlarged hilum (P2,P3) 2.8 1.9
% Groundglass opacity (P1,P2,P3) 9.2 18.8 12.6
% Hiatal hernia (P2,P3) 0.0 0.9
% High lung volume / emphysema (P2,P3) &
Emphysema (1) 3.1 3.2 2.9

% Interstitial lung disease (P2,P3) & Fibrosis (P1) 1.7 1.2 1.0
% Lung nodule or mass (P2,P3) & Lung Lesion (M) 1.6 5.1 2.7
% Lung Opacity (M) 22.8
% Mass (P1) 0.7
% Nodule (P1) 4.7
% Other (P1,P2,P3) 13.9 8.8 6.0
% Pleural abnormality (P2,P3) 30.0 29.5
% Pleural Effusion (P1,M) 31.2 24.2
% Pleural thickening (P1) 2.0
% Pleural Other (M) 0.9
% Pneumonia (M) 7.2
% Pneumothorax (P1,P2,P3,M) 4.7 4.4 2.9 4.6
% Pulmonary edema (P1,P2,P3) & Edema(M) 13.9 13.6 13.7 12.1
% Quality issue (P1) 3.4
% Support devices (P1,P2,P3,M) 36.9 34.8 44.8 29.3

Table 2. Statistics of each phase of data collection and the subset of the MIMIC-CXR dataset from which images were
sampled. The dataset where each label was present is shown inside parentheses. “Normal radiograph” represents CXRs for
which no other label was selected.
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