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Abstract. We present three simulation schemes for simulating Brow-
nian bridges on complete and connected Lie groups and homogeneous
spaces and use numerical results of the guided processes in the Lie group
SO(3) and on the homogeneous spaces SPD(3) = GL+(3)/SO(3) and
S2 = SO(3)/SO(2) to evaluate our sampling scheme. Brownian motions
on Lie groups can be defined via the Laplace-Beltrami of a left- (or right-
)invariant Riemannian metric. Given i.i.d. Lie group-valued samples on
SO(3) drawn from a Brownian motion with unknown Riemannian met-
ric structure, the underlying Riemannian metric on SO(3) is estimated
using an iterative maximum likelihood (MLE) method. Furthermore, the
re-sampling technique is applied to yield estimates of the heat kernel on
the two-sphere considered as a homogeneous space. Comparing this esti-
mate to the truncated version of the closed-form expression for the heat
kernel on S2 serves as a proof of concept for the validity of the sampling
scheme on homogeneous spaces.
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1 Introduction

In this paper, we consider discrete time observations on Lie groups and ho-
mogeneous spaces considered as incomplete observations of a continuous time
sample path of a left- (or right-)invariant Brownian motion. In order to handle
the discrete time observations and infer properties of the unknown underlying
distribution, we derive bridge simulation schemes on Lie groups and homoge-
neous spaces. To the best of our knowledge, this paper is the first to describe a
simulation technique for diffusion bridges in the context of Lie groups.

Simulation of conditioned diffusion processes is a highly non-trivial problem.
A common issue is that the transition densities are non-tractable and thus sim-
ulating directly from the true distribution is non-feasible. Several papers have
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described diffusion bridge simulation methods; see, e.g., [2–4,14,15,17] which de-
scribes various methods for simulation of multi-dimensional conditioned diffusion
processes and their usage for parameter estimation and likelihood inference for
stochastic differential equations. These papers introduced a variety of different
guiding drift terms which replaced the drift term depending on the intractable
transition density. To the best of our knowledge, this paper is the first to describe
a simulation technique for diffusion bridges in the context of Lie groups.

The idea of the present paper is based on the method presented in the seminal
paper by Delyon and Hu [4]. In here, the authors exchanged the intractable
guiding drift term ∇x=Xt log pT−t(x, v) in the stochastic differential equation
(SDE) for the conditioned diffusion with the guiding drift term in the SDE for
a Brownian bridge (BBt)t≥0 conditioned at BBT = v.

Geometric statistics and probability on non-linear spaces is still a widely
unexplored domain. It can be mentioned as an example that a closed form ex-
pression for the transition density of a Brownian motion is only known on a
limited amount of geometries. Examples of these geometries include: Euclidean
spaces (zero curvature), hyper-spheres (constant positive curvature), and hyper-
bolic spaces (constant negative curvature). Thompson [20] showed how guiding
to the nearest point yielded an approximation of the transition density (heat ker-
nel) of a Brownian motion on Riemannian manifolds. More generally, Thompson
obtained an expression of the integrated heat kernel over a submanifold by con-
ditioning a Brownian motion to end up in the submanifold at a fixed positive
time.

In this paper, we present three simulation schemes for simulating diffusion
bridges on homogeneous spaces. The first scheme builds on the idea of Thompson
[20] by conditioning on a submanifold in the Lie group G obtained as a fiber over
the point v ∈M = G/K, for some closed subgroup K ⊆ G. The second scheme
assumes the homogeneous space has a discrete fiber Γ and therefore the fiber
over v ∈M , π−1(v), is discrete. Using the k-nearest-points from the fiber π−1(v)
to the initial point x0, we obtain a truncated guiding drift term convergence to a
subset of π−1(v). The last scheme assumes that the fiber is connected. Sampling
k-points in the fiber over v a similar conditioning is obtained.

The paper is organized as follows. In Section 2, we describe some background
theory of Lie groups, Brownian motions, and Brownian bridges in Rieman-
nian manifolds. Section 3 presents the theory and results of bridge sampling
in Lie groups, while Section 4 introduce bridge sampling on various homoge-
neous spaces. Numerical experiments on certain Lie groups and homogeneous
spaces are presented in 5. Section 5.1 shows in practice the simulation scheme
in the Lie group SO(3). A Brownian motion on any nice smooth manifold is
intimately connected with its endowed metric through its covariance structure
(see Section 2.4). Sampling data points from a Brownian motion with unknown
covariance, an estimate of the underlying unknown metric is obtained by means
of importance sampling. In Section 5.3, estimates for the heat kernel are visu-
alized on the two-sphere S2 considered as the homogeneous space SO(3)/SO(2).
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The estimate on S2 is compared to the exact heat kernel on S2 in case of a
bi-invariant metric.

2 Notation and Background

We briefly describe the basics of simulating conditioned diffusion in Rn as was
developed in [4], before reviewing some theory on conditioned diffusion on Rie-
mannian manifolds.

2.1 Conditioned Diffusions in Rn

Suppose a strong solution to an SDE of the form

dxt = b(t, xt)dt+ σ(t, xt)dwt,

where b and σ satisfies certain regularity conditions and where w denote a Rn-
valued Brownian motion. In this case x is Markov and its transition density
exist. Suppose we define the function

h(t, x) =
pT−t(xt, v)

pT (x0, v)
,

for some x0, v ∈ Rn, then it is easily derived that h is a martingale on [0, T ) with
h(0, x0) = 1 and Doob’s h-transform implies that the SDE of the conditioned
diffusion x|xT = v is given by

dyt = b̃(t, yt)dt+ σ(t, yt)dwt

where b̃(t, y) = b(t, y) + (σσT )(t, y)∇y log pT−t(y, v). In case that the transition
density is intractable, simulation from the exact distribution is in-feasible. De-
lyon and Hu [4] suggested substituting the latter term in b̃ with a drift term of
the form −(yt−v)/(T−t), which equals the drift term in a Brownian bridge. The
guided process obtained by making the above substitution yields a conditioning
and one obtain

E[f(x)|xT = v] = CE[f(y)ϕT ], (1)

where ϕT is a likelihood function that is tractable and easy to compute, and y
is the guided process. Below we generalize this method to manifolds and homo-
geneous spaces.

2.2 General Lie Group Notation

Throughout, we let G denote a connected Lie Group of dimension d, i.e., a
smooth manifold with a group structure such that the group operations G×G 3
(x, y)

µ7→ xy ∈ G and G 3 x ι7→ x−1 ∈ G are smooth maps. If x ∈ G, the left-
multiplication map, Lxy, defined by y 7→ µ(x, y), is a diffeomorphism from G
to itself. Similarly, the right-multiplication map Rxy defines a diffeomorphism
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from G to itself by y 7→ µ(y, x). Let dLx : TG → TG denote the pushforward
map given by (dLx)y : TyG → TxyG. A vector field V on G is said to be left-
invariant if (dLx)yV (y) = V (xy). The space of left-invariant vector fields is
linearly isomorphic to TeG, the tangent space at the identity element e ∈ G.
By equipping the tangent space TeG with the Lie bracket we can identify the
Lie algebra g with TeG. The group structure of G makes it possible to define
an action of G on its Lie algebra g. The conjugation map Cx := Lx ◦R−1

x : y 7→
xyx−1, for x ∈ G, fixes the identity e. Its pushforward map at e, (dCx)e, is then
a linear automorphism of g. Define Ad(x) := (dCx)e, then Ad: x 7→ Ad(x) is
the adjoint representation of G in g. The map G × g 3 (x, v) 7→ Ad(x)v ∈ g
is the adjoint action of G on g. We denote by 〈·, ·〉 a Riemannian metric on
G. The metric is said to be left-invariant if 〈u, v〉y = 〈(dLx)yu, (dLx)yv〉Lx(y),

for every u, v ∈ TyG, i.e., the left-multiplication maps are isometries, for every
x ∈ G. In particular, we say that the metric is Ad(G)-invariant if 〈u, v〉e =
〈Ad(x)u,Ad(x)v〉e, for every u, v ∈ g. Note that an Ad(G)-invariant metric on
G is equivalent to a bi-invariant (left- and right-invariant) inner product on
g. The differential of the Ad map at the identity yields a linear map ad(x) =
d/dtAd(exp(tx))|0. This linear map defines the Lie bracket [v, w] = ad(v)w,
v, w ∈ g.

A one-parameter subgroup of G is a continuous (Lie) group homomorphism
γ : (R,+) → G. The Lie group exponential map exp: g → G is defined as
exp(v) = γv(1), for v ∈ g, where γv is the unique one-parameter subgroup
of G whose tangent vector at e is v. For matrix Lie groups the exponential map
has the particular form: exp(A) =

∑∞
k=0A

k/k!, for a square matrix A. The re-
sulting matrix exp(A) is an invertible matrix. Given an invertible matrix B, if
there exist a square matrix A such that B = exp(A), then A is said to be the
logarithm of B. In general, the logarithm might not exist and if it does it may fail
to be unique. However, the matrix exponential and logarithms can be computed
numerically efficient (see [16, Chapter 5] and references therein). Note that we
can always find a domain in the Lie algebra g where the Lie group exponential
map is a diffeomorphism. Therefore, in a neighborhood sufficiently close to the
identity the Lie group logarithm exist and is unique. By means of left-translation
(or right-translation), the Lie group exponential map can be extended to a map
expg : TgG → G, for all g ∈ G, defined by expg(v) = g exp(dLg−1v). Similarly,
the Lie group logarithm at g becomes logg(v) = dLg log(g−1v).

Example 1. Some common examples of Lie groups include; the n-dimensional
Euclidean space (Rn,+) with the additive group structure, (R+, ·) the positive
real line with a multiplicative group structure, the space of invertible real matri-
ces GL(n) equipped with a multiplication of matrices forms a Lie group, and the
rotation group SO(n), consisting of real orthogonal matrices with determinant
one, equipped with matrix multiplication is a Lie group.

2.3 Homogeneous Spaces

A homogeneous space is a special type of quotient manifold arising as a smooth
manifold endowed with a transitive smooth action by a Lie group G. The homo-
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geneous space is called a G-homogeneous space to indicate the Lie group action
on it. In fact, all G-homogeneous spaces arise as a quotient manifold G/H, for
some closed subgroup H ⊆ G. The fact that H is a closed subgroup of the Lie
group G makes H into a Lie group. Any homogeneous space is diffeomorphic to
the quotient space G/Gx, where Gx is the stabilizer for the point x. The dimen-
sion of the G-homogeneous space is equal to dimG − dimH the quotient map
π : G → G/H is a smooth submersion, i.e., the differential of π is surjective at
every point. We assume throughout that G acts on itself by left-multiplication.

Example 2. The rotation group SO(n) acts transitively on Sn−1, thus Sn−1

is a SO(n)-homogeneous space. Consider for a moment the north-pole. Since
any rotations that fix the north-pole are rotations in the xy-plane, we see
that the stabilizer or isotropy group is the rotation group SO(n − 1), thus
Sn−1 = SO(n)/SO(n− 1).

The set of three-by-three invertible matrices with positive determinant GL+(3)
acts on the left on the set of covariance matrices, i.e., the symmetric positive
definite matrices SPD(3). The isotropy group is the rotation group SO(3) and
thus SPD(3) = GL+(3)/SO(3).

A special type of homogeneous space arise when the subgroup is a discrete
subgroup of G. Such homogeneous spaces are typically denoted G/Γ . For exam-
ple, the space Tn = Rn/Zn defines the n-torus as a homogeneous space.

2.4 Brownian Motion

The Brownian motion is a classical diffusion process defined in Rn via the Laplace
operator. The Brownian motion on Riemannian manifolds and Lie groups can
similarly be defined via the generalized Laplacian or Laplace-Beltrami operator.
This is described in the sections below.

On Riemannian Manifolds Endowing a smooth manifold M with a Rieman-
nian metric, g, allows us to define the Laplace-Beltrami operator. This opera-
tor is the generalization of the Euclidean Laplacian operator to manifolds. The
Laplace-Beltrami operator is defined as the gradient’s divergence, ∆Mf = div
grad f . In terms of local coordinates (x1, . . . , xd) the expression for the Laplace-
Beltrami operator becomes

∆Mf = det(g)−1/2

(
∂

∂xj
gji det(g)1/2 ∂

∂xi

)
f, (2)

where det(g) denotes the determinant of the Riemannian metric g and gij are
the coefficients of the inverse of g. An application of the product rule implies
that (2) can be rewritten as

∆Mf = aij
∂

∂xi

∂

∂xj
f + bj

∂

∂xj
f, (3)



6 Jensen et al.

where aij = gij , bk = −gijΓ kij , and Γ denote the Christoffel symbols related to
the Riemannian metric. This diffusion operator defines a Brownian motion on
the G, valid up to its first exit time of the local coordinate chart, i.e.,

Nf (Xt) = f(Xt)− f(X0)− 1

2

∫ t

0

∆Mf(Xs)ds, (4)

is a local martingale, for all smooth functions f on G. Equivalently, the stochastic
differential equation (SDE) for X in terms of local coordinates is

dXk
t = −1

2
gij(Xt)Γ

k
ij(Xt)dt+ σkj (Xt)dB

j
t , (5)

for t < τ , where τ is the explosion time of X and σ =
√
g−1 the matrix square

root of g−1.

On Lie Groups In the case of the Lie group G, the identification of the
space of left-invariant vector fields with the Lie algebra g allows for a global
description of ∆G. Indeed, let {v1, . . . vd} be an orthonormal basis of TeG.
Then Vi(x) = (dLx)evi defines left-invariant vector fields on G and the Laplace-
Beltrami operator can be written as (cf. [12, Proposition 2.5])

∆Gf(e) =

d∑
i=1

V 2
i f(e)− V0f(e),

where V0 =
∑d
i,j=1 C

j
ijVj and Ckij denote the structure coefficients given by

[Vi, Vj ] = CkijVk. (6)

By the left-invariance, the formula for the Laplace-Beltrami operator holds glob-
ally, i.e., ∆Gf(a) = ∆Gf ◦La(e) = (dLa)e∆Gf(e). The corresponding stochastic
differential equation (SDE) for the Brownian motion on G, in terms of left-
invariant vector fields, then becomes

dXt = −1

2
V0(Xt)dt+ Vi(Xt) ◦ dBit, X0 = e, (7)

where ◦ denotes integration in the Stratonovich sense. By [12, Proposition 2.6],
if the inner product is Ad(G) invariant, then V0 = 0. The solution of (7) is
conservative or non-explosive and is called the left-Brownian motion on G (see
[18] and references therein).

2.5 Riemannian Bridges

In this section, we briefly review some classical facts on Brownian bridges on Rie-
mannian manifolds. As Lie groups themselves can be equipped with a Rieman-
nian manifold, the theory carries over mutatis mutandis. However, Lie groups’
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group structure allows the notion of left-invariant (resp. right-invariant) vec-
tor fields. The identification of the Lie algebra with the vector space of left-
invariant vector fields makes Lie groups parallelizable. The existence of smooth
non-vanishing vector fields allows for constructing semimartingales directly on
the Lie groups, since the stochastic parallel displacement is ensured by the left-
invariant (resp. right-invariant) vector fields.

Brownian Bridges Let Ptx = Px|Ft be the measure of a Riemannian Brownian
motion, Xt, at some time t started at point x. Suppose p denotes the transition
density of the Riemannian Brownian motion. In that case, dPtx = pt(x, y)dVol(y)
describes the measure of the Riemannian Brownian motion, where dVol(y) is the
Riemannian volume measure. Conditioning the Riemannian Brownian motion
to hit some point v at time T > 0 results in a Riemannian Brownian bridge.
Here, PTx,v denotes the corresponding probability measure. The two measures
are absolutely continuous (equivalent) over the time interval [0, T ), however
mutually singular at time t = T . This is an obvious consequence of the fact
that Px(XT = v) = 0, whereas PTx,v(XT = v) = 1. The corresponding Radon-
Nikodym derivative is given by

dPTx,v
dPx

∣∣
Fs

=
pT−s(Xs, v)

pT (x, v)
for 0 ≤ s < T, (8)

which is a martingale for s < T . The Radon-Nikodym derivative defines the
density for the change of measure and provides the basis for the description of
Brownian bridges. In particular, it provides the conditional expectation defined
by

E[F (Xt)|XT = v] =
E[pT−t(Xt, v)F (Xt)]

pT (x, v)
, (9)

for any bounded and Fs-measurable random variable F (Xs). (In the case of an
empty cut-locus or rather when the exponential map is a covering map, and
the underlying manifold is connected, then every point p is a pole. In this case,
Truman and Elworthy’s semi-classical Brownian bridges apply.

As described in Hsu [8], the Brownian bridge on a Riemannian manifold, M ,
is a nonhomogeneous diffusion on M with an infinitesimal generator

Lsf(z) =
t

2
∆Mf(z) + t∇z log pt(1−s)(z, v) · ∇f(z),

where ∆M denotes the Laplacian on M . This infinitesimal generator yields an
SDE in the frame bundle, FM, of the lifted M -valued Brownian bridge, Xt =
π(Ut), in terms the horizontal vector fields (Hi) given by

dUt = Hi(Ut) ◦
(
dBit +

(
U−1
t

(
π∗
(
∇u|u=Ut log p̃T−t(u, v)

)))i
dt
)
, U0 = u0,

(10)
where p̃t(u, v) = pt(π(u), v) denotes the lift of the transition density, B an Rd-
valued Brownian motion, and π∗ : TFM→ TM is the pushforward of the canon-
ical projection π : FM → M . Essentially, the stochastic development approach
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in the Lie group setting is redundant. The left invariant vector-fields permits a
notion of stochastic parallel transport independently of the frame bundle con-
struction.

Bridges to Submanifolds A generalization of Riemannian Brownian bridges
can be found in Thompson [20]. There, the author introduces Brownian bridges
to submanifolds by considering the transition density on a Riemannian manifold
M defined by

pt(x,N) :=

∫
N

pt(x, y)dVolN (y), (11)

where N ⊂ M is a submanifold of M and VolN denotes the volume measure
on N . The author terms these processes as Fermi bridges, having infinitesimal
generator given by

1
2∆−

rN
T−t

∂
∂rN

, (12)

where rN (·) := d(·, N) = infy∈N d(·, y) and ∂
∂rN

= ∇d(·, N). The resulting
conditional expectation becomes

E[F (Xt)|XT ∈ N ] =
E[pT−t(Xt, N)F (Xt)]

pT (x,N)
, (13)

which holds for all bounded Ft-measurable random variables F (Xt).

3 Simulation of Bridges on Lie Groups

In this section, we consider the task of simulating (7) conditioned to hit v ∈ G,
at time T > 0. The potentially intractable transition density for the solution of
(7) inhibits simulation directly from (10). Instead, we propose to add a guiding
term mimicking that of Delyon and Hu [4], i.e., the guiding term becomes the
gradient of the distance to v divided by the time to arrival. The SDE for the
guided diffusion becomes

dYt = −1

2
V0(Yt)dt+Vi(Yt)◦

dBit −
(
∇y|y=Ytd(y, v)2

)i
2(T − t)

dt

 , Y0 = e, (14)

where d(·, v) denotes the Riemannian distance to v. Note that we can always,
for convenience, take the initial value to be the identity e. Equation (14) can
equivalently be written as

dYt = −1

2
V0(Yt)dt+ Vi(Yt) ◦

(
dBit −

LogYt(v)i

T − t
dt

)
, Y0 = e,

where Logp is the inverse of the Riemannian exponential map Expp. Numerical
computations of the Lie group exponential map is often faster than computing
the Riemannian exponential map (see [16] and references therein). Therefore, by
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a change of measures argument the equation above can be expressed in terms of
the inverse of the Lie group exponential (this process is denoted Y as well)

dYt = −1

2
V0(Yt)dt+Vi(Yt)◦

(
dB̄it − τ(Yt)

logYt(v)i

T − t
dt− (1− τ(Yt))

LogYt(v)i

T − t
dt

)
(15)

Y0 = e, where B̄ is a Brownian motion under a new measure, say P̄, and τ(y)
is a smooth bump function defined in a neighborhood of v where the Lie group
logarithm exists and is unique. The measure P̄ can explicitly be expressed as

dP̄
dP
|Ft = exp

[
−
∫ t

0

〈
τ(Ys)

(
logYs(v)− LogYs(v)

)
T − s

, V (Ys)dBs

〉
−1

2

∫ t

0

‖τ(Ys)‖2‖logYs(v)− LogYs(v)‖2

(T − s)2
ds

]
, (16)

where P denotes the law of the SDE in (14). A bi-invariant metric on the Lie
group implies that the Riemannian exponential map and the Lie group exponen-
tial map coincide, and thus the Radon-Nikodym above is identically one. This
justifies keeping the Y notation.

Situations where a bi-invariant metric exists, however, are rare. A sufficient
condition for the existence of a bi-invariant metric is that the Lie group is com-
pact. In such cases, we can always choose the bi-invariant metric and work with
the Lie group exponential and logarithmic map. In the non-compact situation,
we restrict ourselves to neighborhoods of v ∈ G and use the group logarithmic
map inside this neighborhood while using the Riemannian logarithm outside.

The result below shows the validity of working with the group logarithm in
a small neighborhood. For v ∈ g we define ṽ = (dL)ev as the corresponding left-
invariant vector field. Let α : g × g → g be a bi-linear operator which uniquely
defines the connection at the identity: α(v, w) = ∇ṽw̃|e. Similar to [16, Chapter
5], we define ad∗ as the metric adjoint of the adjoint operator ad: 〈ad∗(ṽ, w̃), z̃〉 =
〈[w̃, z̃], ṽ〉.

Proposition 1. The measures in (16) are equivalent, i.e., the Radon-Nikodym
derivative is a martingale.

Proof. If G is compact, there exists a bi-invariant metric such that the Rieman-
nian logarithmic map and the Lie group logarithmic map coincide (see [16, Chap-
ter 5]).

If G is not compact, endowing the Lie group G with a left-invariant met-
ric, the bi-linear form α characterizing the Levi-Civita connection of the left-
invariant metric in the Lie algebra is given by

α(v, w) =
1

2
([v, w]− ad∗(v, w)− ad∗(w, v)) ,

where ad∗(v, w) := ad∗(ṽ, w̃)|e. Whenever ad∗(v, v) = 0, the one-parameter sub-
groups γv(t), passing through the identity with tangent vector v, are in fact
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geodesics wrt. the left-invariant Riemannian metric. In case the Lie group log
equals such v’s the measures in (16) are equivalent. In such case the Lie group
log belongs to the center of g. This for example holds if the group is abelian.

If G is neither compact nor abelian, we chose a compact neighborhood of v ∈
G such that the group log is well defined on this compact neighborhood. As the
neighborhood is compact there exists constants c and C such that c‖Logy(v)‖ ≤
‖logy(v)‖ ≤ C‖Logy(v)‖. The triangle inequality then imply

‖τ(Ys)‖2‖logYs(v)− LogYs(v)‖2 ≤ (1 + 3C) ‖Logy(v)‖2,

which in conjunction with Novikov’s condition yields the result.

Radial Process We denote by rv(·) := d(·, v) the radial process. Due to the
singularities of the radial process on Cut(v) ∪ {v}, the usual Itô’s formula only
applies on subsets away from the cut-locus. The extension beyond the cut-locus
of a Brownian motion’s radial process was due to Kendall [10]. Barden and
Le [1,11] generalized the result to M -semimartingales. The radial process of the
Brownian motion (7) is given by

rv(Xt) = rv(X0)2 +

∫ t

0

〈∇rv(Xs), V (Xs)dBs〉+
1

2

∫ t

0

∆Grv(Xs)ds− Lvs(X),

(17)
where Lv is the geometric local time of the cut-locus Cut(v), which is non-
decreasing continuous random functional increasing only when X is in Cut(v)

(see [1,10,11]). Let Wt :=
∫ t

0

〈
∂
∂r , Vi(Xs)

〉
dBis, which is the local-martingale part

in the above equation. The quadratic variation of Wt satisfies d[W,W ]t = dt,
by the orthonormality of {V1, . . . , Vd}, thus Wt is a Brownian motion by Levy’s
characterization theorem. From the stochastic integration by parts formula and
(17), the squared radial process of X satisfies

rv(Xt)
2 = rv(X0)2 +2

∫ t

0

rv(Xs)dWs+

∫ t

0

rv(Xs)∆Grv(Xs)ds−2

∫ t

0

r(Xs)dL
v
s ,

(18)
where dLvs is the random measure associated to Lvs(X).

Similarly, we obtain an expression for the squared radial process of Y . Using
the shorthand notation rt := rv(Yt) the radial process then becomes

r2
t = r2

0 + 2

∫ t

0

rsdWs +

∫ t

0

1

2
∆Gr

2
sds−

∫ t

0

r2
s

T − s
ds− 2

∫ t

0

rsdL
v
s . (19)

Imposing a growth condition on the radial process yields an L2-bound on the
radial process of the guided diffusion, [20]. So assume there exist constants ν ≥ 1
and λ ∈ R such that 1

2∆Gr
2
v ≤ ν + λr2

v on D\Cut(v), for every regular domain
D ⊆ G. Then (19) satisfies

E[1t<τDrv(Yt)
2] ≤

(
r2
v(e) + νt

(
t

T − t

))(
T − t
t

)2

eλt, (20)

where τD is the first exit time of Y from the domain D.
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Girsanov Change of Measure Let B be the Brownian motion in Rd defined
on the filtered probability space (Ω,F , (Fs),P) and X the solution of (7). The

process ∇rv(Xt)
2

2(T−t) is an adapted process. As X is non-explosive, we see that∫ t

0

∥∥∥∥∇rv(Xs)
2

2(T − s)

∥∥∥∥2

ds =

∫ t

0

rv(Xs)
2

(T − s)2
ds ≤ C, (21)

for every 0 ≤ t < T , almost surely, and for some fixed constant C > 0. Define a
new measure Q by

Zt :=
dQ
dP

∣∣∣∣
Ft

(X) = exp

[
−
∫ t

0

〈
∇rv(Xs)

2

2(T − s)
, V (Xt)dBs

〉
− 1

2

∫ t

0

rv(Xs)
2

(T − s)2
ds

]
.

(22)
From (21), the process Zt is a martingale, for t ∈ [0, T ), and Qt defines a proba-
bility measure on each Ft absolutely continuous with respect to P. By Girsanov’s
theorem (see e.g. [7, Theorem 8.1.2]), we get a new process bs which is a Brow-
nian motion under the probability measure Q. Moreover, under the probability
Q, equation (7) becomes

dYt = −1

2
V0(Yt)dt+ Vi(Yt) ◦

(
dbit −

rv(Yt)

T − t

(
∂

∂r

)i
v

dt

)
, (23)

where
(
∂
∂r

)i
is the i’th component of the unit radial vector field in the direction

of v. The squared radial vector field is smooth away from Cut(v) and thus we
set it to zero on Cut(v). Away from Cut(v), the squared radial vector field is
2 Logv, which is the inverse exponential at v. The added drift term acts as a
guiding term, which pulls the process towards v at time T > 0.

From (22), we see that E[f(Yt)] = E[f(Xt)Zt]. Using (18) and the identity
∆Grv = d−1

rv
+ ∂

∂rv
logΘv (see e.g. [19]), we equivalently write E[f(Yt)ϕt] =

E[f(Xt)ψt], with

ψt := exp

[
−r(Xt)

2

2(T − t)

]
ϕt,v := exp

[∫ t

0

rv(Ys)
2

T − s
(dAvs + dLvs)

]
, (24)

where dAvs = ∂
∂rv

logΘ
−1/2
v (Ys)ds is a random measure supported on G\Cut(v)

and Θv is the Jacobian determinant of Expv.

Delyon and Hu in Lie Groups This section generalizes the result of Delyon
and Hu [4, Theorem 5] to the Lie group setting. It is possible to modify the result
to incorporate a generalization of [4, Theorem 6]. The results in the remaining
part of this section are modified from the Riemmanian setting in [9]to the Lie
group setting presented here.

Theorem 1. Let X be the solution of (7). The SDE (14) yields a strong solution
on [0, T ) and satisfies limt↑T Yt = v almost surely. Moreover, the conditional
expectation of X given XT = v is

E[f(X)|XT = v] = CE [f(Y )ϕT,v] , (25)
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for every Ft-measurable non-negative function f on G, t < T , where ϕt is given
in (24).

Proof. The result is a consequence of the change of measure together with
Lemma 1, Lemma 2, and Lemma 3.

Lemma 1. The solution of SDE (14) satisfies limt→T Yt = v almost surely.

Proof. Let {Dn}∞n=1 be an exhaustion of G, that is, the sequence consists of
open, relatively compact subsets of M such that D̄n ⊆ Dn+1 and G =

⋃∞
n=1Dn.

Furthermore, let τDn denote the first exit time of Y from Dn, then from (20) we
have that the sequence

(
E[1{t<τDn}r

2
v(Yt)]

)∞
n=1

is non-decreasing and bounded,
hence from the monotone convergence theorem, it has a limit which is bounded
by the right-hand side of (20). Applying Jensen’s inequality to the left-hand side
of (20)

E[rv(Yt)] ≤
(
r2
v(e) + νt

(
t

T − t

)) 1
2
(
T − t
t

)
e
λt
2 .

Since obviously E[rv(YT )] = rv(YT )Q(rv(YT ) 6= 0), by Fatou’s lemma

E[rv(YT )] ≤ lim inf
t→T

E[r(Yt)] = 0,

we conclude that r(Yt)→ 0, Q-almost surely.

Lemma 2. Let 0 < t1 < t2 < · · · < tN < T and h be a continuous bounded
function function on GN . With ψt as in (24), then

lim
t→T

E [h (Xt1 , Xt2 , . . . , XtN )ψt]

E[ψt]
= E [h (Xt1 , Xt2 , . . . , XtN ) |XT = v] . (26)

Proof. The proof is similar to that of [4, Lemma 7]. Let (U, φ) be a normal chart
centered at v ∈ G. First, since the cut locus of any complete connected manifold
has (volume) measure zero, we can integrate indifferently in any normal chart.
For any t ∈ (tN , T ) we have

E[h(xt1 , ..., xtN )ψt] =

∫
G

Φh(t, z)e−
rv(z)2

2(T−t) dVol(z) (27)

where dVol(z) =
√

det(A(z))dz denotes the volume measure on G, dz the
Lebesgue measure, and A the metric tensor. Moreover,

Φh(t, z) =

∫
GN

h(z1, ..., zN )pt1(u, z1) · · · pt−tN (zN , z)dVol(z1) · · · dVol(zN ),

and of course Φ1(t, z) = pt(e, z). Using the normal chart and applying the change
of variable x = (T − t)1/2y we get

(T − t)− d2E[h(xt1 , ..., xtN )ψt]
t→T→ Φh(T, v) det(A(v))

d
2

∫
φ(G)

e−
rv(φ−1(y))2

2 dy.

The conclusion follows from Bayes’ formula.
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On simply connected spaces, we have the following L1-convergence of ϕ.

Lemma 3. Suppose G is simply connected. With ϕt,v as defined above then

ϕt,v
L1→ ϕT,v.

Proof. Note that for each t ∈ [0, T ) we have EQ[ϕt] < ∞ as well as ϕt → ϕT
almost surely by Lemma 1. The result then follows from the uniform integrability
of {ϕt : t ∈ [0, T )}, which can be found in Appendix C.2 in [19].

4 Simulation of Bridges in Homogeneous Spaces

Consider the homogeneous space M = G/K, where K is a Lie subgroup of the
Lie group G and let π : G→M denote the canonical projection. Suppose that G
acts on M on the left and that gt is a process in G. As described in Liao [12], we
obtain an induced process in M induced by the process gt in G. For any x ∈M ,
the induced process xt = gtx defines the one-point motion of gt in M , with
initial value x. Using one-point motions, we define conditioned processes in the
homogeneous space M . Throughout this section, let X̂ = π(X) and Ŷ = π(Y )
denote the one-point motions of respectively X and Y as defined above.

4.1 Guided Diffusions on Homogeneous Space as Guided Diffusions
in Lie Groups

To simulate bridges on homogeneous spaces, we develop simulation schemes on
the top space, that is, bridge simulation schemes on the Lie group G, which
we then project onto the homogeneous space M . We will be considering two
different schemes. Let v ∈M .

1. Whenever π−1(v) is closed, find closest point v̄ in fiber above v and iterative
update v̄ at each time step.

2. Sample k-points in fiber above v ∈ M and consider the bridge X in G
conditioned on XT ∈ {v̄1, . . . , v̄k}.

We make the following assumptions throughout on the Markov transition
density pGt (·, ·).

Assumption 1. 1. The Markov transition density is symmetric, i.e.,

pGt (x, y) = pGt (y, x).

2. The Chapman-Kolmogorov equation is satisfied, i.e.,

pGt+s(x, y) =

∫
G

pGt (x, z)pGs (z, y)dVolG(z).

3. For any bounded continuous function f on G and every fixed y ∈ G

lim
t↓0

∫
G

pGt (x, y)f(x)dVolG(x) = f(y).
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4.2 Guiding to Nearest Point

This section addresses the approach outlined in the previous section when guid-
ing to a closed embedded manifold N ⊆ G. Considering the one-point motion of
the guided process Y towards N := π−1(v) yields a conditioning in the homoge-
neous space M .

Lemma 4. Let v ∈ M and π : G → M be the canonical projection with N =
π−1(v) being the fiber over v and let e ∈ G denote the identity element. Further-
more, define Y as the process with infinitesimal generator (12) and ∆G being
the Laplace-Beltrami operator on G. Then N is a submanifold of G and Y is the
Fermi bridge from Y0 = e to N at time T .

Proof. The result follows from standard differential geometry and [20].

We reinvigorate the fact that the one-point motion, Xt = gtx, of a Brownian
motion gt in G, started at g0 = e, is only a Brownian motion in M under certain
regularity conditions (see [12, Proposition 2.7]). In case of a bi-invariant metric,
a Brownian motion on G maps to a Brownian motion in M through its one-
point motion. In the general case, one-point processes might not even preserve
the Markov property. A numerical example is provided below which show how
we can obtain anisotropic distribution on the homogeneous space from a non-
invariant metric on the top space.

The Riemannian volume measure VolG on G decomposes into a product mea-
sure consisting of the volume measure on fibers in G, e.g. π−1(z), and the vol-
ume measure on its horizontal complement, i.e., dVolG = dVolπ−1(z) dVol|H(z),
where dVol|H is the horizontal restriction of the volume measure in G.

Assume that we have an induced volume measure defined on the homoge-
neous space M . This is, for example, the case when the metric on G is bi-
invariant.

Theorem 2. Let x ∈M . The Fermi bridge Yt converges almost surely to N and
the one-point motion Ŷt = Ytx is a diffusion bridge starting at x ∈M converging
almost surely to v.

Proof. Since the Fermi bridge converges almost surely toN (cf. [20]), it converges
in the horizontal direction. Hence the one-point motion converges almost surely
in M to π(N) = v ∈M .

Suppose endowing both G and M := G/K with sigma algebras making them
into two measurable spaces. Suppose further that the sigma algebras σ(G) and
σ(M) on G and M , respectively, are the Borel-sigma algebras of all open sets.
This assumption is, of course, dependent on the metric. If the metric space is
non-separable, then Borel algebra is too big for anything sensible to be said. Let
π : G → M be the smooth submersion onto the homogeneous space M . Then
π is a measurable map and if µ is a measure on G the pushforward of µ by π,
defined by π∗µ(B) = µ

(
π−1(B)

)
, for all B ∈ σ(M), is a measure on M . Then

we have the following result.
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Given an initial value x0 ∈ G for the process Xt, we can, by left-translation,
assume that the process starts at the identity in G, i.e., x0 = e. This alleviates
the dependency on the distribution of the initial value in the quotient space.

Theorem 3. With the assumptions above, let pGT (x0, ) denote the transition den-
sity of a diffusion process Xt on G initiated at x0 ∈ G. The density pGT (x0, )

pushes forward to a transition density pMT (x̂0, ) of the diffusion process X̂t =
π(Xt) on M , initiated from x̂0 = π(x0).

Proof. Let Nz := π−1(z) be the fiber over z, for any z ∈ M , then Nv ⊆ G is
a submanifold of G by Lemma 4. Also, let P be the corresponding probability
measure defined by P(B) =

∫
B
pT (u, x)dVolG(x), then we see that for any Borel

measurable set B ⊆M

P
(
XT ∈ π−1(B)

)
=

∫
π−1(B)

pGT (x0, y)dVolG(y)

=

∫
B

∫
Nz

pGT (x0, y)dVolNz (y)dVol|H(z)

=

∫
B

∫
Nz

pGT (x0, y)dVolNz (y)dVolM (z)

=

∫
B

pGT (x0, Nz) dVolM (z),

where the third equality follows by assumption and the last equality by (11).
Since X̂T ∈ B if and only of XT ∈ π−1(B), we see that pGT

(
x0, π

−1(·)
)

is

the transition density for X̂t which is exactly the pushforward π∗p
G
T (x0, ·) :=

pMT (x̂0, ·).

Note that the above is equivalent to πP (f) = P (f ◦ π), for any measurable
function f on M .

Lemma 5. Let X be a Markov process on G, started at x0 ∈ G, with density
pGt (x0, ·) satisfying the conditions in Assumption 1. The conditional expectation
on M satisfies

E[f(X̂)|X̂T = v] = E

[
f(X̂)

pMT−t(X̂t, v)

pMT (x̂0, v)

]
, (28)

for all bounded, continuous, and non-negative measurable f on M . Furthermore,

E[f̃(X)|XT ∈ N ] = E[f(X̂)|X̂T = v],

where f̃ = f ◦ π.

Proof. For the first part note that
pMT−t(X̂t,v)

pMT (x̂0,v)
imply a conditioning. For the second

part, let f be a bounded, continuous, and non-negative measurable function on
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M , and let f̃ = f ◦ π. Then it follows directly from [19] and Theorem 3

E[f̃(Xt)|XT ∈ N ] =E

[
f(π(Xt))

pGT−t(Xt, N)

pGT (x0, N)

]

=E

[
f(π(Xt))

pGT−t(Xt, π
−1(v))

pGT (x0, π−1(v))

]

=E

[
f(π(Xt))

π∗p
G
T−t(Xt, v)

π∗pGT (x0, v)

]

=E

[
f(X̂t)

pMT−t(X̂t, v)

pMT (x̂0, v)

]
.

We summarize the main theorem of this section, namely, how to simulate
guided bridges on homogeneous spaces. Let X̂t be a process in M arising as the
one-point process of a Markov process Xt in G.

Theorem 4. The projection X̂t of the G-valued Markov Xt onto M started at
x ∈M conditioned on X̂T = v, for any v ∈M , is identical in law to the process
Ŷt := π(Yt), where g

π7→ g · x and Yt is the Fermi bridge on G conditioned at
YT ∈ N . Moreover, the conditional expectation of X̂ given X̂T = v is

E[f(X̂)|X̂T = v] = CE
[
f(Ŷ )ϕT

]
, (29)

for every Ft-measurable non-negative function f on G, t < T , where ϕt is given
in (24).

Proof. Note that for any bounded, continuous, and non-negative measurable
function f̃ on G we have [9]

E
[
f̃(X)|XT ∈ π−1(v)

]
= CE

[
f̃(Y )ϕT,N

]
.

Let f be any bounded, continuous, and non-negative measurable function on M .
For any such f on M , let f̃ = f ◦ π. Then by Lemma 5,

E
[
f(X̂)|X̂T = v

]
= E

[
f ◦ π(X)|XT ∈ π−1(v)

]
the conclusion follows.

4.3 Guiding to k-Points in Fiber

For certain homogeneous spaces, the fiber N = π−1(v) is a discrete subgroup in
G. In this case, the volume measure VolN in (11) is the counting measure and
we can write the density as

pGt (x,N) =
∑
v∈N

pGt (x, v).
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From a numerical perspective, when the discrete subgroup is large restricting to
a smaller finite subgroup Nk ⊆ N of k-nearest-points of the initial starting point
may speed up computation-time.

Recall the Radon-Nikodym derivative given in (13), which in the case of a
discrete subgroup N takes the form

dPTx,N
dPTx

∣∣
Fs

=
pGT−s(Xs, N)

pGT (x,N)
=
∑
v∈N

pGT−s(Xs, v)∑
v∈N p

G
T (x, v)

, (30)

for 0 ≤ s < T . Suppose that Nk := {v1, . . . , vk} ⊆ N . By Theorem 5.2.1 in
Thompson [19], the heat kernel to vi, pt(x, vi), has the following expression

pGT (x, vi) = qT (x, vi) lim
t↑T

E [ϕt] , (31)

where ϕt is defined in (24) and qt(·, vi) is the Euclidean normal density

qt(x, vi) = (2πt)−
(d−n)

2 exp

[
−
r2
vi(x)

2t

]
. (32)

From (30) and (31), we can see that the Radon-Nikodym derivative is equal to

k∑
i=1

pGT−s(x, vi)∑k
j=1 p

G
T (x0, vj)

=

k∑
i=1

cjqT−s(x, vi)∑k
j=1 cjqT (x0, vj)

, (33)

where ci are the constants limt↑T E[ϕt,vi ], with subscript vi to indicate its de-
pendence on the conditioning point. From the arguments above, the conditional
expectation is equal to

EP[F (Xt)|XT ∈ Nk] =
EP[pGT−t(Xt, Nk)F (Xt)]

pGT (x0, Nk)

=

k∑
i=1

EP[pGT−t(Xt, vi)F (Xt)]∑k
j=1 p

G
T (x0, vk)

=

k∑
i=1

ci

EP

[
exp

[
− r

2
vi

(Xt)

2(T−t)

]
F (Xt)

]
∑k
j=1 cj exp

[
−
r2vj

(x0)

2(T−t)

] = EQ [F (Yt)] .

Let h(s,Xs) be the function defined by the right hand side of (33). It is a
classical argument following Chapman-Kolmogorov that h(s,Xs) is a martingale



18 Jensen et al.

on [0, T ), namely, for s < t

EP [h(t,Xt)|Fs] =EP [h(t,Xt)|Xs]

=

∫
h(t, z)pGt−s(Xs, z)dVolG(z)

=

k∑
i=1

∫
pGT−t(z, vi)p

G
t−s(Xs, z)dVolG(z)∑k

j=1 p
G
T (x0, vj)

=

k∑
i=1

pT−s(Xs, vi)∑k
j=1 pT (x0, vj)

= h(s,Xs),

where we have assumed that X is a Markov process and clearly h(0, x) = 1.
Then it is easily seen that

∇x|x=Xt log h(t, x) = −
k∑
i=1

ci
qT−t(Xt, vi)∑k
j=1 cjqT (x0, vj)

∇x|x=Xt r
2
vi(x)

2(T − t)
(34)

which from Doob’s h-transform yields an SDE of the form

dYt = −1

2
V0(Yt)dt+ Vi(Yt) ◦

(
dBit −

k∑
i=1

ci
qT−t(Yt, vi)∑k
j=1 cjqT (y0, vj)

∇y|y=Yt r
2
vi(y)

2(T − t)
dt

)
,

(35)
where Y0 = y0 = e. Combining the above arguments, we have the following
result.

Theorem 5. Let Y be the solution of the SDE (35), then Y converges almost
surely to Nk as t ↑ T and the conditional expectation is given as

EQ [F (Y )] =

k∑
i=1

ci

EP

[
exp

[
− r

2
vi

(Yt)

2(T−t)

]
F (Y )

]
∑k
j=1 cj exp

[
−
r2vj

(x0)

2(T−t)

] = EP [F (X)|XT ∈ Nk] .

Remark 1. Choosing which k-points to condition on introduce a certain bias. An
argument could be to choose the k-points closest to the initial value y0 ∈ G and
somehow obtain a truncated version of the true bridge process. However, if the
fiber is connected and continuous such a choice is not feasible.

Consider now the case where N is a continuous, connected, and compact
fiber (Compactness assumption so we get the existence of a uniform distribution
on N). Suppose we sample k-points in N uniformly at random.

Theorem 6. Let X be a Markov process defined on (Ω,F ,P) with values in G,
X0 = x0, and let pGt (·, ·) be its transition density defined by P(XT ∈ du|Xt =
x) = pGT−t(x, u)dVolG(u). Assume 0 ≤ t < T and XT ∼ f · VolN (e.g., uniform
distribution on fiber over v) under the probability measure Px0

started at x0.
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The conditional law of Xt given XT = v, PTx0,v, has density wrt. the reference
measure dVolG given by

pGT−t(y, v)pGt (y, x0)

pGT (x0, v)
, (36)

and the simultaneous distribution of (Xt, XT ) has density given by

P(Xt ∈ dx,XT ∈ du)

dVolN (u)dVolG(x)
= f(u)

pGT−t(y, u)pGt (y, x)

pGT (x0, u)
. (37)

Furthermore, if we define the h-function as

h(t,Xt) =

∫
f(u)

pGT−t(Xt,u)

pGT (x0,u)
dVolN (u)∫

N
f(y)dVolN (y)

, (38)

then for any non-negative measurable functional F we have

EQ[F (X)] =EP[h(t,Xt)F (X)]

=

∫
EP[F (X)|XT = u]

f(u)∫
N
f(y)dVolN (y)

dVolN (u).

The conditional distribution of Xt given XT has density

kt(x, u) =
f(u)∫

N
f(y)dVolN (y)

pGT−t(y, u)pGt (y, x)

pGT (x0, u)
, (39)

with respect to the volume measure VolN . If the distribution XT (P) has full mass
in the fiber N , i.e., XT (P)(N) =

∫
N
fdV ol = 1 the term above simplifies.

Proof. The fact that (36) is the conditional density wrt. dVolG the volume mea-
sure on G follows from (8), since Ptx = pt(x, y)dVolG(y) and therefore

dPTx0,v(Xt) =
pGT−t(y, v)pGt (x0, y)

pGT (x0, v)
dVolG(y).

Hence (37) follows.
For the second part take h as defined in (38). Without loss of generality

assume that XT (P)(N) = 1. Note that h is a martingale with h(0, X0) = 1,
since X is a Markov process and

E[h(t,Xt)|Xs] =

∫
pGt−s(Xs, x)h(t, x)dVolG(x)

=

∫
pGt−s(Xs, x)

∫
f(u)

pGT−t(x, u)

pGT (x0, u)
dVolN (u)dVolG(x)

=

∫
f(u)

pGT−s(Xs, u)

pGT (x0, u)
dVolN (u) = h(s,Xs)
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together with

E[h(t,Xt)] =

∫
f(u)

pGT (x0, u)

pGT (x0, u)
dVolN (u) = 1.

Since limt↓0
∫
pGt (x, y)f(y)dVolG(y) = f(x), for any bounded continuous func-

tion f , Fatou’s lemma ensures that E[h(T,XT )] = 1

1 = lim sup
t↑T

E[h(t,Xt)]

≤E

[
lim sup
t↑T

h(t,Xt)

]

=

∫
G

lim sup
t↑T

∫
f(u)

pGT−t(x, u)

pGT (x0, u)
dVolN (u)dVolG(x)

=

∫
G

f(x)

pGT (x0, x)
dVolG(x)

=

∫
G

lim inf
t↑T

∫
f(u)

pGT−t(x, u)

pGT (x0, u)
dVolN (u)dVolG(x)

≤ lim inf
t↑T

E[h(t,Xt)] = 1.

Hence h is a true martingale on [0, T ] and thus defines a new probability measure
Q on F by dQ

dP |Ft(X) = h(t,Xt).

For the second part of the proof, assume, temporarily, that F is a measurable
function such that

EP[h(t,Xt)F (Xt)] =

∫
pGt (x0, x)h(t, x)F (x)dVolG(x)

=

∫ ∫
pGT−t(x, u)pGt (x0, x)

pGT (x0, u)
F (x)dVolG(x)f(u)dVolN (u)

=

∫ ∫
F (x)dPTx0,u(x)f(u)dVolN (u)

=

∫
EP[F (Xt)|XT = u]f(u)dVolN (u).

In order to conclude, we need to show that for any finite distribution (Xt1 , . . . , Xtn)

EP[h(t,Xt)F (Xt1 , . . . , Xtn)] =

∫
EP[F (Xt1 , . . . , Xtn)|XT = u]f(u)dVolN (u).
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Therefore, let 0 < t1 < · · · < tn < T and t ∈ (tn, T ). Define ΦF similar to how
it was defined in Lemma 2. Then

EP[h(t,Xt)F (Xt1 , . . . , Xtn)] =

∫
G

h(t, x)ΦF (t, x)dVolG(x)

=

∫
f(u)

∫
F (z)P (z, x, u)dVol(z)dVol(x)dVol(u)

=

∫
EP[F (Xt1 , . . . , Xtn)|XT = u]f(u)dVolN (u),

where z = (z1, . . . , zn) and dVol(z) = dVol(z1) . . . dVol(zn) and where

P (z, x, u) =
pGt1(x0, z1) . . . pGt−tn(zn, x)pGT−t(x, u)

pGT (x0, u)
.

The next result uses the type of conditioning found in van der Meulen and
Schauer [13]. By imposing noise on the conditioning point they showed that the
endpoint is tilted to have a given density. We adapt here this type of conditioning
by imposing noise in the on the conditioning point.

Theorem 7. Let X be a Markov process defined on (Ω,F ,P) with values in G,
X0 = x0, and let pGt (·, ·) be its transition density defined by P(XT ∈ du|Xt =
x) = pGT−t(x, u)dVolG(u). Assume 0 ≤ t < T and XT ∼ f · VolN (e.g., uni-
form distribution on fiber over v). The simultaneous distribution of (Xt, XT )
has density given by

P(Xt ∈ dx,XT ∈ du)

dVolN (u)dVolG(x)
= f(u)pGT−t(x, u) (40)

Furthermore, the conditional distribution of Xt given XT has density

kt(x, u) =
f(u)pGT−t(x, u)∫

N
f(y)pGT (x0, y)dVolN (y)

. (41)

(NB. σ-finite measures exists on any connected locally compact Lie group)

Proof. The first part is a direct consequence of standard measure theory. For
the second part define

Zt = h(t,Xt) =

∫
f(u)pGT−t(Xt, u)dVolN (u)∫
f(u)pGT (x0, u)dVolN (u)

. (42)
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Then, for 0 ≤ s < t

EP[Zt|Fs] = EP[h(t,Xt)|Xs] =

∫ ∫
f(u)pGT−t(x, u)dVolN (u)∫
f(u)pGT (x0, u)dVolN (u)

pt−s(Xs, x)dVolG(x)

=

∫
f(u)

∫
pGT−t(x, u)pt−s(Xs, x)dVolG(x)dVolN (u)∫

f(u)pGT (x0, u)dVolN (u)

=

∫
f(u)pGT−s(Xs, u)dVolN (u)∫
f(u)pGT (x0, u)dVolN (u)

=Zs,

and we see that Z is a local martingale with Z0 = 1. Defining Qt = Zt · P, we
see from the abstract Bayes formula

EQ[F (Xt)|Xs] =
EP[ZtF (Xt)|Xs]

Zs

=

∫
F (x)pGt−s(Xs, x)

∫
f(u)pGT−t(x,u)dVolN (u)∫
f(u)pGT (x0,u)dVolN (u)

dVolG(x)∫
f(u)pGT−s(Xs,u)dVolN (u)∫
f(u)pGT (x0,u)dVolN (u)

=

∫
F (x)pGt−s(Xs, x)

∫
f(u)pGT−t(x, u)dVolN (u)dVolG(x)∫

f(u)pGT−s(Xs, u)dVolN (u)

=

∫ ∫
F (x)pGt−s(Xs, x)pGT−t(x, u)

pGT−s(Xs, u)
dVolG(x)ku(Xs)dVolN (u)

=

∫
EP [F (Xt)|Fs, XT = u] ku(Xs)dVolN (u),

where exactly

kt(Xs, u) =
f(u)pGT−s(Xs, u)∫

f(u)pGT−s(Xs, u)dVolN (u)
.

We note that the density ku(x) is proportional to the expression

kT (x0, u) =
f(u)pGT (x, u)∫

N
f(y)pGT (x0, y)dVolN (y)

∝ f(u)qT (x0, u) lim
t↑T

E[ϕt,u]. (43)

Assume that the constants ci exist. We can obtain unbiased estimates of
the constants ci via simulation of sample paths of the guided process. Let yit =
Yt(ωi) be realizations of the guided bridge process. We can then use the unbiased
estimator

ϕ̄T,vi(y) =
1

m

m∑
n=1

exp

[∫ T

0

rvi(y
n
s )

T − s
(dAvis + dLvis )

]
(44)

to approximate the constants ci = E[ϕT,vi ].
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Algorithm 1: Stochastic Metropolis-Hastings Algorithm

// Initialization

Choose initial point e ∈ G and v1 ∈ N closest to e. Simulate a guided bridge
process to v1 and obtain an unbiased estimate of E[ϕT,v1 ].

// Main loop

while k points not reached do
// Step 1:

Propose u from the proposal density f(vi, u) (e.g. uniform density in N
centered at vi or normal density in N centered at vi) and sample
estimator for E[ϕT,u]

// Step 2:

Calculate the acceptance ratio g(u, vi) = min
{

1,
f(u,vi)qT (x0,u)ϕ̄T,u
f(vi,u)qT (x0,vi)ϕ̄T,vi

}
(Note that if f is symmetric it cancels out in the acceptance probability)

// Step 3

Accept with probability g(u, vi) and set vi+1 = u as well as ci+1 = ϕ̄T,vi+1

otherwise do nothing.
end
// Output:

{(v1, c1), . . . , (vk, ck)}

Proof. By repeated use of the tower property and Markov property

E[g(XT )F (X)] =E [g(XT )E[F (X)|XT ]]

=E [F (X)E[g(XT )|Xs]] ,

for any Fs-measurable functional F and FT -measurable function g. From the
Markov property it follows that

E [F (X)E[g(XT )|Xs]] =E
[
F (X)

∫
G

g(v)pGT−s(Xs, v)dVolG(v)

]
=

∫
G

E[F (X)pGT−s(Xs, v)]g(v)dVolG(v).

Using the fact that XT (P)(v) = f(v)dVolG(v), where f(v) ≡ 0 for any v ∈ G\N ,

E [g(XT )E[F (X)|XT ]] =

∫
G

g(v)E[F (X)|XT = v]dXT (P)(v)

=

∫
G

E[F (X)|XT = v]f(v)g(v)dVolG(v).

From this we see that for any non-negative measurable function g∫
G

E[F (X)pGT−s(Xs, v)]g(v)dVolG(v) =

∫
G

E[F (X)|XT = v]f(v)g(v)dVolG(v),

which implies that almost everywhere, for any F ∈ Fs,

E[F (X)|XT = v] =
E[F (X)pGT−s(Xs, v)]

f(v)
.
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5 Numerical Experiments

In this section, we present numerical results of bridge sampling on specific Lie
groups and homogeneous spaces. The specific Lie groups in question are the
three-dimensional rotation group SO(3) and the general linear group of invertible
matrices with positive determinant GL+(3).

The rotation group SO(3) is a Lie group with Lie algebra so(3), consisting
of skew-symmetric matrices. The Lie group SO(3) is well-studied group, where
closed form expressions of the Lie group exponential and logarithmic map are
available. Furthermore, the structure coefficients of SO(3) are particularly simple
to work with. Exploiting the bridge sampling scheme described above, we show
below how to estimate the underlying true metric on SO(3) via an iterative MLE
method.

The space of covariance matrices, i.e., the symmetric positive definite matri-
ces SPD(n), is an example of a non-linear space in which geometric data appear
in many applications. The space SPD(3) can be obtained as the homogeneous
space GL+(3)/SO(3), where GL+ is the space of invertible matrices with positive
determinant.

Lastly, considering the two-sphere S2 as the homogeneous space SO(3)/SO(2),
we verify that the bridge sampling scheme on this homogeneous space yields ad-
missible heat kernel estimates on S2.

Numerical Simulations The Euler-Heun scheme leads to approximation of
the Stratonovich integral. With a time discretization t1, . . . , tk, tk − tk−1 = ∆t
and corresponding noise ∆Bti ∼ N(0, ∆t), the numerical approximation of the
Brownian motion (7) takes the form

xtk+1
= xtk −

1

2

∑
j,i

CjijVi(xtk)∆t+
vtk+1

+ Vi(vtk+1
+ xtk)∆Bitk

2
(45)

where vtk+1
= Vi(xtk)∆Bitk is only used as an intermediate value in integration.

Adding the logarithmic term in (23) to (45) we obtain a numerical approximation
of a guided diffusion (14).

5.1 Importance Sampling and Metric Estimation on SO(3)

This section takes G to be the special orthogonal group of rotation matrices,
SO(3), a compact connected matrix Lie group. In the context of matrix Lie
groups, computing left-invariant vector fields is straightforward.

The Lie algebra of the rotation group SO(3) is the space of three-by-three
skew symmetric matrices, so(3). The exponential map exp: so(3) → SO(3) is
a well-defined surjective map which coincide with usual matrix exponential eA.
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With a ∈ R3, we can express any element A ∈ so(3) in terms of the standard
basis {e1, e2, e3} of R3 as

A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 .

Let θ = ‖a‖2 and assume that θ 6= 0. By Rodrigues’ formula the matrix Lie
group exponential map exp: so(3)→ SO(3) is given by

R := eA = I +
sin(θ)

θ
A+

(1− cos(θ))

θ2
A2

and the corresponding inverse matrix Lie group exponential map log : SO(3)→
so(3)

log(R) =
sin−1(θ)

2θ
(R−RT ).

The rotation group SO(3) is semi-simple, hence there exist a bi-invariant in-
ner product. In this case, the Riemannian exponential map Exp coincide with
the Lie group exponential map exp and thus the Riemannian distance func-
tion d(R, I)2 = ‖LogI(R)‖2, from the rotation R to the identity I, satisfies
∇Rd(R, I)2 = 2 log(R).

The structure coefficients of so(3) are particularly simple. Let Ai = A with
aj = 1 if i = j and zero otherwise. In this case, {A1, A2, A3} defines a basis of
so(3). The structure coefficients satisfy the relation [Ai, Aj ] = CkijAk = εijkAk,

where εijk denotes the Levi-Civita symbols. The Levi-Civita symbols are defined
as +1, for (i, j, k) an even permutation of (1, 2, 3), −1 for every odd permutation,
and zero otherwise.

Numerical Bridge Sampling Algorithm on SO(3) Utilizing the simple
expressions for the structure coefficients and the Lie group logarithmic map,
we can explicitly write up the numerical approximation of the guided bridge
processes (Brownian bridge) on SO(3) as

xtk+1
= xtk −

1

2

∑
j,i

εijjVi(xtk)∆t+
vtk+1

+ Vi(vtk+1
+ xtk)

(
∆Bitk −

log(xk)
T−tk ∆t

)
2

,

(46)

where in this case we have vtk+1
= Vi(xtk)

(
∆Bitk −

log(xk)
T−tk ∆t

)
. Figure 1 illus-

trates the numerical approximation by showcasing three different sample paths
from the guided diffusion conditioned to hit the rotation represented by the black
vectors.
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(a) (b) (c)

Fig. 1: Three sample paths (a)− (c) of the guided diffusion process on SO(3) visualized
by its action on the basis vectors {e1, e2, e3} (red, green, blue) arrows of R3 (rotated
view). The sample paths are conditioned to hit the rotation represented by the black
vectors.

Another way of visualizing the guided bridge on the rotation group SO(3) is
through the angle-axis representation. Figure 2 represents a guided process on
SO(3) by presenting the axis representation on S2 and its corresponding angle
of rotation.

(a) The axis representation of the rotation matri-
ces corresponding to the axis around which the
rotation happens.

(b) The angle-representation of the rotation
around the ”fixed” rotation axis.

Fig. 2: Angle-axis representation of a guided bridge process on the rotation group SO(3)
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Metric Estimation on SO(3) In the d-dimensional Euclidean case, impor-
tance sampling yields the estimate [15]

pT (u, v) =

(
det (A(T, v))

2πT

)d
2
e−
‖u−v‖2A

2T E[ϕv,T ],

where ‖x‖A = xTA(0, u)x. Thus, from the output of the importance sampling
we get an estimate of the transition density. Similar to the Euclidean case, we
obtain an expression for the heat kernel pT (e, v) as pT (e, v) = q(T, e)E [ϕv,T ],
where

q(T, e) =

(
detA(v)

2πT

) 3
2

exp

(
−d(e, v)2

2T

)

=

(
detA(T, v)

2πT

) 3
2

exp

(
−‖Logv(e)‖2A

2T

)
, (47)

where the equality holds almost everywhere and A ∈ Sym+(g) denotes the metric
A(e) := A(0, e). The Logv map in (47) is the Riemannian inverse exponential
map.

Figure 3 illustrates how importance sampling on SO(3) leads to a metric
estimation of the underlying unknown metric, which generated the Brownian
motion. We sampled 128 points as endpoints of a Brownian motion from the
metric diag(0.2, 0.2, 0.8), and used 20 time steps to sample 4 bridges per obser-
vation. An iterative MLE method using gradient descent with a learning rate of
0.2, and initial guess of the metric being diag(1, 1, 1) yielded a convergence to
the true metric. Note that in iteration the logarithmic map changes.

5.2 Diffusion-Mean Estimation on SPD(3)

The space of symmetric positive definite (SPD) matrices is an essential class of
matrices arising as geometric data in many applications. For example, in diffu-
sion tensor imaging, SPD(3) matrices are used to model the anisotropic diffusion
of water molecules in each voxel. The SPD matrices constitute a smooth incom-
plete manifold when endowed with the Euclidean metric of matrices (Pennec et
al. [16]). The space of SPD(3) matrices can be regarded as the homogeneous
space GL+(3)/SO(3) of invertible matrices with positive determinants being ro-
tationally invariant to three-dimensional rotations.

In this section, the bridge sampling scheme derived above allow us to obtain
an estimate of the diffusion-mean [5, 6] on SPD(3), by sampling guided bridge
processes in the space of invertible matrices with positive determinants GL+(3).
This sampling method provides an estimate of the density on GL+(3) which
projects to a density in SPD(3). Exploiting the resulting density in SPD(3), an
iterative MLE method then yield a convergence to the diffusion mean.
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(a) Estimation of the unknown underlying metric
using bridge sampling. Here the true metric is the
diagonal matrix diag(0.2, 0.2, 0.8).

0 20 40 60 80 100
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2.5
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1.5

1.0

(b) The iterative log-likelihood.

Fig. 3: The importance sampling technique applies to metric estimation on the Lie
group SO(3). Sampling a Brownian motion from an underlying unknown metric, we
obtain convergence to the true underlying metric using an iterative MLE method. Here
we sampled 4 guided bridges per observation, starting from the metric diag(1, 1, 1),
providing a relatively smooth iterative likelihood in 3b.

(a) Convergence of the diffusion mean on
SPD(3).

(b) Iterative log-likelihood for the diffusion
mean.

Fig. 4: Given 64 data points in SPD(3), simulating three bridges per observation in
GL+(3), conditioned on the fibers, we obtain convergence of the diffusion-mean using
the iterative MLE with a learning rate of 0.75. The true mean is the identity matrix
illustrated by the red lines in (a). The yellow, blue, and purple lines visualize the
diagonal elements in the SPD(3) matrix, while the remaining lines represent the off-
diagonal.
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Algorithm 2: Parameter Estimation: Iterative MLE.

// Initialization

Given n data points {v1, . . . , vn}.
// Specify initial parameters θ0 = (g0, A) and a learning rate η.
for k = 1 to K do

for j = 1 to n do
Sample m bridges conditioned on vj to get estimate for
E[ϕvj ,T ] ≈ 1

m

∑m
i=1 ϕ

i
vj ,T

end

`θk−1(v1, . . . , vn) =
∏n
j=1

(
detA(T,vj)

2πT

)3/2

e−
‖Logvj

(e)‖2A
2T 1

m

∑m
i=1 ϕ

i
vj ,T

// Compute the gradient

vk−1 = ∇θk−1 log `θk−1(v1, . . . , vn)

// Update the parameters

θk = θk−1 − ηvk
end
// Return final parameters θK

Fig. 4 visualize the MLE approach to estimating the diffusion mean. As SPD(3)
matrices are six-dimensional, we only need six parameters (three in the diagonal
and three in the off-diagonal) to estimate the diffusion mean.

5.3 Density Estimation on S2 := SO(3)/SO(2)

Bi-invariant Metric A simulation scheme on specific homogeneous spaces was
introduced in Section 4.2 by using guided bridges in the top space conditioned
to arrive in the fiber at time T . The two-sphere S2 can be considered as the
homogeneous space SO(3)/SO(2) of three-dimensional rotations, identifying the
subgroup of two-dimensional rotations as a single point. Conditioning on the
fiber SO(2) in SO(3), we obtain guided bridges on S2.

Comparing the estimated heat kernel on S2, obtained from bridge samples
in SO(3), with the truncated version of the exact heat kernel, as described by
Zhao and Song [21], the bridge estimated density offers a good approximation of
the (truncated) exact density. Fig. 5 shows the relation between the estimated
heat kernel and the truncated exact heat kernel.

Non-invariant Metric Changing the metric structure on SO(3) results in an
anisotropic distribution on S2, arising as the pushforward measure from SO(3).
Fig. 6 illustrate the anisotropic distributions on S2 induced by a left-invariant
metric on SO(3) for T = 0.5, 1.0, 1.5, and 2.0, respectively.
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(a) The estimated heat kernel on S2 obtained
from bridge sampling in SO(3) for T = 0.5.

(b) The estimated heat kernel, for T = 0.5, on
S2 along a geodesic from the north pole to the
south pole against the truncated exact heat ker-
nel, where T = 0.4.

Fig. 5: From 128 sample points on S2, sampling guided bridges in SO(3) conditioned
on the fibers over the sample points, an estimate of the heat kernel on S2 is obtained.

Fig. 6: Anisotropic distributions on S2 arising from a non-invariant metric on SO(3), for
T = 0.5, 1.0, 1.5, and 2.0, respectively. The density estimates are based on 512 sample
points on SO(3). For each sample point and end-time, three guided bridge processes
were sampled in SO(3) yielding estimates of the densities in SO(3), which projected to
anisotropic densities in S2.
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