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Abstract

The structural network of the brain, or structural connectome, can be represented by fiber
bundles generated by a variety of tractography methods. While such methods give qual-
itative insights into brain structure, there is controversy over whether they can provide
quantitative information, especially at the population level. In order to enable population-
level statistical analysis of the structural connectome, we propose representing a connec-
tome as a Riemannian metric, which is a point on an infinite-dimensional manifold. We
equip this manifold with the Ebin metric, a natural metric structure for this space, to get
a Riemannian manifold along with its associated geometric properties. We then use this
Riemannian framework to apply object-oriented statistical analysis to define an atlas as the
Fréchet mean of a population of Riemannian metrics. This formulation ties into the existing
framework for diffeomorphic construction of image atlases, allowing us to construct a mul-
timodal atlas by simultaneously integrating complementary white matter structure details
from DWMRI and cortical details from T1-weighted MRI. We illustrate our framework
with 2D data examples of connectome registration and atlas formation. Finally, we build
an example 3D multimodal atlas using T1 images and connectomes derived from diffusion
tensors estimated from a subset of subjects from the Human Connectome Project.

1. Introduction

Tractography is one way to represent a structural connectome, or structural network of a
brain, which consists of brain regions that are physically connected by a network of neuronal
bundles that make up the white matter of that brain. While it is currently not possible
to image individual neurons in a living brain non-invasively, we can use diffusion-weighted
magnetic resonance images (DWMRI) to infer the pathways in white matter of coherent
bundles of neurons that cross through other bundles and connect with end points in gray

1

ar
X

iv
:2

10
9.

09
80

8v
1 

 [
cs

.C
V

] 
 2

0 
Se

p 
20

21



K. M. Campbell et al.

matter. There are a variety of tractography algorithms used to infer these white matter
pathways, ranging from local methods that integrate local orientation information to form
individual streamlines to global methods that estimate all fiber tracts simultaneously. Deter-
ministic (Basser et al., 2000) and probabilistic (Behrens et al., 2003) streamline integration
methods are easy to compute, but they suffer from accumulation of local orientation errors
leading to tract reconstructions biased toward shorter and straighter tracts. Conversely,
global estimation methods (Jbabdi et al., 2007; Christiaens et al., 2015) incorporate prior
anatomical knowledge while ensuring that tractography is consistent with the underlying
data. However, these global methods have convergence issues, sensitivity to initialization
and priors, and a tendency to have estimated tracts end in the middle of white matter
regions. Biases in tract reconstruction introduced by either local or global methods affect
the accuracy of quantitative measures such as track density and connection strength.

Geodesic tractography algorithms, first introduced by O’Donnell et al. (2002), use a
combination of local and global information to determine tracts by formulating white matter
pathways as geodesic curves under a Riemannian metric derived from the DWMRI data. In
the original work, O’Donnell et al. (2002) use the inverse diffusion tensor as the Riemannian
metric. As described by Lenglet et al. (2004), the inverse diffusion tensor metric has a
connection to Brownian motion through the Laplace Beltrami operator on the resulting
Riemannian manifold. The inverse tensor metric favors paths that follow the principal
eigenvector of the diffusion tensor, as this is the locally optimal direction to move. However,
geodesic curves for this metric do not consistently follow the principal eigenvector of the
diffusion tensor, and tend to be overly straight in regions where the white matter fibers
are bending, losing association with the underlying anatomy in these areas. This problem
has been addressed by several strategies to improve the adherence of geodesics to the white
matter geometry, including “sharpening” the inverse diffusion tensor (Fletcher et al., 2007),
using the adjugate of the diffusion tensor (Fuster et al., 2016), and using a conformal
metric (Hao et al., 2014). One advantage to the geodesic tractography formulation is that we
can do uncertainty and confidence interval analysis of the tractographies following (Sengers
et al., 2021).

These tractography techniques help to give insight into the structure of a single brain,
but it remains an open challenge to quantitatively measure how these structural connectome
pathways vary in a population. To do such a population analysis, we first need a common
frame of reference, or atlas space, where spatial differences between subjects’ white matter
can be measured.

Initially, white matter atlases were constructed by aligning DWMRI to an anatomical
template, then transforming and averaging the associated tensor field or distribution func-
tion field. For example, Mori et al. (2008) construct a diffusion tensor imaging (DTI) atlas
by registering the DWMRI of multiple subjects to a standardized anatomical template.
They build the DTI atlas by transforming the diffusion tensors for each subject (Alexander
et al., 2001) and then taking the Euclidean average of the transformed diffusion tensors
at each voxel. This approach does not use the white matter directionality information
encoded in the diffusion images during the registration. It also suffers from the fact that
the Euclidean average of diffusion tensors does not take into account the directionality
and tends to be fatter (i.e., less anisotropic) than the input tensors (Fletcher and Joshi,
2007). Another approach by Yeh et al. (2018) is to register q-space diffusion images into
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an anatomical template and estimate the spin distribution function (SDF) at each voxel in
the template. Then the SDFs are averaged on a per-voxel basis. While this method does
take into account the directionality of the white matter in a local neighborhood, it does
not take into account consistency of long-range white matter connections. These methods
both rely on low-accuracy registration to the anatomical template image, because at the
time high-accuracy diffeomorphic registrations could not be used as they did not preserve
the continuity of pathway directions across voxels (Yeh et al., 2018).

The field then focused on constructing atlases directly from tractography. These meth-
ods generally require a high level of expert curation as while tractography methods are very
good at finding well-known tracts, they are also known to create many false-positive fibers
and tracts (Zhang et al., 2018). Additionally, variation of population-level tractography
characteristics like fiber density of tracts are as likely to be reflective of the tractography
process chosen as they are of the underlying physical white matter. These and other biases
in tractography quantification are well-characterized by Jeurissen et al. (2019).

In order to get a more complete anatomical atlas, Toga et al. (2006) argue for the
integrated derivation of multimodal atlases using techniques such as spatial normalization
to produce more comprehensive atlases. Some attempts have been made to create a multi-
modal population atlas from T1 and DWMRI images. Gupta et al. (2016) rigidly register
the DWMRI into the same space as the T1 template image and then apply the same de-
formations used to create the T1 template to the DWMRI before estimating the diffusion
tensors from the transformed DWMRI. This puts the DWMRI and T1 images in the same
space, but does not use the white matter structure to inform the creation of the T1 atlas.
Other previous work on multichannel registration of diffusion and T1 MRI include Avants
et al. (2007), who use a Euclidean image match metric on the diffusion tensors, and Uus
et al. (2020), who use local angular correlation on the orientation distribution functions
(ODFs). Like the white matter-only atlases approaches discussed above, these methods
only take local information into consideration and thus do not preserve the consistency
of long-range white matter connections. They do demonstrate that registration quality is
improved over single channel registration when complementary channels are combined in
the objective function.

We are motivated to find an approach that can preserve the best aspects of these atlas
and tractography methods, while mitigating their weaknesses. Specifically, we want to
create a white matter pathway atlas that preserves local orientations and other anatomical
information while maintaining the continuity and integrity of long-range connections. We
then want a method to bring subjects into that atlas space to enable statistical quantification
of both structural connectivity and geometric variability of white matter structure across a
population.

To meet these goals, we describe the metric matching framework presented by Campbell
et al. (2021) in more detail and then extend it by combining diffeomorphic metric match-
ing with diffeomorphic image matching to enable the construction of both a multimodal
white and gray matter atlas simultaneously for the first time. Because this formulation pre-
serves geodesics transformed by diffeomorphisms, we will then demonstrate that we meet
our objective of using local diffusion data while maintaining the integrity of long-range con-
nectomics of the subjects as inferred by tractography (Cheng et al., 2015) by performing
geodesic tractography on the resulting atlas.
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Contributions of the article.

In this paper, we contribute a mathematical framework for diffeomorphic metric match-
ing that is compatible with existing image matching frameworks to enable the creation of
integrated multimodal atlases. We start by using the concept from geodesic tractography
to represent connectome fibers as geodesics of a metric, that is, each brain’s white mat-
ter structure is represented as a point on the infinite-dimensional manifold of Riemannian
metrics. This manifold is then equipped with the diffeomorphism-invariant Ebin metric
to compute distances and geodesics between connectomes. We explain how this Rieman-
nian manifold is the foundation for the algorithm for diffeomorphic metric registration of
structural connectomes and the statistical groupwise metric atlas estimation algorithm. We
then extend that this model by including an image matching term in those algorithms.
Finally, we simultaneously estimate an integrated multimodal white matter pathway and
T1 MRI-based image atlas for the first time. This article is an extended version of the In-
formation Processing in Medical Imaging (IPMI) conference paper (Campbell et al., 2021),
where we expand the results of the conference proceedings in several major directions. Most
importantly, the joint white matter pathway and T1 MRI-based image atlas model is newly
introduced and, in contrast to Campbell et al. (2021) which only contained 2D examples,
we now present 3D atlas construction examples.

2. Structural Connectomes as Riemannian Metrics

In the white matter of the brain, the diffusion of water is restricted perpendicular to the
direction of the axons. Diffusion-weighted MRI measures the microscopic diffusion of water
in multiple directions at every voxel in a 3D volume. Thus, the directionality of white
matter in the brain can be locally inferred. Traditionally, global connections of the white
matter have been estimated by a procedure called tractography, which numerically computes
integral curves of the vector field formed by the most likely direction of fiber tracts at each
point. DTI models anisotropic water diffusion with a tensor, D(x), at each voxel, whose
principal eigenvector is aligned with the direction of the strongest diffusion.

Riemannian metrics that represent connectomics of a subject have been developed in
diffusion imaging by O’Donnell et al. (2002) and include the inverse-tensor metric g̃ =
D(x)−1. However, the geodesics associated with the inverse-tensor metric tend to deviate
from the principal eigenvector directions and take straighter paths through areas of high
curvature.

In this work we build on the algorithm developed by Hao et al. (2014), which estimates
a spatially-varying function, α(x), that modulates the inverse-tensor metric to create a
locally-adaptive Riemannian metric, gα = eα(x)g̃. We briefly describe the method here for
completeness but refer the reader to Hao et al. (2014) for details. This adaptive connectome
metric, gα, is conformally equivalent to the inverse-tensor metric and is better at capturing
the global connectomics, particularly through regions of high curvature. Figure 1 shows
how well the geodesics of each metric match the integral curve of the vector field. The
connectome metric geodesics are very closely aligned with the integral curves.

The geodesic between two end-points, p, q, associated with the inverse-tensor metric,
g̃(x) = D(x)−1, minimizes the energy functional, Ẽ. While the geodesic associated with
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the connectome metric, gα(x) = eα(x)D(x)−1, minimizes the energy functional, Eα:

Ẽ(γ) =

∫ 1

0
〈T (t), T (t)〉g̃dt, Eα(γ) =

∫ 1

0
eα(x)〈T (t), T (t)〉g̃dt, (1)

where γ : [0, 1]→M , γ(0) = p, γ(1) = q, T = dγ
dt .

Analyzing the variation of Eα leads to the geodesic equation, gradα = 2∇TT , where
the Riemannian gradient of α, gradα = g̃−1

(
∂α
∂x1

, ∂α
∂x2

, · · · , ∂α∂xn
)
, and ∇TT is the covariant

derivative of T along its integral curve.
To enforce the desired condition where the tangent vectors, T , of the geodesic match

the vector field, V , of the unit principal eigenvectors of D(x), we minimize the functional,
F (α) =

∫
M ||gradα− 2∇V V ||2dx. The equation for α that minimizes F (α) is

∆α = 2 div(∇V V ), (2)

where div and ∆ are the Riemannian divergence and Laplace-Beltrami operator. We dis-
cretize the Poisson equation in Equation (2) using a second-order finite difference scheme
that satisfies both the Neumann boundary conditions ∂α

∂−→n = 〈gradα,−→n 〉 = 〈2∇V V,−→n 〉 and
the governing equation on the boundary. We then solve for α.

Note that we can use this method to match the geodesics of the connectome metric to
other vector fields defining the tractogram, e.g., from higher-order diffusion models that
can represent multiple fiber crossings in a voxel. In particular, for tractography based on
fiber orientation distributions (FODs), we can use the techniques presented in Nie and Shi
(2019) to generate the vector field V .

Inverse Tensor Metric Geodesic Connectome Metric Geodesic Integral Curve

Figure 1: A geodesic of the inverse-tensor metric (blue) and adaptive metric (orange), along
with an integral curve (black) associated with the principal eigenvectors for a synthetic
tensor field (left) and a subject’s connectome metric from the Human Connectome Project
(center). Right shows a detailed view of the metric in the corpus callosum.

3. The Geometry of the Manifold of all Riemannian Metrics

Once we have estimated a Riemannian metric for a human connectome, it is a point in the
infinite-dimensional manifold of all Riemannian metrics, Met(M), where M is the domain
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of the image. We will equip this space with a diffeomorphism-invariant Riemannian metric,
called the Ebin or DeWitt metric (Ebin, 1970; DeWitt, 1967). The invariance of the infinite-
dimensional metric under the group of diffeomorphisms Diff(M) is a crucial property, as it
guarantees the independence of an initial choice of coordinate system on the brain manifold.
As we will base our statistical framework on this infinite-dimensional geometric structure,
we will now give a detailed overview of its induced geometry on Met(M).

Let M be a smooth n-dimensional manifold; for our targeted applications n will be two
or three. We denote by Met(M) the space of all smooth Riemannian metrics on M , i.e.,
each element g of the space Met(M) is a symmetric, positive-definite

(
0
2

)
tensor field on M .

It is convenient to think of the elements of M as being point-wise positive-definite sections
of the bundle of symmetric two-tensors S2T ∗M , i.e., smooth maps from M with values
in S2

+T
∗M . Thus, the space Met(M) is an open subset of the linear space Γ(S2T ∗M) of

all smooth symmetric
(

0
2

)
tensor fields and hence itself a smooth Fréchet-manifold (Ebin,

1970). Furthermore, let Diff(M) denote the infinite-dimensional Lie group of all smooth
diffeomorphisms of the manifold M . Elements of Diff(M) act as coordinate changes on the
manifold M . This group acts on the space of metrics via pullback

Met(M)×Diff(M)→ Met(M), (g, ϕ) 7→ ϕ∗g = g(Tϕ·, Tϕ·) . (3)

In an analogous way we can define the pushforward action

Met(M)×Diff(M)→ Met(M), (g, ϕ) 7→ ϕ∗g =
(
ϕ−1

)∗
g (4)

It is important to note that the geometries of the metrics g and ϕ∗g (ϕ∗g resp.) are
also related via ϕ. In particular, geodesics with respect to g are mapped via ϕ to geodesics
with respect to ϕ∗g (via ϕ−1 for ϕ∗g, resp.).

On the infinite-dimensional manifold Met(M), there exists a natural Riemannian met-
ric: the reparameterization-invariant L2-metric. To define the metric, we need to first
characterize the tangent space of the manifold of all metrics: Met(M) is an open subset of
Γ(S2T ∗M). Thus, every tangent vector h is a smooth bilinear form h : TM ×M TM → R
that can be equivalently interpreted as a map TM → T ∗M . The L2-metric is given by

GEg (h, k) =

∫
M

Tr
(
g−1hg−1k

)
vol(g), (5)

with g ∈ Met(M), h, k ∈ Tg Met(M) and vol(g) the induced volume density of the metric
g. This metric, introduced in Ebin (1970), is also known as the Ebin metric. We call
the metric natural as it requires no additional background structure and is consequently
invariant under the pushforward and pullback actions of the diffeomorphism group, i.e.,

Gg(h, k) = Gϕ∗g(ϕ
∗h, ϕ∗k) = Gϕ∗g(ϕ∗h, ϕ∗k) (6)

for all ϕ ∈ Diff(M), g ∈ Met(M) and h, k ∈ Tg Met(M). Note that the invariance of the
metric follows directly from the substitution formula for multi-dimensional integrals.

The Ebin metric induces a particularly simple geometry on the space Met(M), with
explicit formulas for geodesics, geodesic distance and curvature. In the following we will
present the most important of these formulas, which will be of importance for our proposed
metric matching framework.
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First we note that a metric g ∈ Met(M), in local coordinates, can be represented as a
field of symmetric, positive-definite n × n matrices that vary smoothly over M . Similarly,
each tangent vector at g can be represented as a field of symmetric n × n matrices. By
the results of Freed et al. (1989); Gil-Medrano and Michor (1991); Clarke (2013b), one
can reduce the investigations of the space of all Riemannian metrics to the study of the
geometry of the finite-dimensional space of symmetric, positive-definite n×n matrices: the
point wise nature of the Ebin metric allows one to solve the geodesic initial and boundary
value problem on Met(M) for each x ∈ M separately and thus the formulas for geodesics,
geodesic distance and curvature on the finite-dimensional matrix space can be translated
directly to results for the Ebin metric on the infinite-dimensional space of Riemannian
metrics.

Note that the space of Riemannian metrics, Met(M) with the Ebin metric, is not met-
rically complete and not geodesically convex. Thus the minimal geodesic between two Rie-
mannian metrics may not exist in Met(M), but only in a larger space; the metric completion
Met(M), which consists of all possibly degenerate Riemannian metrics. This construction
has been worked out in detail by Clarke (2013a) – including the existence of minimizing
paths in Met(M). In the following we will omit these details and refer the interested reader
to the article Clarke (2013a) for a more in-depth discussion. In Theorem 1, we present an
explicit formula for the minimizing geodesic in Met(M) that connects two given Rieman-
nian metrics. An example of calculating a geodesic in the space Met(M) using this formula
is then visualized in Figure 2.

Theorem 1 (Minimizing geodesics) For g0, g1 ∈ Met(M) we define

k(x) = log
(
g−1

0 (x)g1(x)
)
, k0(x) = k(x)− Tr(k(x))

n
Id (7)

a(x) = 4
√

det(g0(x)), b(x) = 4
√

det(g1(x)), κ(x) =

√
nTr(k0(x)2)

4
(8)

q(t, x) = 1 + t

(
b(x) cos(κ(x))− a(x)

a(x)

)
, r(t, x) =

tb(x) sin(κ(x))

a(x)
, (9)

Then the minimal path g(t, x) with respect to the Ebin metric in Met(M) that connects g0

to g1 is given by

g =


(
q2 + r2

) 2
n g0 exp

(
arctan(r/q)

κ k0

)
0 < κ < π,

q
4
n g0 κ = 0,(
1− a+b

a t
) 4

n g01[0, a
a+b ]

+
(
a+b
b t− a

b

) 4
n g11[ a

a+b
,1] κ ≥ π,

(10)

where 1 denotes the indicator function in the variable t. We suppressed the functions’
dependence on t and x for better readability.

Proof This theorem is essentially a reformulation of the minimal geodesic formula given
in (Clarke, 2013b, Theorem 4.16). In fact, note that the Ebin metric (5) is point-wise,
we can restrict ourselves to each x ∈ M . By (Clarke, 2013b, Theorem 4.5), we know
that in the case of 0 ≤ κ(x) < π, g1(x) is in the image of the Riemannian exponential
map starting at g0(x), and the Riemannian exponential is a diffeomorphism between U :=
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Figure 2: An example of interpolating geodesic between two metric tensors on the grid
with respect to the Ebin metric (5), where the left and the right ellipse fields represent the
boundary metrics.

S2T ∗xM\(−∞,−4/n]g0(x) and its image. Here S2T ∗xM denotes the vector space of all
symmetric (0,2) tensors at x ∈ M . Using the formula of the inverse exponential map in
(Clarke, 2013b, Theorem 4.5) we calculate the pre-image of g1(x):

Exp−1
g0 g1

∣∣
x

=


4
n

(
b(x)
a(x) cosκ(x)− 1

)
g0(x) + b(x) sinκ(x)

κ(x)a(x) g0(x)k0(x) 0 < κ(x) < π,

4
n

(
b(x)
a(x) − 1

)
g0(x) κ(x) = 0.

(11)

The geodesic formula in the case of 0 ≤ κ(x) < π then follows immediately from (Clarke,
2013b, Theorem 4.4). For the case of κ(x) ≥ π, by (Clarke, 2013b, Theorem 4.14) the
minimal geodesic between g0(x) and g1(x) is given by the concatenation of the straight
segments from g0(x) to the zero tensor and from zero tensor to g1(x), which gives the last
statement and finally proves the result.

Next, we recall that the geodesic distance of a Riemannian metric is defined as the
infimum of all paths connecting two given points,

distMet(g0, g1) = inf

∫ 1

0

√
Gg(∂tg, ∂tg)dt, (12)

where the infimum is taken over all paths g : [0, 1]→ Met(M) with g(0) = g0 and g(1) = g1.
As a direct consequence of Theorem 1 we thus obtain an explicit formula for this distance
function:

Corollary 2 (Geodesic distance) Let g0, g1 ∈ Met(M) and let k, k0, a, b and κ be as
in Theorem 1. Let θ(x) = min {π, κ(x)} . Then the squared geodesic distance of the Ebin
metric is given by:

distMet(g0, g1)2 =
16

n

∫
M

(
a(x)2 − 2a(x)b(x) cos (θ(x)) + b(x)2

)
dx. (13)

Proof Using Theorem 1, we obtain the formula of the minimal geodesic that connects
g0 and g1. By calculating the time derivative ∂tg(t), the final statement follows from the
definition of the geodesic distance (12) by a direct computation.

Having equipped the space of Riemannian metrics with the distance function (13), we
can consider the Fréchet mean, ĝ, of a collection of metrics, g1, . . . gN , which is defined as a
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minimizer of the sum of squared distances:

ĝ = argmin
g

N∑
i=1

dist2
Met(g, gi). (14)

One could directly minimize this functional using a gradient-based optimization procedure.
As our distance function is the geodesic distance function of a Riemannian metric and since
we have access to an explicit formula for the minimizing geodesics, we will instead use the
iterative geodesic marching algorithm, see e.g. Ho et al. (2013), to approximate the Fréchet
mean: Given N Riemannian metrics gi, we approximate the Fréchet mean via ĝ = ĝN ,
where ĝi is recursively defined as ĝ0 = g0, ĝi(x) = g(1/(i + 1), x) and where g(t, x) is the
minimal path, as given in Theorem 1, connecting ĝi−1 to the i-th data point gi. Thus one
only has to calculate N geodesics in total in the space of Riemannian metrics, whereas a
gradient-based algorithm would require one to calculate N geodesic distances in each step
of the gradient descent.

3.1 The induced distance function on the diffeomorphism group

We can use the geodesic distance function of the Ebin metric to induce a right-invariant dis-
tance function on the group of diffeomorphisms. As we will be using this distance function
as a regularization term in our matching functional, we will briefly describe this construction
here. We fix a Riemannian metric g ∈ Met(M) and define the “distance” of a diffeomor-
phism ϕ to the identity via

dist2
Diff(id, ϕ) = dist2

Met(g, ϕ
∗g) = dist2

Met(g, ϕ∗g), (15)

where the last equality is due to the invariance of the Ebin metric. To be more precise,
this distance can be degenerate on the full diffeomorphism group since the isometries of
the Riemannian metric g form the kernel of distDiff . For our purposes we will consider
the Euclidean metric for the definition of distDiff . Thus the only elements in the kernel are
translations and rotations. The right invariance of distDiff follows directly from the Diff(M)-
invariance of the Ebin metric. We note, however, that distDiff is not directly associated with
a Riemanian structure on the diffeomorphism group: the orbits of the diffeomorphism group
in the space of metrics are not totally geodesic and thus distDiff is not the geodesic distance
of the pullback of the Ebin metric to the space of diffeomorphisms. See also Khesin et al.
(2013) where this construction has been studied in more detail.

4. Computational Anatomy of the Human Connectome

Fundamental to the precise characterization and comparison of the human connectome of an
individual subject or a population as a whole is the ability to map or register two different
human connectomes. The framework of Large Deformation Diffeomorphic Metric Mapping
(LDDMM) is well developed for registering points (Joshi and Miller, 2000), curves (Glaunès
et al., 2008) and surfaces (Vaillant and Glaunès, 2005) all modeled as sub-manifolds of
R3 as well as images modeled as an L2 function (Beg et al., 2005).This framework has
also been extended to densities (Bauer et al., 2015) modeled as volume forms. We now
extend the diffeomorphic mapping framework to the connectome modeled as Riemannian
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(
Diff(M)/Iso(g), GI

) (
Met(M), GE

)

(
Dens(M), GFR

)

II:ϕ→ϕ∗g

I:ϕ→ϕ∗µ0 III:ϕ→vol(g)

Figure 3: Relations between the information metric on the diffeomorphism group, the Ebin
metric on the space of Riemannian metrics and the Fisher-Rao metric on the space of
densities. The mappings I and III are Riemannian submersions and the mapping II is an
isometric embedding. Furthermore the diagram is commutative, i.e., I = II ◦ III. Note, that
the Ebin metric GE and the Fisher-Rao metric GFR are of order zero, while the information
metric GI is a first order Sobolev metric. This discrepancy in the orders of the metric is
explained by the fact that the mappings I and II contain a derivative.

metrics. The diffeomorphisms group acts naturally on the space of metrics, see Equation (4).
With this action and a reparameterization-invariant metric, the problem of registering two
connectomes fits naturally into the framework of computational anatomy.

Now the registration of two connectomes is achieved by minimizing the energy

E(ϕ) = dist2
Diff(id, ϕ) + λ1 dist2

Met(g0, ϕ∗g1) (16)

over all such diffeomorphisms in Diff(M). Here distDiff is a right invariant distance on
Diff and distMet is a reparameterization-invariant distance on the space of all Riemannian
metrics, e.g., the geodesic distance of the metrics studied above. The first term measures
the deformation cost and the second term is a similarity measure between the target and
the deformed source connectome. The invariance of the two distances is essential for the
minimization problem to be independent of the choice of coordinate system on the brain
manifold.

We use the distance function as introduced in Section 3.1 to measure the deformation
cost, i.e., distDiff(id, ϕ) = distMet(g, ϕ∗g) = distMet(g, ϕ

∗g) where g is the restriction of the
euclidean metric to the brain domain. This choice greatly increases computational efficiency
since we can now use the formulas from Section 3 as explicit formulas for both terms of
the energy functional. To minimize the energy functional, we use a gradient flow approach
described in Algorithm 1, where the gradient on Diff(M) is calculated with respect to a
right invariant Sobolev metric of order one, called the information metric, see Bauer et al.
(2015). We choose this specific gradient because of the relation of the information metric
to both the Ebin metric on the space of metrics and the Fisher-Rao metric on the space
of probability densities. We summarize the relations between these geometries in Figure 3;
for a precise description of the underlying geometric picture we refer to Khesin et al. (2013)
and Bauer et al. (2015).

Note, that our framework allows for the immediate inclusion of points, curves, surfaces
and images in the registration problem. Image intensity information, for example, can be
easily incorporated in the registration problem by simply adding an appropriate similarity
measure for the image term (e.g. the standard L2 metric between the deformed source image
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and the target image) to the energy functional. The minimization problem incorporating
image intensities naturally becomes:

E(ϕ) = dist2
Diff(id, ϕ) + λ1 dist2

Met(g0, ϕ∗g1) + λ2 dist2
L2(I0, ϕ∗I1) , (17)

where λ1, λ2 are the relative weights and ϕ∗I1 = I1 ◦ϕ−1 is the natural left action of Diff on
L2 images. In this convention I1 is called the moving image (g1 the moving metric, resp.).
It is important to note that the energy functional only depends on ϕ−1 and not on ϕ. To
see this we use the invariance of the geodesic distance on Diff and the definition of the
pushforward to rewrite (17) as

E(ϕ) = dist2
Diff(id, ϕ−1) + λ1 dist2

Met

(
g0, g1(Tϕ−1·, Tϕ−1)

)
+ λ2 dist2

L2(I0, I1 ◦ ϕ−1). (18)

Consequently, we will use ϕ−1 rather than ϕ as our optimization variable, c.f. Algorithm 1
below.

Algorithm 1 Inexact Metric Matching Algorithm

Inputs:
Moving and fixed metrics g0, g1; Moving and fixed images I0, I1

Initialize:
learning rate ε; weight parameters λ1, λ2; max iteration times MaxIter

ϕ−1, E ← id, 0
for iteration = 0 : MaxIter do

ϕ∗g1 ← (dϕ−1)T (g1 ◦ ϕ−1)(dϕ−1) . Pushforward of g1 by ϕ
ϕ∗I1 ← I1 ◦ ϕ−1 . Pushforward of I1 by ϕ
E ← EbinEnergy(ϕ∗g1, g0, ϕ∗I1, I0, λ1, λ2) . Calculate energy by Equation (17)
v ← ∆−1(E. grad) . Transfer gradient w.r.t. information metric to L2

ψ ← id−εv . Construct the approximation
ϕ−1 ← ψ ◦ ϕ−1 . Update the diffeomorphism

end for
return ϕ−1

4.1 Estimating the Atlas for a Population of Connectomes.

Given a collection of connectomes modeled as points on an abstract Riemannian manifold,
we can directly apply least-squared estimation to define the average connectome. Thus the
template estimation problem can be formulated as a joint minimization problem:

ĝ = argmin
g,ϕi

N∑
i=1

dist2
Diff(id, ϕi) + λ1 dist2

Met(g, (ϕi)∗gi) (19)

We use the iterative alternating algorithm proposed in Joshi et al. (2004) for solving the
above optimization problem: we alternate gradient steps between optimizing with respect to
each diffeomorphism, ϕi, i = 1, · · · , N , and minimizing with respect to the metric average ĝ.
In the metric optimization step we use the Fréchet mean algorithm described in Section 3.
The above procedure for estimating a connectome atlas can again be trivially extended
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to jointly estimate an image atlas consistent with the connectome atlas. To estimate the
atlases jointly we use the following extended joint minimization problem:

ĝ, Î = argmin
g,I,ϕi

N∑
i=1

dist2
Diff(id, ϕi) + λ1 dist2

Met(g, (ϕi)∗gi) + λ2 dist2
L2(I, (ϕi)∗Ii) . (20)

For the extended image-connectome atlas alternating algorithm at each iteration of the
algorithm the atlas image is updated by the simple average of the deformed individual
subject images. This is a consequence of using the simple L2 metric for the images. See
Algorithm 2 for details of this process.

Algorithm 2 Atlas Building Algorithm

Inputs:
sample metric fields list G, sample images list I

Initialize:
max iteration times MaxIter

for iteration = 0 : MaxIter do
gmean ← FrechetMean(G) . Section 3
Imean ← EuclideanMean(I)
for i = 0 : len(G) do

ϕ−1 ← MetricMatching(gmean, G[i], Imean, I[i]) . Algorithm 1
G[i]← ϕ∗G[i] . Update G[i] by pushforward of ϕ
I[i]← ϕ∗I[i] . Update I[i] by pushforward of ϕ

end for
end for
return gmean

4.2 Implementation Details

Metric Estimation: As done in Hao et al. (2014), we apply a mask to both the con-
nectome metric estimation process and the atlas building algorithm for two reasons. First,
it is important that we constrain the problem to biologically realistic white matter tracts
by not allowing tractography to flow through regions of CSF. Second, we avoid numeric
issues associated with processing air and other noisy regions outside the skull. This also
speeds up computation, as we only need to look at voxels inside the masked region instead
of the entire image volume. Care must be taken with both first and second derivatives to
use an appropriate and accurate finite difference stencil near the boundaries of the mask
to ensure only points inside the mask are used. When matching the geodesics to a vector
field consisting of the principal eigenvector directions, it is important to ensure that the
eigenvector signs are consistent prior to computing derivatives of the vector field.

Atlas Building: For the atlas building algorithm, we deform each individual mask into
atlas space at each outer iteration, and then apply the union of these deformed masks when
computing the current atlas estimate. For each iteration of the atlas building algorithm,
we perform only 2 iterations inside the metric matching function to avoid overfitting the
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individual metrics to early estimates of the Fréchet mean. In practice, we find the algorithm
behaves well when we update ε in Algorithm 1 such that 1/ε is approximately equal to the
energy from (17).

For computational efficiency, all our algorithms are implemented in PyTorch, which
allows us to take advantage of the built-in GPU acceleration and automatic differentiation.
The computationally most expensive part in the geodesic distance of the Ebin metric is
the calculation of the matrix logarithm, i.e., the calculation of k = log(g−1

0 g1). Currently
the matrix logarithm function is not implemented in PyTorch, and other alternatives such
as the function provided by Scipy do not support automatic differentiation. Therefore we
calculate the Cholesky factorization of g0 = GGT . We aim to use this factorization to reduce
the eigendecomposition of the non-symmetric matrix g−1

0 g1 to the eigendecomposition of
the symmetric matrix W = G−1g1(GT )−1: writing W = QΛQT for the eigendecomposition
of W , we directly obtain the eigendecomposition of g−1

0 g1 = V ΛV −1, where V = (GT )−1Q.
This in turn allows us to calculate k = log(g−1

0 g1) = V log(Λ)V −1.

Consequently, the bottleneck of our atlas building algorithm is the large amount of
eigendecomposition problems that have to be computed – in each iteration step we have to
solve N × Res eigendecompositions of n × n matrices, where Res is the resolution of the
image and n is the dimension of the domain.

It turns out that the GPU implementation of torch.linalg.eig is not well-designed
for solving eigendecomposition of numerous small matrices. The extremely low speed made
our algorithms unusable for any experiments in 3D. To speed up these calculations, we re-
implement the eigendecomposition based on the work of Lenssen et al. (2019), which leads
to an order of magnitude increase of performance.

Powered by the torch.autograd module, we can now easily solve the gradient of the
Ebin energy in Algorithm 1 without a closed-form gradient solution. Our 3D atlas build-
ing code, including both metric-only matching and joint matching, will become publically
available at https://github.com/aarentai/Atlas-Building-3D upon publication.

Geodesic Tractography: Several computational strategies have been proposed to com-
pute white matter tractography as geodesic curves. O’Donnell et al. (2002) develop a level
set approach to solve the Eikonal-type equation of the geodesic distance transform from
a seed point. Fletcher et al. (2007) extend this approach to simultaneously solve for the
entire set of minimal geodesics between two brain regions by solving two Hamilton-Jacobi
PDEs. These Hamilton-Jacobi PDEs can be solved quickly on GPUs using the method of
Jeong et al. (2007). While these strategies are better choices for a production pipeline, for
this paper we chose to directly integrate the geodesic equation from seed points using the
principal eigenvector at each seed as the initial direction for shooting.

Given a Riemannian metric g, we compute the corresponding Christoffel symbol Γ via

Γkij =
1

2

n∑
l

gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
, (21)

where gij denotes the components of the inverse metric tensor. Together with the position
γ and velocity γ̇, the Christoffel symbols enable us to find the acceleration γ̈ at time t by
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solving the geodesic equation γ̈(k) + Γkij γ̇
(i)γ̇(j) = 0, which gives

γ̈(k)(t) = −
[
γ̇(1)(t) γ̇(2)(t) γ̇(3)(t)

] Γk11(γ(t)) Γk12(γ(t)) Γk13(γ(t))
Γk21(γ(t)) Γk22(γ(t)) Γk23(γ(t))
Γk31(γ(t)) Γk32(γ(t)) Γk33(γ(t))

 γ̇(1)(t)

γ̇(2)(t)

γ̇(3)(t)

 (22)

where γ̈(k), γ̇(k) are the components of the acceleration vector γ̈ and velocity vector γ̇.

After the initial conditions for the position and velocity are given and γ̈(k)(0) is com-
puted, we update the acceleration at subsequent time steps using a fourth-order Runge-
Kutta scheme (Press et al., 1986). See also the function algo.geodesic.geodesicpath()

in our open access repository.

5. Results

We first demonstrate our framework in 2D using synthetic data and 2D data extracted from
brain images. Next, we construct a 3D connectome atlas from DWMRI for a subset of sub-
jects from the Human Connectome Project. We show that we can use the complementary
information from T1-weighted MRI for those same subjects to build an integrated multi-
modal atlas. Finally, we demonstrate that the multimodal atlas preserves both local and
long-range connectivity information by computing both whole-brain and seed region-based
geodesic tractography of the atlas.

2D Simulated Data: We verified our method by generating vector fields whose central
integral curves are a family of parameterized cubic functions. We used the method of
parallel curves to add vectors for additional integral curves parallel to the central curve
with a distance k ∈ [−0.2, 0.2] from the central curve. We then constructed tensors whose
principal eigenvectors align with the generated vector fields and that have a specified major
axis to minor axis ratio of 6:1.

We first estimated the adaptive metric conformal to the inverse-tensor metric such that
the geodesics of the adaptive metrics align with the integral curves of the simulated vector
fields. After finding the connectome metric for each subject, we ran 400 iterations of the
atlas building Algorithm 2 using only the metric distance as shown in (19) to estimate the
atlas in Figure 4. To help the diffeomorphisms update smoothly, we set λ1 = 100 in (16)
and the learning rate ε = 5 in Algorithm 1.

We compared a geodesic of the atlas starting from a particular seed point with geodesics
of the 4 connectome metrics starting from the atlas seed point mapped into individual
space. Figure 4 shows these individual geodesics in atlas space before and after applying
the diffeomorphisms. We see that the atlas geodesic is nicely centered in the middle of the
undeformed individual geodesics as expected. Also, the deformed individual geodesics align
well with the atlas geodesic.

2D Real Data: We used a subset of subjects from the Human Connectome Project Young
Adult (HCP) dataset Glasser et al. (2013). For each subject, we fit a diffusion tensor model
to the images with a b-value of 1000 using dtifit from FSL Basser et al. (1994) and
generated a white-matter mask based on fractional anisotropy values thresholded between
0.25 and 1. To process in 2D, we extracted a single axial slice from each image along with
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Metric 1 Metric 2

Metric 3 Metric 4

Geodesics

Atlas

Figure 4: Left and center: geodesics of 4 synthetic metrics starting from the atlas seed point
(X) mapped into each metric’s space. Upper right: estimated atlas with geodesic (orange)
starting from the seed point (X) overlaid on non-deformed geodesics from each of the 4
metrics. Lower right: estimated atlas with geodesic (orange) overlaid on geodesics from the
4 metrics deformed into atlas space.

the x and y components of the associated tensors. We estimated the adaptive connectome
metric from the inverse-tensor metric associated with the 2D diffusion tensors.

To generate the atlas shown in Figure 5, we ran atlas building with only the metric
distance terms from (19) for 5000 iterations with λ1 = 100, ε = 1, which took 50 minutes
on an Intel Xeon Silver 4108 CPU. The regularization term, λ1, balances the magnitudes
of the diffeomorphisms from each subject’s connectome metric to the atlas. To ensure that
the final geodesics in the atlas also follow the major eigenvectors of the atlas tensors, we
solve for the α conformal factor for the atlas as described in Section 2.

3D Metric Atlas: We used 6 subjects from the Human Connectome Project Young
Adult (HCP) dataset Glasser et al. (2013) in this experiment as shown in Figure 6. For
each subject, we fit a diffusion tensor model to the images using b-values of 1000, 2000 and
3000 using dtifit from FSL Basser et al. (1994) and generated a white-matter mask by
keeping voxels with fractional anisotropy between 0.25 and 1. We rigidly registered the T1
images for each subject using brainsfit from Johnson et al. (2007), and applied that rigid
registration to the subject’s white matter mask and diffusion tensors, being sure to reorient
the individual tensors. We estimated α for the adaptive connectome metric from the inverse-
tensor metric associated with the diffusion tensors after smoothing them with a Gaussian
filter, σ = 1.5 and cleaning any tensors that were not positive semi-definite. The estimated
α was clipped to the range [−2, 2] before applying it the inverse-tensor metric associated
with the unsmoothed diffusion tensors to create the adaptive connectome metric. In the
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103818 103818 111312 Atlas

111312

Figure 5: Left: diffeomorphism from HCP subjects (103818, 111312) to the atlas. Center:
each subject’s connectome metric and a geodesic (blue, red) starting from the atlas seed
(X) mapped to subject space. Right: atlas and a geodesic (orange) starting at the seed (X).
Subject geodesics are mapped to atlas space (blue, red). Bottom: detailed view of corpus
callosum.

atlas building process, we used the metric distance terms from (19) and set the learning
rate ε in Algorithm 1 to 5e − 3, while λ1 to the magnitude of 1e0. For 800 iterations, the
algorithm took about 12 hours on an Nvidia Titan RTX GPU, which features 24GB VRAM.

To generate the T1 atlas for this experiment, we computed the mean of each subject’s
T1 image after deforming it by the diffeomorphism found from the metric atlas construction.
As shown in Figure 7, the white matter atlas looks reasonable, but the T1 atlas is blurry
especially in gray matter regions. This is because the atlas construction process is not using
any gray matter information to guide the diffeomorphisms in these regions.

3D Joint Atlas: We used the same 6 subjects to construct a joint T1 and metric atlas by
adding in the image matching term as shown in (20). We set the weight of the image term, λ2

in (17), to 1e−8, which balances the image term loss to approximately the same magnitude
as the metric term loss. All other parameters were kept the same as in the metric-only atlas
building process. The resulting metric and T1 atlases are shown in Figure 7. Note how
much more well-defined the gray matter regions are when the T1 information is included
in the optimization process. At the same time, the metric atlas is not degraded by adding
this term in, and may even be slightly better than before.

The whole-brain tractography shown in Figure 8 was performed by seeding 8 geodesics
per voxel in the white matter mask, stopping when each geodesic left the averaged white
matter mask. Individual tracts were created by drawing seed regions in the atlas space and
transforming the regions back to subject space. 27 seeds were generated for each voxel in
the seed region, and geodesics terminated when fractional anisotropy dropped below 0.2 for
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Figure 6: Axial, coronal, and sagittal views of the 6 HCP subjects’ T1 images and their
metrics colored by the direction of the principal eigenvector of the inverse of the metric.
Red is oriented from left to right, green from anterior to posterior and blue from inferior to
superior directions.

the subject tractography, or when the geodesic left the averaged white matter mask for the
atlas tractography. Other than the seed region and FA thresholding, we did not apply any
stopping or rejection criteria based on angle, tract length, anatomical priors or any of the
other techniques used to clean up false positives. We performed tractography visualization
using 3D Slicer (www.slicer.org) via the SlicerDMRI project (http://dmri.slicer.org) (Nor-
ton et al., 2017; Zhang et al., 2020). Note that the whole-brain tractography can also be
registered to the O’Donnell atlas using the WhiteMatterAnalysis toolkit (O’Donnell and
Westin, 2007; O’Donnell et al., 2012; Zhang et al., 2018) in order to do clustering based on
that atlas if desired. Example tracts for the genu of the corpus callosum, corticospinal tract,
and cingulum computed by integrating geodesics of the joint atlas are shown in Figure 9.
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Figure 7: Axial, coronal and sagittal views of the T1 and metric atlas. Left columns: the
atlas produced using only the metric matching term. Right columns: the atlas produced
using metric and image matching terms jointly.

6. Conclusions

In this paper, we introduce a novel framework for statistically analyzing structural connec-
tomes by representing them as a point on the manifold of Riemannian metrics, enabling us
to perform geometric statistics. Using this representation, we build a framework for connec-
tome atlas construction based on the action of the diffeomorphism group and the natural
Ebin metric on the space of all Riemannian metrics. Because this framework is compatible
with existing image atlas construction frameworks, we are then able to construct an inte-
grated multimodal atlas using complementary white matter and cortical information from
DWMRI and T1-weighted MRI simultaneously.

In future work we plan to investigate in more detail the convergence properties of the
proposed algorithms and quantitatively compare our approach to other existing methods.
We expect this new methodology to open up opportunities for a deeper understanding of
structural connectomes, their variabilities and their relationships to cortical structure.
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Vikash Gupta, Grégoire Malandain, Nicholas Ayache, and Xavier Pennec. A framework for
creating population specific multimodal brain atlas using clinical t1 and diffusion tensor
images. In Computational Diffusion MRI, pages 99–108. Springer, 2016.

21



K. M. Campbell et al.

Xiang Hao, Kristen Zygmunt, Ross T Whitaker, and P Thomas Fletcher. Improved segmen-
tation of white matter tracts with adaptive Riemannian metrics. Medical Image Analysis,
18(1):161–175, 2014.

Jeffrey Ho, Guang Cheng, Hesamoddin Salehian, and Baba Vemuri. Recursive karcher
expectation estimators and geometric law of large numbers. In Artificial Intelligence and
Statistics, pages 325–332, 2013.

Saad Jbabdi, Mark W Woolrich, Jesper LR Andersson, and TEJ Behrens. A bayesian
framework for global tractography. Neuroimage, 37(1):116–129, 2007.

Won-Ki Jeong, P Thomas Fletcher, Ran Tao, and Ross Whitaker. Interactive visualization
of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton-
Jacobi solver. IEEE transactions on visualization and computer graphics, 13(6):1480–
1487, 2007.

Ben Jeurissen, Maxime Descoteaux, Susumu Mori, and Alexander Leemans. Diffusion mri
fiber tractography of the brain. NMR in Biomedicine, 32(4):e3785, 2019.

Hans Johnson, Greg Harris, Kent Williams, et al. Brainsfit: mutual information rigid
registrations of whole-brain 3d images, using the insight toolkit. Insight J, 57(1):1–10,
2007.

Sarang Joshi, Brad Davis, Matthieu Jomier, and Guido Gerig. Unbiased diffeomorphic atlas
construction for computational anatomy. NeuroImage, 23:S151–S160, 2004.

Sarang C Joshi and Michael I Miller. Landmark matching via large deformation diffeomor-
phisms. IEEE Transactions on Image Processing, 9(8):1357–1370, 2000.

B. Khesin, J. Lenells, G. Misio lek, and S. C. Preston. Geometry of diffeomorphism groups,
complete integrability and geometric statistics. Geom. Funct. Anal., 23(1):334–366, 2013.
ISSN 1016-443X.

Christophe Lenglet, Rachid Deriche, and Olivier Faugeras. Inferring white matter geometry
from diffusion tensor MRI: Application to connectivity mapping. In European Conference
on Computer Vision, pages 127–140. Springer, 2004.

Jan Eric Lenssen, Christian Osendorfer, and Jonathan Masci. Deep iterative surface normal
estimation, 2019.

Susumu Mori, Kenichi Oishi, Hangyi Jiang, Li Jiang, Xin Li, Kazi Akhter, Kegang Hua,
Andreia V. Faria, Asif Mahmood, Roger Woods, Arthur Toga, Bruce Pike, Pedro Rosa
Neto, Alan Evans, Jiangyang Zhang, Hao Huang, Michael I. Miller, Peter van Zij, and
John Mazziotta. Stereotaxic white matter atlas based on diffusion tensor imaging in an
ICBM template. Neuroimage, 40(2):570–582, 2008.

Xinyu Nie and Yonggang Shi. Topographic filtering of tractograms as vector field flows. In
International Conference on Medical Image Computing and Computer-Assisted Interven-
tion, pages 564–572. Springer, 2019.

22



Integrated Construction of Multimodal Atlases

Isaiah Norton, Walid Ibn Essayed, Fan Zhang, Sonia Pujol, Alex Yarmarkovich, Alexandra J
Golby, Gordon Kindlmann, Demian Wassermann, Raul San Jose Estepar, Yogesh Rathi,
et al. Slicerdmri: open source diffusion mri software for brain cancer research. Cancer
research, 77(21):e101–e103, 2017.

Lauren O’Donnell, Steven Haker, and Carl-Fredrik Westin. New approaches to estimation
of white matter connectivity in diffusion tensor MRI: Elliptic PDEs and geodesics in
a tensor-warped space. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 459–466, 2002.

Lauren J O’Donnell and Carl-Fredrik Westin. Automatic tractography segmentation using
a high-dimensional white matter atlas. IEEE transactions on medical imaging, 26(11):
1562–1575, 2007.

Lauren J O’Donnell, William M Wells, Alexandra J Golby, and Carl-Fredrik Westin. Unbi-
ased groupwise registration of white matter tractography. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 123–130. Springer,
2012.

William H Press, William T Vetterling, Saul A Teukolsky, and Brian P Flannery. Numerical
recipes, volume 818. Cambridge university press Cambridge, 1986.

Rick Sengers, Luc Florack, and Andrea Fuster. Geodesic tubes for uncertainty quantification
in diffusion MR. In Information Processing in Medical Imaging (IPMI), pages 279–290.
Springer, 2021.

Arthur W Toga, Paul M Thompson, Susumu Mori, Katrin Amunts, and Karl Zilles. Towards
multimodal atlases of the human brain. Nature Reviews Neuroscience, 7(12):952–966,
2006.

Alena Uus, Maximilian Pietsch, Irina Grigorescu, Daan Christiaens, Jacques-Donald
Tournier, Lucilio Cordero Grande, Jana Hutter, David Edwards, Joseph Hajnal, and
Maria Deprez. Multi-channel registration for diffusion mri: Longitudinal analysis for
the neonatal brain. In International Workshop on Biomedical Image Registration, pages
111–121. Springer, 2020.

Marc Vaillant and Joan Glaunès. Surface matching via currents. In International Conference
on Information Processing in Medical Imaging, pages 381–392. Springer, 2005.

Fang-Cheng Yeh, Sandip Panesar, David Fernandes, Antonio Meola, Masanori Yoshino,
Juan C Fernandez-Miranda, Jean M Vettel, and Timothy Verstynen. Population-averaged
atlas of the macroscale human structural connectome and its network topology. NeuroIm-
age, 178:57–68, 2018.

Fan Zhang, Ye Wu, Isaiah Norton, Laura Rigolo, Yogesh Rathi, Nikos Makris, and Lauren J
O’Donnell. An anatomically curated fiber clustering white matter atlas for consistent
white matter tract parcellation across the lifespan. NeuroImage, 179:429–447, 2018.

23



K. M. Campbell et al.

Fan Zhang, Thomas Noh, Parikshit Juvekar, Sarah F Frisken, Laura Rigolo, Isaiah Nor-
ton, Tina Kapur, Sonia Pujol, William Wells III, Alex Yarmarkovich, et al. Slicerdmri:
Diffusion mri and tractography research software for brain cancer surgery planning and
visualization. JCO clinical cancer informatics, 4:299–309, 2020.

24


	1 Introduction
	2 Structural Connectomes as Riemannian Metrics
	3 The Geometry of the Manifold of all Riemannian Metrics
	3.1 The induced distance function on the diffeomorphism group

	4 Computational Anatomy of the Human Connectome
	4.1 Estimating the Atlas for a Population of Connectomes.
	4.2 Implementation Details

	5 Results
	6 Conclusions

