
Adversarially Robust Classification by Conditional
Generative Model Inversion

Mitra Alirezaei
Department of Electrical and

Computer Engineering
University of Utah

Salt Lake City, UT, USA
Email: mitra@sci.utah.edu

Tolga Tasdizen
Department of Electrical and

Computer Engineering
University of Utah

Salt Lake City, UT, USA
Email: tolga@sci.utah.edu

Abstract—Most adversarial attack defense methods rely on
obfuscating gradients. These methods are successful in defending
against gradient-based attacks; however, they are easily circum-
vented by attacks which either do not use the gradient or by
attacks which approximate and use the corrected gradient. De-
fenses that do not obfuscate gradients such as adversarial training
exist, but these approaches generally make assumptions about the
attack such as its magnitude. We propose a classification model
that does not obfuscate gradients and is robust by construction
without assuming prior knowledge about the attack. Our method
casts classification as an optimization problem where we ”invert”
a conditional generator trained on unperturbed, natural images
to find the class that generates the closest sample to the query
image. We hypothesize that a potential source of brittleness
against adversarial attacks is the high-to-low-dimensional nature
of feed-forward classifiers which allows an adversary to find
small perturbations in the input space that lead to large changes
in the output space. On the other hand, a generative model is
typically a low-to-high-dimensional mapping. Since the range of
images that can be generated by the model for a given class is
limited to its learned manifold, the ”inversion” process cannot
generate images that are arbitrarily close to adversarial examples
leading to a robust model by construction. While the method
is related to Defense-GAN, which cleans adversarial examples
by projecting to the data manifold prior to passing them to a
classifier, the use of a conditional generative model and inversion
in our model instead of the feed-forward classifier is a critical
difference. Unlike Defense-GAN, which was shown to generate
obfuscated gradients that are easily circumvented, we show that
our method does not obfuscate gradients. We demonstrate that
our model is extremely robust against black-box attacks and
has improved robustness against white-box attacks compared to
naturally trained, feed-forward classifiers.

I. INTRODUCTION

In the last decade, deep learning has achieved unprecedented
success in many fields. For instance, convolutional neural
networks (CNN) have revolutionized the field of computer
vision [1]–[7]. However, they are vulnerable against adversar-
ial attacks [8], [9]. Adversarial attacks are carefully crafted
perturbations, which when added to a natural sample, fool
the classifier, and at the same time, they do not affect human
recognition. Adversarial examples pose a security concern in
applications such as autonomous driving and healthcare and
are a critical road block to wider adoption of these methods
in many fields that could greatly benefit from their use.

Researchers have developed various methods to defend
against adversarial attacks; however, a large subset of these
methods rely on, intentionally or unintentionally, obfuscating
gradients of the model. The notion of obfuscated gradi-
ents was introduced in [10] as a special case of gradient
masking [11]. Obfuscated gradients occur when the defense
method breaks the gradients or introduces nonexistent gra-
dients. Consequently, iterative optimization attacks that rely
on gradients are not successful. For instance, applying input
transformations to the input [12] and input prepossessing to
remove adversarial perturbations from input samples [13],
[14] increase the robustness. However, these methods were
shown to defend against adversarial attacks by obfuscating
gradients [10]. Methods based on obfuscating gradients do not
eliminate adversarial examples but rather confound them [10],
[15]. Athalye et al. [10] introduced techniques to circumvent
defense techniques that rely on obfuscated gradients. Back-
ward pass differentiable approximation (BPDA) is one of these
attack techniques that was introduced to overcome gradient
shattering. BPDA approximates the gradient by performing
the forward pass and approximating the backward pass using
a differentiable approximation of the function. BPDA was
shown to break down defense mechanisms with obfuscated
gradients. Other methods which obfuscate gradients and were
circumvented by Athalye et al. [10] include Defense-GAN,
PixelDefend, the [12] method, local intrinsic dimensionality
(LID) [16], stochastic activation pruning (SAP) [17], mitigat-
ing through randomization [18], and thermometer encoding
[19] .

Defenses that do not obfuscate gradients such as adversarial
training exist, but these approaches generally make assump-
tions about the attack such as its magnitude. In adversarial
training, the training data is augmented with adversarial exam-
ples [8], [9]. Adversarial training is one of the most promising
defenses; however, it is not effective against stronger attacks
or non-gradient-based attacks.

We introduce a new approach to classify images without
obfuscating gradients or assumptions about attack type or
strength. We invert a conditional generator to classify images.

First, a conditional generative adversarial network (cGAN)
[20] is trained to model the distribution of unperturbed images.

ar
X

iv
:2

20
1.

04
73

3v
1

 [
cs

.L
G

]
 1

2
Ja

n
20

22

The trained conditional generator is then used to generate im-
ages similar to the query image to be classified by inverting the
generator [21]. Inverting the generator is performed by finding
a latent vector such that if it passes through the generator, it
generates an image similar to the query image. Finally, the
predicted class is selected based on the similarity loss. We
hypothesize that the high-to-low-dimensional mapping in feed-
forward classifiers allows adversaries to find small perturba-
tions in the input space that lead to large changes in the output
space. On the other hand, a cGAN has a low-dimensional input
space. Since the range of images that can be generated by the
model for a given class is limited to its learned manifold, the
”inversion” process cannot generate images that are arbitrarily
close to adversarial examples leading to a robust model by
construction. While the method is related to Defense-GAN
[13], which cleans adversarial examples by projecting to the
data manifold prior to passing them to a classifier, the use
of the cGAN and inversion in our model instead of the feed-
forward classifier is a critical difference. We show that our
method does not obfuscate gradients and demonstrate that our
model is extremely robust against black-box attacks, and has
improved robustness against white-box attacks compared to
naturally trained, feed-forward classifiers.

II. RELATED WORK

Adversarial attacks were first noticed by Szegedy et al. [8].
They used the L-BFGS method to find a perturbed image sim-
ilar to the target image under L2 distance. Later, Goodfellow
et al. [9] introduced the fast gradient sign method (FGSM)
as a fast way to generate adversarial examples. This method
uses only one step of back-propagation. It adds the sign of
gradients to the inputs to change the image to fool the classifier
model. PGD (projected gradient descent) [22] and BIM (basic
iterative method) [23] were introduced as an extension of the
FGSM attack. Since they are the multistep variants of FGSM,
they are more powerful attacks. Moosavi-Dezfooli et al. [24]
introduced Deepfool for generating adversarial attacks. They
generated attacks by adding perturbations to the input to move
it beyond the decision boundary.

Carlini and Wagner [25] introduced a powerful type of at-
tack named C&W attack. They solved an optimization problem
to find the minimum change to make to an image to change
its predicted label. They showed their attack is successful
on defensive distillation [26]. Later, attacks were introduced
by Athalye et al. [10] that were designed to defeat defenses
that work by masking/obfuscating gradients. Backward pass
differentiable approximation (BPDA) is one of the methods
that works by approximating the gradients in the backward
pass. Papernot et al. [11] introduced a new way to generate
adversarial attacks where the attacker has no access to details
of the target model (black-box attacks). The attacker can only
feed in input and get the output predicted by the target model.
This method works based on the transferability of adversarial
attacks. The attacker trains its classifier, called the substitute
model, and creates attacks for the substitute model [15].
To protect DNNs against adversarial examples, researchers

have developed different defense techniques, including, adver-
sarial training [8], [9]. This defense strategy feeds adversarial
examples with their correct labels during the training process.
This process has been shown to increase the robustness of
the model. However, it will not be as effective if it is used
with incorrect knowledge of the attacker or a different attack
type. In other words, this defense mechanism requires previ-
ous knowledge about the attacks. Unlike adversarial training,
we propose a classification method that does not make any
assumption about the attack type or strength.

Defensive distillation [26] is another defense method that
is based on the distillation idea introduced by Hinton et al.
[27]. They used the extracted information during distillation to
reduce the amplitude of the gradients used to craft adversarial
examples. Networks trained with the distillation method are
less sensitive to adversarial examples. However, this method
was broken by C&W attack.

Guo et al. [12] introduced a defense technique by applying
different input transformations to the image to increase the
robustness against adversarial attacks. This method was not
effective against white-box attacks, and it was bypassed by
Athalye et al. [10]. They were successful in reducing the
accuracy to 0.

Defense methods such as Defense-GAN [13] and PixelDe-
fend [14] were developed by masking gradients. Defense-
GAN was introduced by Samangouei et al. [13] to purify
adversarial images before feeding them to the classifier. The
authors used a pre-trained generator on unperturbed images
to diminish the adversarial perturbation by projecting images
onto the range of the generative model. PixelDefend is similar
to Defense-GAN. Instead of a GAN model, it uses a PixelCNN
to project adversarial examples back to the data manifold
before feeding them to the classifier. These two methods
appear to be robust against adversarial examples, but they
are not robust against attacks that do not use gradients or
are successful in approximating the gradients. As an example,
BPDA was used to overcome both of these defense techniques.
Our method does not obfuscate gradients and is extremely
robust against non-gradient-based black-box attacks, and has
improved robustness against white-box attacks compared to
naturally trained, feed-forward classifiers.

Huang et al. [28] presented a reconstruction network called
AE-GAN+rs to improve the computational cost of Defense-
GAN. They trained an AE-GAN by optimizing adversarial
loss in addition to the reconstruction loss. Instead of randomly
initializing the latent space at inference time, they used the
encoder part of autoencoder for latent space initialization to
purify images. This method results in reducing the computa-
tional time of Defense-GAN. Even though the results of AE-
GAN are comparable with Defense-GAN, this method is also
based on gradient masking.

Rezaeifar et al. [29] introduced a classification method
based on reconstruction loss. For each class, they trained a
separate variational autoencoder (VAE) and used the binary
cross-entropy loss of the input and the reconstructed output
to classify (binary) images at inference time. They also per-

formed outlier detection by thresholding based on Kullback-
Leibler (KL) divergence. Due to training a separate VAE for
each class, this method does not scale well for large-scale
datasets. The critical difference of our approach lies in not
using reconstruction error but rather the distance between the
query and the generated image using optimization.

III. METHOD

A. Inverting a Conditional Generator

Fig. 1: Inverting a conditional generator G using the gradient
descent algorithm.

Algorithm 1 Inverting generator G

Require: Pretrained conditional generator G, target image X ,
input class c.
Initialize latent space z∗ ∼ P (z).
while Not converged do

1. L← |X −G(z∗, c)|2 − βlogP (z∗)
2. z∗ ← z∗ − α∇zL

end while
Return z∗

Our method involves inverting a conditional generator. We
start from a conditional generator trained on unperturbed
images, G(z, c), where z ∈ Z and c is the class label. For
a query image x to be classified, for each possible class c,
we aim to find a z that produces an image xcgen similar to
x where similarity is defined as L2 distance in pixel space.
Fig. 1 provides a general overview of the inversion process.
We follow a procedure similar to the one provided by Creswell
and Bharath [21] for inverting a generator. The difference is
that we invert a conditional generator rather than a generator.
The optimal z∗ can be found by

Lgen(x,G(z, c)) = |G(z, c)− x|2 (1)

z∗ = minzLgen(x,G(z, c)) (2)

Since equation (1) is differentiable, gradient descent-based
algorithms can be used to minimize it. Algorithm 1 provides
the details of the inversion process.

In addition to minimizing the generative loss in equation (1),
we also maximize the likelihood of z under a prior distribution
that was used to sample z during the training of the cGAN
[21]. For the d-dimensional latent vector z with i.i.d elements
drawn from a Gaussian distribution, the log-likelihood of z is
calculated as

logP (z) = logP (z1, ..., zd) = 1/d

i=d∑
i=1

logP (zi). (3)

Therefore, the total loss becomes

L(z) = Lgen(x,G(z, c))− βlogP (z), (4)

where β is a weighting parameter. Using the total loss in (4),
z is obtained by optimizing

z∗ = minzL(z). (5)

In this paper, the number of gradient descent iterations is
specified by T . Also, since z is initialized randomly, we
perform the inversion process for N different times to obtain
the best generated image.

B. Classification By Inversion

Fig. 2: Classifying an image x by inverting a conditional
generator G.

In this section, we explain how we utilize an inverted con-
ditional generator to classify an input image. Fig. 2 illustrates
the general process of our algorithm. We start by feeding the
generator a randomly initialized z and with a class label ci,
i ∈ {1, ..., C}, where C is the total number of classes. For
class, we perform the inversion using equation (5). For each
of generated xcigen, we compute the total loss in equation (4).
Finally, we select a class label corresponding to the lowest
loss value:

ypred = argminc∈C(|G(z, c)− x|2 − βlogP (z)) (6)

We provide the details of our classification method in
Algorithm 2. In Figures 3 and 4, we visualize examples of
generated images for classification for the MNIST and FM-
NIST datasets. Each row corresponds to an example followed
by generated images by changing the class in the inversion
process. As shown, the original images have the most overlap
with generated images with correct class.

It is expected that a gradient-based adversary would use
gradient ascent on |G(z, c) − x|2 with respect to the query
image x for the correct class c and gradient descent on the
same for either all incorrect classes or a specific class for a
targeted attack. The gradient of |G(z, c)− x|2 with respect to
x is found as

∂|G(z, c)− x|2
∂x

= (G(z, c)− x)
(
∂G(z, c)

∂x
− 1

)
, (7)

which is directly proportional to (G(z, c) − x) and is not
obfuscated. This is due to the presence of x in the decision
function which leads to the a usable gradient even if ∂G/∂x
is unintentionally obfuscated. This is different from Defense-
GAN which passes the output of an unconditional generator
G(z) to a classifier, i.e. f(G(z)). Since a set of images x will
have the same closest point G(z) on the generator manifold,
it is expected that the gradient of G(z) with respect to x will

be very small almost everywhere. Consequently, the gradient
of f with respect to x is obfuscated due to multiplication with
the gradient of G(z) in the chain rule.

Algorithm 2 Classification by inversion

Require: Pretrained conditional generator G, target image X ,
number of classes C.
Initialize empty error set L← {}.
for each c in C do
errN ← {}
for n in N do
z∗ ← invert G given X and c
Xc

n ← G(z∗, c)
errN ← errN ∪ |X −Xc

n|2 − βlogP (z∗)
end for
errc ← min errN
L← L ∪ errc

end for
ypred ← argmin L
Return ypred

C. Architecture of cGAN

Conditional generative adversarial networks (cGAN) were
introduced by Mirza and Osindero [20] as an extended version
of generative adversarial networks (GAN) [30]. In a cGAN,
both generator G and discriminator D are conditioned on extra
information y (e.g., class labels). Training G and D is done
by optimizing the following min-max value function:

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x|y)]+
Ez∼pz(z)[log(1−D(G(z|y)))].

(8)

Due to the difficult training process of GANs, Arjovsky et
al. [31] introduced Wasserstien GAN (WGAN) with an stable
training process, where the following function is optimized:

minGmaxDV (D,G) = Ex∼pdata(x)[Dw(x|y)]−
Ez∼pz(z)[Dw(G(z|y))].

(9)

In this paper, we use a WGAN with gradient penalty (GP)
introduced in [32]. We provide the detailed architecture of the
cGAN in Appendix A.

IV. EXPERIMENTS

A. Setting and Datasets

In order to show the robustness of our method, we perform
experiments on MNIST [33] and FMNIST [34] datasets. These
datasets contain 60000 training images and 10000 testing
images. We compare our method to Defense-GAN against
white-box and black-box attacks. For black-box attacks we
consider FGSM [9] and PGD [22] attacks. For white-box
attacks, in addition to the FGSM and PGD attacks , we also
perform BPDA [10] attack on Defense-GAN and report the
results. We train the cGAN for our model using WGAN
training formulation [32]. For black box attacks, we divide
the testing dataset into a small holdout set of 160 images for

training the substitute model [11] and the remaining 9840
images for testing against different adversarial attacks. For
white-box attacks, we test on all 10000 images. In addition
to the main attack results, we also explore the performance of
our model by varying the number of initialization and number
of optimization iterations in ablation study section. For all the
experiments in this paper, we choose T = 200, N = 10 and
β = 0.5. All implementations1 are done in Pytorch [35] on
TITANX GPUs. For adversarial attacks implementation, we
use the Advertorch library [36] in Pytorch.

B. Results of Black-Box Attacks

In this section, we report the results of FGSM and PGD
black-box attacks. The black-box attacks are done as described
in [11]. The attacker first trains a substitute model on a small
labeled dataset (here 160 images) and continues the training
by querying labels from the target model. This process gives
the attacker the decision boundary of the target model. After
the substitute training is completed, white-box attacks are gen-
erated using the substitute model. Since the adversarial attacks
are transferable, they will be effective on the target model as
well. For FGSM attacks, the architectures of substitute models
B and E are the same as described in [13].

In Tables2 II and III, we present the classification accuracy
under black-box FGSM attack with ε = 0.3 on MNIST and
FMNIST datasets.

The accuracy of our method is better (up to 17.96%) than
Defense-GAN across different substitute models and different
datasets. Adversarial training performs well only with the
correct knowledge of ε, and its accuracy decreases with
incorrect ε. As shown in Tables II and III, We achieve
comparable results with adversarial training with ε = 0.3 on
the MNIST dataset. We also outperform adversarial training
by a large margin (up to 11.56%) for the FMNIST dataset.
Our method generally outperforms both Defense-GAN and
adversarial training on black-box attacks because it does not
require any previous knowledge on attacks.

TABLE I: Black-box PGD attack with ε = 0.3, 0.4 on MNIST

Substitute model No attack PGD, ε = 0.3 PGD, ε = 0.4

Sub. A 97.50 95.76 94.94

To show the robustness of our model against stronger black-
box attacks, we also report the accuracy of our model on PGD
attacks. The PGD attack is generated with ε = 0.3 and ε = 0.4
for 40 iterations with step size 0.01 on 1500 images of the
MNIST dataset.

As we see in Table I, our method performs well against PGD
attack. We noticed that the accuracy drops by only 0.82% as ε
increases to 0.4. These experiments confirm the robustness of
our method against black-box attacks by construction where
no previous knowledge on attack type nor strength is required.

1Our code will be released under MIT license
2Results of Defense-GAN and Adv. Tr. are taken from [13]

Fig. 3: Examples of generated images from FMNIST testing dataset. The first column shows the original images. The second
to the last column shows the overlap of original images with the generated images by reversing the conditional generator. As
shown, the target images have the most overlap with generated images with correct class. True labels from top to bottom:
ankle boot, trouser, sandal, dress.

Fig. 4: Examples of generated images from MNIST testing dataset. The first column shows the original images. The second
to the last column shows the overlap of original images with the generated images by reversing the conditional generator. The
target images have the most overlap with generated images with correct class.

TABLE II: Black-box FGSM attack with ε = 0.3 on MNIST

Substitute models No attack Our method Defense-GAN Adv. Tr., ε = 0.3 Adv. Tr., ε = 0.15

Sub. B 97.50 96.09 93.12 96.54 62.23
Sub. E 97.50 95.63 91.39 96.68 93.27

TABLE III: Black-box FGSM attack with ε = 0.3 on FMNIST

Substitute model No attack Our method Defense-GAN Adv. Tr., ε = 0.3 Adv. Tr., ε = 0.15

Sub. B 84.48 77.56 58.60 73.93 66.00
Sub. E 84.48 72.13 47.90 69.45 56.38

C. Results of White-Box Attacks

In this section, we show the accuracy results under white-
box FGSM and PGD attack with ε = 0.3. We maximize a
hinge loss function using gradient ascent for white-box attacks:

L(S, y) = 1

C

C∑
i,i 6=y

(max(0, 1− S(y) + S(i)), (10)

where C is number of classes, y is the true label, and S =
−L(z) obtained from equation (4).

For comparison, we also perform BPDA attack for the
Defense-GAN method. As Athalye et al. [10] showed, BPDA

can reduce the accuracy of Defense-GAN under adversarial
attacks by 45% on the MNIST dataset [10] and 59% on
the FMNIST dataset. These experiments show that although
Defense-GAN appears to be robust against white-box attacks,
BPDA attack can circumvent the defense and lower the
accuracy significantly. The BPDA attack is not applicable for
our method because the gradients of our method are already
unobfuscated as shown in Section III-B. The substitution of the
gradient of G with the identity function employed by BPDA in
(7) would result in an unusable 0 gradient. On the other hand,
replacing ∂G(z,c)

∂x −1 in (7) with the identity function makes no
change to the gradient when the gradient of G is obfuscated,

Fig. 5: Classification accuracy of our model on MNIST dataset with no attack. Left: accuracy vs. number of initialization N .
Right: accuracy vs. number of steps T . The accuracy represents mean% ± std. dev. over five times repetition with different
random set of z initializations.

i.e. when ∂G(z,c)
∂x ≈ 0. As shown in Tables3 IV and V, our

method significantly outperforms Defense-GAN under BPDA
attack. Adversarial training outperforms our method for both
FGSM and PGD attacks.

TABLE IV: White-box attacks with ε = 0.3 on MNIST.

Attack type No attack Our method Defense-GAN Adv. Tr.

FGSM 97.50 86.38 98.10 94.90
PGD 97.50 85.77 98.90 92.00
BPDA - - 55.00 -

TABLE V: White-box attacks with ε = 0.3 on FMNIST.

Attack type No attack Our method Defense-GAN Adv. Tr.

FGSM 84.48 41.80 81.40 73.90
PGD 84.48 36.92 85.20 71.70
BPDA - - 26.61 -

D. Ablation Study

1) Effect of LogP on Accuracy: In this section, we study
the effect of our loss function components in equation (4). To
this end, we perform classification with and without including
logP in the inversion and class selection process.

In Table VI, we report the classification accuracy for
MNIST and FMNIST datasets with no attack. We observe
that using LogP in equation (4) has the expected regulariza-
tion effect and improves the classification accuracy for both
MNIST and FMNIST datasets.

TABLE VI: Effect of LogP on classification accuracy

Accuracy With LogP Without LogP

MNIST 97.50 86.71
FMNIST 84.48 82.08

2) Effect of Number of Iterations and Initialization on
Accuracy: We investigate the effect of varying the number

3Results of Defense-GAN and Adv. Tr. are taken from [28]

of random initializations and the number of steps on the
classification accuracy of our model with no attack. As shown
in Fig. 5, increasing the number of random initialization
improves the classification accuracy. We also observe a similar
pattern for the accuracy versus the number of optimization
steps.

V. CONCLUSION

In this paper, we have presented a robust classification
method that does not obfuscate gradients and requires no
previous knowledge about the attack. We utilized a pretrained
cGAN on natural images and inverted the generator to find the
class that generates the closest image to the query image. Since
generative models are low-to-high-dimensional mappings, we
eliminated a potential source of vulnerability against adver-
sarial attacks, which is high-to-low-dimensional mapping of
natural feed-forward classifiers.

Our classification method is related to Defense-GAN, but
the difference between our method and Defense-GAN lies
in using a cGAN and inverting it instead of using a feed-
forward classifier. We showed that our method is highly
effective against black-box attacks and increases the robustness
against white-box attacks compared to naturally trained, feed-
forward classifiers. In future work, adversarial training can be
combined with our method to create a defense that is robust
to both gradient-based and non-gradient-based attacks.

The performance of our classification method relies on the
expressiveness power of the trained generator. Improving the
cGAN is expected to improve the classification accuracy. Since
the classification is performed by inverting the generator for
each possible class, one of the drawbacks of the proposed
method is computational expense as the number of classes
increases.

ACKNOWLEDGMENT

This work was sponsored by DARPA TRADES Award
HR0011-17-2-0016.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1409.1556

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available:
http://arxiv.org/abs/1409.4842

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems (NeurIPS), 2015.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in CVPR, 2016.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[10] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
in International Conference on Machine Learning. PMLR, 2018, pp.
274–283.

[11] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506–519.

[12] C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten, “Counter-
ing adversarial images using input transformations,” arXiv preprint
arXiv:1711.00117, 2017.

[13] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting
classifiers against adversarial attacks using generative models,” arXiv
preprint arXiv:1805.06605, 2018.

[14] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixelde-
fend: Leveraging generative models to understand and defend against
adversarial examples,” arXiv preprint arXiv:1710.10766, 2017.

[15] H. Xu, Y. Ma, H.-C. Liu, D. Deb, H. Liu, J.-L. Tang, and A. K. Jain,
“Adversarial attacks and defenses in images, graphs and text: A review,”
International Journal of Automation and Computing, vol. 17, no. 2, pp.
151–178, 2020.

[16] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G. Schoenebeck,
D. Song, M. E. Houle, and J. Bailey, “Characterizing adversar-
ial subspaces using local intrinsic dimensionality,” arXiv preprint
arXiv:1801.02613, 2018.

[17] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi,
A. Khanna, and A. Anandkumar, “Stochastic activation pruning for
robust adversarial defense,” arXiv preprint arXiv:1803.01442, 2018.

[18] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial
effects through randomization,” arXiv preprint arXiv:1711.01991, 2017.

[19] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer
encoding: One hot way to resist adversarial examples,” in International
Conference on Learning Representations, 2018.

[20] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[21] A. Creswell and A. A. Bharath, “Inverting the generator of a gener-
ative adversarial network,” IEEE transactions on neural networks and
learning systems, vol. 30, no. 7, pp. 1967–1974, 2018.

[22] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[23] A. Kurakin, I. Goodfellow, S. Bengio et al., “Adversarial examples in
the physical world,” 2016.

[24] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[25] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). IEEE,
2017, pp. 39–57.

[26] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE symposium on security and privacy (SP). IEEE, 2016,
pp. 582–597.

[27] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[28] W. Huang, S. Tu, and L. Xu, “Defense against adversarial examples by
encoder-assisted search in the latent coding space,” 2019.

[29] S. Rezaeifar, O. Taran, and S. Voloshynovskiy, “Classification by re-
generation: towards classification based on variational inference,” in
2018 26th European Signal Processing Conference (EUSIPCO). IEEE,
2018, pp. 2005–2009.

[30] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
arXiv preprint arXiv:1406.2661, 2014.

[31] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International conference on machine learning.
PMLR, 2017, pp. 214–223.

[32] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of wasserstein gans,” arXiv preprint
arXiv:1704.00028, 2017.

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[34] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv preprint
arXiv:1912.01703, 2019.

[36] G. W. Ding, L. Wang, and X. Jin, “AdverTorch v0.1: An adversarial
robustness toolbox based on pytorch,” arXiv preprint arXiv:1902.07623,
2019.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842

	I Introduction
	II Related Work
	III Method
	III-A Inverting a Conditional Generator
	III-B Classification By Inversion
	III-C Architecture of cGAN

	IV Experiments
	IV-A Setting and Datasets
	IV-B Results of Black-Box Attacks
	IV-C Results of White-Box Attacks
	IV-D Ablation Study
	IV-D1 Effect of LogP on Accuracy
	IV-D2 Effect of Number of Iterations and Initialization on Accuracy

	V Conclusion
	References

