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Abstract

Determining the composition of a mixed material is an open problem that has attracted the interest of researchers in many fields. In our
recent work, we proposed a novel approach to determine the composition of a mixed material using convolutional neural networks (CNNs).
In machine learning, a model “learns” a specific task for which it is designed through data. Hence, obtaining a dataset of mixed materials is
required to develop CNNs for the task of estimating the composition. However, the proposed method instead creates the synthetic data of
mixed materials generated from using only images of pure materials present in those mixtures. Thus, it eliminates the prohibitive cost and
tedious process of collecting images of mixed materials. The motivation for this study is to provide mathematical details of the proposed
approach in addition to extensive experiments and analyses. We examine the approach on two datasets to demonstrate the ease of extending
the proposed approach to any mixtures. We perform experiments to demonstrate that the proposed approach can accurately determine the
presence of the materials, and sufficiently estimate the precise composition of a mixed material. Moreover, we provide analyses to strengthen
the validation and benefits of the proposed approach.
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Introduction

In recent years, convolutional neural networks (CNNs) have
achieved astonishing performance in the tasks of object classifica-
tion, segmentation, and object detection (Girshick, 2015;
Ronneberger et al., 2015; Simonyan & Zisserman, 2015; He
et al., 2016; Chen et al., 2018). A CNN is a type of machine learn-
ing model that consists of a series of convolution layers [as well as
other layers in modern architectures, such as pooling layers and/
or batch normalization (BN) layers (Ioffe & Szegedy, 2015)]. A
convolution layer contains a set of learnable filters with a specified
kernel size. Each learnable filter iterates through an input and
computes an inner product between the filter and the region of
the input overlapping with it at each iteration.

A CNN “learns” to select a meaningful set of filters through
data that enables it to be used in diverse sets of problems.
Thus, we have witnessed a large volume of works in the field of
materials science utilizing CNNs to tackle various aspects of the
field. For example, Kaufmann et al. (2020) adopted a well-known
object classification CNN model, called Xception, to determine
the phase of diffraction patterns of crystalline materials captured

in electron backscatter diffraction (EBSD). Matson et al. (2019)
utilized CNNs to categorize structures of carbon nanotubes and
nanofibers. Similarly, Hanson et al. (2019) and Heffernan et al.
(2019) also used CNNs for the task of categorizing the character-
istics of materials. In addition to using CNNs for the task of clas-
sification, CNNs have also been deployed for other tasks such as
estimating optimal operational parameters (such as the focus set-
ting) during the image acquisition of scanning electron micros-
copy (SEM) images (Yang et al., 2020), segmenting structures
characterized in SEM images (Ly et al., 2019; Pazdernik et al.,
2020), denoising the drifted microscopic images (Vasudevan &
Jesse, 2019), and reconstructing sparse SEM images (Trampert
et al., 2019).

Moreover, CNNs have also performed impressively in the
image synthesis task thanks to the seminal work of Goodfellow
et al. (2014), who proposed a new approach, called generative
adversarial training. More specifically, they used two models com-
peting against each other, in which one model tries to generate
realistic samples whereas the other simultaneously seeks to distin-
guish the synthetic samples from the real samples. They were able
to generate perceptually realistic images using two CNNs via
adversarial training, which is referred to as generative adversarial
networks (GANs). Since then, many works have proposed to fur-
ther improve image quality, the complexity of the type of images
being generated, the diversity of generated images, etc. (Arjovsky
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et al., 2017; Isola et al., 2017; Odena et al., 2017; Karras et al.,
2018, 2019; Brock et al., 2019). Concurrently, another area of
image synthesis, called neural style transfer, has seen rapid
advancement (Gatys et al., 2016; Huang & Belongie, 2017; Li
et al., 2017). Neural style transfer is the process of representing
the semantic content of an image in different styles, for example,
an image is represented under various seasons or times of day.
Similarly, these image synthesis approaches have inspired many
works in material sciences. For instance, GANs were utilized to
synthesize microstructures of alloys (Singh et al., 2018; Iyer
et al., 2019). Meanwhile, motivated by the style transfer model,
Ma et al. (2020) proposed a model to transform the style of sim-
ulated labels from the Potts model to be similar to how they
would have appeared had they been captured by a microscope.

Determining the composition of a mixed material is of interest
in many fields (Sarkar et al., 2009; Samad et al., 2014; Rossen &
Scrivener, 2017; Heffernan et al., 2019). For instance, composite
metal oxides show tremendous benefits in absorption, separation,
and photosensitive operations over single metal oxides in catalytic
and electrocatalytic processes. When using mixed oxides, know-
ing the portion of each oxide in a mixture is essential in under-
standing the electro- and physico-chemical properties (Samad
et al., 2014). Meanwhile, in India, measuring the percentage of
uranium in a mixture of thorium–uranium mixed oxide is one
of the required steps in quality assurance of nuclear fuels
(Sarkar et al., 2009). On the other hand, determining the compo-
sition of calcium aluminum silicate hydrate (C–A–S–H) in a
cement paste is part of the study of phase assemblages (Rossen
& Scrivener, 2017). Various elemental analysis tools, such as pow-
der X-ray diffraction (pXRD), SEM coupled with energy-
dispersive spectroscopy (EDS), and laser-induced breakdown
spectroscopy (LIBS) have been employed in these studies.
Diverging from the elemental analysis methods and taking full
advantage of the powerful performance of CNN, we proposed a
novel approach to estimate the composition of mixed materials
characterized in the SEM images in our previous work (Ly
et al., 2021). Our proposed method deployed two CNN models.
The first CNN is tasked with generating SEM images of mixtures
from images of the pure materials appearing in the mixtures. The
synthesized images are then used to train a second CNN model
that is used to estimate the composition of a given input image.
The main advantage of this proposed approach is that it does
not require SEM images of the mixtures; thereby, it eliminates
the monetary cost and laborious process of preparing and imaging
samples of the mixtures (Ly et al., 2021). This advantage is further
amplified when more materials are involved in the mixtures.

In the present study, we derive the mathematical details of the
proposed approach in Ly et al. (2021), and present extensive
experiments and analyses for further validation. Specifically, we
validate the approach on two types of mixtures (binary and ter-
tiary): (a) mixtures of triuranium octoxide (U3O8) synthesized
from ammonium diuranate (ADU) and uranyl peroxide (UO4);
and (b) mixtures of U3O8 synthesized from ADU, uranyl hydrox-
ide (UH), and sodium diuranate (SDU). The image synthesis pro-
cess of these two sets of mixtures is the same, which emphasizes
the ease of extending the proposed image synthesis model to
many other mixtures. Furthermore, we implemented two variants
for the mixture estimation model that are tasked with (a) deter-
mining the presence of materials and (b) estimating the precise
composition of a given SEM image. From these experiments,
the proposed approach in Ly et al. (2021) can reliably determine
the materials present in a mixture characterized in an SEM image

(with the area under the ROC curve >0.9). Moreover, this
approach can also provide estimated compositions in agreement
with the actual compositions.

Materials and Methods

Mixtures of Uranium Oxides

Two sets of uranium oxides mixtures were used in this study: (a)
mixtures of U3O8 synthesized from ADU and UO4 and (b) mix-
tures of U3O8 synthesized from ADU, UH, and SDU. We abbre-
viate these sets of mixtures as ADU–UO4 and ADU–UH–SDU,
respectively, for the rest of the paper. For mixtures of ADU–
UO4, we utilized images from Heffernan et al. (2019). These
images were acquired at a resolution of 1,024 × 884 with a hori-
zontal field width (HFW) of 5.11 μm, which represents the scale
across the width of the image. The details of how the ADU–
UO4 mixtures were prepared and imaged can be found in
Sections 2.1 and 2.2 in Heffernan et al. (2019).

For ADU–UH–SDU mixtures, we utilized images from
Schwerdt et al. (2019) as well as prepared and imaged samples.
Specifically, we utilized images of pure materials (i.e., images of
100% ADU, 100% UH, and 100% SDU) from Schwerdt et al.
(2019). The images of 100% ADU were acquired at a resolution
of 1,024 × 884 with a HFW of 1.53 and 3.06 μm, whereas the
images of 100% UH and 100% SDU were acquired at the same
resolution but with a HFW of 3.06 and 6.13 μm, respectively.
The images of mixtures of ADU–UH–SDU were acquired by
first preparing the mixtures with U3O8 samples that were previ-
ously described individually by Schwerdt et al. (2019). The sam-
ples were stored under vacuum and at room temperature between
their initial synthesis and mixing. Three binary U3O8 mixtures
were prepared: ADU with UH, ADU with SDU, and UH with
SDU. A tertiary mixture was prepared of U3O8 from ADU, UH,
and SDU. Each mixture was prepared by aliquoting approximately
40 mg of each U3O8 component into a small PTFE vial containing
a Teflon-coated stir bar, followed by 15 min of agitation with a
Vortex mixer at the medium intensity setting as described by
Heffernan et al. (2019). Table 1 lists the measured mass and
weight% of each mixture.

Samples were prepared for analysis by SEM by dusting approx-
imately 5–10 mg of mixed sample powder onto conductive
double-sided carbon tape and aluminum pin stub mounts. An
FEI Nova NanoSEM 630 scanning electron microscope was
used to image the samples in immersion mode with the through-
lens detector (TLD). Acquisitions were made at an image resolu-
tion of 1,024 × 884 at a HFW of 6.13 μm. Moreover, all the images
were acquired with a high-voltage (HV) field setting of 7.00 kV
with the exception of the images of the ADU–SDU mixture,

Table 1. The Measured Mass (in mg) and Corresponding Percentage Weight of
Each Pure Material in the ADU–UH–SDU Mixtures.

Mixture
Mass (Weight%)

ADU UH SDU

ADU–UH 42.6 (50.4%) 42.0 (49.6%)

ADU–SDU 43.2 (51.0%) – 41.5 (49.0%)

UH–SDU – 42.2 (50.1%) 42.1 (49.9%)

ADU–UH–SDU 41.4 (33.6%) 41.1 (33.4%) 40.6 (33.0%)
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which were acquired at 5.00 kV. Each sample was imaged without
sputter coating, except for the ADU–SDU mixture, which showed
signs of charging during SEM analysis; this sample was sputter
coated with 20.0 ± 0.1 nm of Au/Pd film with a Gatan 682
Precision Etching and Coating System (PECS).

Image Synthesis Model

Synthesizing Mixed Samples
The proposed image synthesis model is based on the texture syn-
thesis work in Gatys et al. (2017). They proposed to control the
spatial location of a specific reference texture appearing in the
generated image by minimizing the difference between the
Gram matrices of the reference texture image and the generated
image only in that specific region. Multiple regions with multiple
reference textures can be easily synthesized at once by summing
up that difference. In the present work, there is no constraint
on where the reference textures should be located in the generated
image. Thus, we instead minimized the difference between the
Gram matrices of the generated images and the weighted sum
of the Gram matrices of the reference textures. Formally speaking,
to generate a new image, xG, from a given set of desired reference
texture images T = {xT1 , xT2 , . . . , xTn }, the following objective
function is optimized:

L =
∑
l[L

1
4C2

l

Gl(xG)−
∑Tn

k=T1

vkG
l(xk)

∥∥∥∥∥
∥∥∥∥∥
2

2

, (1)

where L is a set of extracted features from a pre-trained CNN
model (refer to Section A.1.1 for more detail), and G l(x) is the
Gram matrix at layer l representing the normalized correlation
of the vectorized feature maps, Fl(x) [ RCl×Nl(x) with Cl the
number of channels, and Nl(x) the product of the spatial dimen-
sion, Hl ×Wl:

Gl(x) = 1
Nl(x)

Fl(x)`Fl(x), (2)

ωk is a scalar that dictates the influence of texture k on the gener-
ated image. Hence, by controlling ωk, we can condition a certain
percentage of a texture k to appear on the synthesized image.

The proposed image synthesis model adopts equation (1) to
synthesize images of mixed material. To achieve this objective,
we first defined each pure material in a desired mixture as a tex-
ture. Each image in the set of reference texture images used as
input for each synthesis process is an image of the pure material
present in a desired mixture. By conditioning ωk, a new image of a
mixture can easily be synthesized with the desired percentage of
each pure material appearing in the mixture. In other words,
the percentage of a specific pure material occupying the synthe-
sized image corresponds to ωk. Furthermore, we added the total
variation (TV; Chambolle, 2004) objective function to increase
the smoothness of the generated images. The final objective func-
tion used in the present study is

L = a
∑
l[L

1
4C2

l

Gl(xG)−
∑Tn

k=T1

vkG
l(xk)

∥∥∥∥∥
∥∥∥∥∥
2

2

+gLTV, (3)

where α and γ are adjustable weights to control the influence of
each objective function on the overall function.

Pyramid Optimization
Here, we present the details of the proposed pyramid optimization
strategy that speeds up the process of generating an image of size
512 × 512 by more than 50% compared to that of the optimization
strategy used in Gatys et al. (2015, 2017); consequently, a large
amount of data can be generated in a much more efficient
manner.

The optimization strategy used in Gatys et al. (2015, 2017) ini-
tializes a generated image with white noise sampled from a uni-
form distribution � U(0, 1) and optimizes for a certain number
of iterations. To speed up the optimization process, we used the
motivation presented in the progressively growing GANs work
(Karras et al., 2018). In that work, Karras et al. (2018) discovered
that generating a large-scale structure at a smaller resolution first
and then focusing on the fine detail at a larger resolution reduces
training time. Taking advantage of that observation, we first ini-
tialized the generated image with white noise at a lower resolu-
tion. We then optimized the low-resolution generated image for
a certain number of iterations. Next, we upsampled the generated
image to twice its current size and optimized it further. This pro-
cess is repeated until the final resolution of the desired generated
image is reached. Hence, we refer to this optimization strategy as
pyramid optimization. Furthermore, different to Karras et al.
(2018), the proposed pyramid optimization does not add more
layers as the spatial resolution increases.

Another advantage of using the pyramid optimization strategy
is its ability to capture large structures in an image. For each filter
in a convolution layer, a kernel with a fixed size is chosen to iter-
ate through a given input. The fixed size limits how large of a
region the output of that convolution layer represents. By using
the proposed pyramid optimization, we essentially reduce the spa-
tial dimension of the input (at the first few levels) to the convo-
lution layers, while maintaining the kernel sizes; thereby, we
ultimately enlarge the region the outputs of the convolution layers
represent.

Figure 1 provides the progression details of the proposed pyr-
amid optimization. Each row in that figure represents a specific
resolution. In this study, we used three scales for the pyramid
optimization strategy. In other words, we started the pyramid
optimization process with white noise input at a resolution 4×
smaller than the resolution of the final output. We optimized
that input for K1 iterations. After K1 iterations, we upsampled
the generated images to twice its current size and optimized for
additional K2 iterations. We again upsampled the generated
images to twice its current size and optimized for another K3 iter-
ations to obtain the desired image. The values of K1, K2, and K3

were empirically determined and correspond to 10,000, 10,000,
and 1,000, respectively.

Mixture Estimation Model

For the mixture estimation model, we implemented two variants
for two separate tasks. The complete architecture of these two
models can be found in Section A.2.1. Both variants have a similar
architecture except in the last layer, and the objective function due
to the task for which each variant was designed. In the first var-
iant, we implemented the model to predict the presence of mate-
rials in a given image. In other words, for example, this variant is
used to determine if ADU or UO4 or both are present in a given
SEM of an ADU–UO4 mixture. We refer to the first variant as
MEM-A. The second variant is tasked with estimating the exact
composition of a given image, and is referred to as MEM-B.
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Results and Discussion

Image Synthesis Model

We used the proposed image synthesis model to generate images
of two sets of mixtures: ADU–UO4 and ADU–UH–SDU. The
images of ADU–UO4 were generated at a resolution of 512 ×
512, whereas the images of ADU–UH–SDU were generated at a
resolution of 128 × 128 to account for the difference in scale
between input images used for the image synthesis model. The
scale correction process is detailed in Section A.1.2.

For each mixture, we generated two sets of images. In the first
set, we manually selected the weights, v, in equation (3). We
named this set dataset A. The purpose of generating dataset A
is to have a similar set of compositions as real images. We also
generated images containing various compositions by randomly
sampling v for each synthesized sample, and we refer to this
set as dataset B. For this dataset, we generated twice the amount
of images compared with dataset A to be able to sample all the
possible compositions and obtain more than one image per com-
position. Dataset B is constructed to accurately represent the real-
world scenario in which we would like to have an approach that is
able to estimate all possible compositions. Table 2 details the num-
ber of synthesized samples for each dataset as well as the number of
real images of ADU–UO4 and ADU–UH–SDU mixtures.

Figures 2 and 3 show a side-by-side comparison between a few
representative samples of real and synthesized images. As seen in
these two figures, the synthesized images are qualitatively similar
to real images. For instance, in Figure 2, one noticeable character-
istic of ADU–UO4 mixtures is the correlation between the size of
particles and the percentage of UO4 in the images. With the
higher percentage of UO4 in a given image is the more larger par-
ticles appearing in the images. This particular characteristic can
be easily identified in both real and synthesized images. For
ADU–UH–SDU mixtures, the morphological characteristics of
each individual material are distinguishably different from each
other. The particles of SDU have a rough surface and are granular,

whereas the particles of ADU are more rounded and smooth. On
the other hand, the particles of UH are much larger in size com-
pared with that of ADU or SDU and have smooth plate-like struc-
tures. These characteristics are clearly visible in both real and
synthesized images. For instance, the large plate-like structures
can be located in both real and synthesized images of 100% UH
(second row in Fig. 3). Moreover, both plate-like and smaller
rounded particles are found in both real and synthesized images
of 50% ADU–50% UH mixture (fourth row in Fig. 3).

Mixture Estimation Model

Identifying Materials
The main purpose of this experiment is to demonstrate that the
synthesized images can be used to train a model used for deter-
mining the materials present in a given SEM image. We trained
the mixture estimation model, MEM-A, using only synthesized
images and then tested the trained model on only real samples.
In addition, we also trained MEM-A on only real images and
tested this trained model on the same test set for performance
comparison. Tables 3 and 4 show the area under the receiver
operating characteristic curve (AUROC or AUC) of each material
in the ADU–UO4 and ADU–UH–SDU mixtures, respectively. We
also reported the micro-average and macro-average. The micro-

Fig. 1. The proposed pyramid optimization strategy. The top left image shows the starting point (random initialization), whereas the bottom right image shows the
output image at the end of the optimization process. Each row in the figure represents a different resolution used in the optimization process. Lastly, the red arrows
in the figure represent the bilinear upsampling process, and the blue arrows represent the number of iterations (indicated underneath each arrow) done to update
the generated images using equation (3).

Table 2. The Number of Images Available in Each Dataset for ADU–UO4 and
ADU–UH–SDU Mixtures.

Dataset
Number of Images

ADU–UO4 ADU–UH–SDU

Real images 1,548 1,906

Dataset A 2,500 2,800

Dataset B 5,000 5,600
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average represents the weighted performance based on the fre-
quency of each class. In other words, a class with more samples
has more influence on the final result. In contrast, the macro-
average treats each class equally. Refer to Section A.3 for the for-
mal definition of the micro-average and macro-average of AUC as
well as AUC itself.

As seen in the tables, the performance of the mixture estima-
tion model MEM-A when trained with synthesized images
achieved high AUC values (>0.9 in both the micro-average and
macro-average) for both mixtures. Even though the AUC results
of MEM-A trained with synthetic data are lower than when the
model trained with real images, the high AUC values of the
model trained with synthesized images implies that the model
can still reliably identify the presence of pure materials in a mix-
ture. Moreover, these results further validate that the synthesized
images have similar characteristics to those of real images.

Composition Estimation
In this experiment, we used the second variant of the mixture esti-
mation model, MEM-B, to estimate the composition of a given
SEM image. The overall results of both mixtures are shown in
Tables 5 and 6. As seen in both tables, the MEM-B model pro-
vides a reasonable estimate for both mixtures. Since this is a
much more challenging task compared with materials prediction
in the previous section, the results are not as accurate as for the

previous task. However, the overall performance of the model
trained with only synthesized images and only real images is
still comparable in the ADU–UO4 mixtures, as indicated by the
coefficient of determination (R2) and root-mean-square error
(RMSE) metrics. For the ADU–UH–SDU mixtures, the perfor-
mance of the model trained with only synthesized images is rea-
sonable, but the gap in performance between the model trained
with only real images and with only synthesized images is larger
than the one observed in ADU–UO4. The larger gap in perfor-
mance in ADU–UH–SDU is attributed to the smaller resolution
of the synthesized images and the larger number of materials
involved in the mixtures.

Moreover, as expected, the model trained with dataset A out-
performed the one trained with dataset B since the compositions
in dataset A are tailored to the test set. However, it can be argued
that the model trained with dataset B would perform better in
practice because capturing a broader set of compositions would
help eliminate bias on unseen compositions in the test set.

Analysis

Computation Time
One of our motivations is to provide an alternative approach that
can be used to accurately determine materials in a mixture while
eliminating the high cost and time-consuming process of sample

Fig. 2. The qualitative assessment of a few representative samples between real (the first three columns) and generated images (the last three columns). Each row
in the figure represents a different ADU–UO4 mixture.
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preparation and imaging by building a synthetic dataset. Thus, the
computation time of an image synthesis model is one of the key
criteria that justifies deploying the proposed approach. Table 7
lists the computation time for generating an image using the
image synthesis model without and with our proposed pyramid

optimization scheme implemented using Pytorch library (Paszke
et al., 2019) on a single Titan RTX graphics processing unit
(GPU) hardware. As clearly seen from the table, the image synthe-
sis model can synthesize an image effortlessly in a short period of
time. The computation time of the image synthesis model further
decreases with the pyramid optimization scheme. Furthermore,
this computation time can be improved with model parallelization
on multiple GPUs if resources are available.

Diversity Analysis
In this analysis, we analyzed the diversity of synthetic images. The
diversity measures the variation of images within a given class. A
small variation indicates that the generated images look too sim-
ilar to each other. Consequently, having generated images with

Fig. 3. The qualitative assessment of a few representative samples between real (the first three columns) and generated images (the last three columns). Each row
in the figure represents a different ADU–UH–SDU mixture.

Table 3. The AUC of MEM-A When Trained with Different Datasets in
Determining the Presence of Materials in ADU–UO4 Mixtures.

Training Dataset ADU UO4 Micro-Avg Macro-Avg

Real images 0.999 0.990 0.997 0.995

Dataset A 0.990 0.853 0.949 0.922
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less diversity means that the synthetic data fail to capture the
underlying distribution of the dataset of interest. We used multi-
scale structural similarity (MS-SSIM) (Wang et al., 2004) to mea-
sure the diversity in this study. The MS-SSIM of two given input
images has a value between 0.0 and 1.0. The larger value indicates
that the two images are much more similar to each other. For this
analysis, we computed the MS-SSIM for each composition in the
mixture. For each composition, we first computed the mean
MS-SSIM of 7,000 randomly selected distinct pairs of images in
that mixture. Then, the mean MS-SSIM across all compositions

was evaluated. Tables 8 and 9 show the MS-SSIM of real images
and synthetic images for each composition and for the entire
dataset. As seen in Table 8, the synthetic images achieved a com-
parable MS-SSIM metric as the real images for ADU–UO4 mix-
tures. Meanwhile, the difference in MS-SSIM metric between
real images and synthetic images for ADU–UH–SDU is larger.
We hypothesized this larger gap is due to the smaller resolution
of synthesized images compared with the real images. However,
the MS-SSIM metric of synthetic images for ADU–UH–SDU
mixtures is still relatively small. Thus, we believe that the synthetic
images of ADU–UH–SDU mixtures still reasonably capture the
underlying distribution.

Conclusion

In this study, we demonstrated that the proposed approach in Ly
et al. (2021) can be easily applied to many different mixtures. At
the same time, the proposed approach provides an accurate pre-
diction (>0.9% in AUC) of the presence of materials in a mixture

Table 4. The AUC of MEM-A When Trained with Different Datasets in Determining the Presence of Materials in ADU–UH–SDU Mixtures.

Training Dataset ADU UH SDU Micro-Avg Macro-Avg

Real images 1.00 0.998 0.994 0.995 0.998

Dataset A 0.939 0.997 0.934 0.950 0.957

Table 5. The Mean Estimated Composition of ADU–UO4 Mixtures.

100% ADU 75% ADU 50% ADU 25% ADU 0% ADU

Training Dataset 0% UO4 25% UO4 50% UO4 75% UO4 100% UO4 RMSE R2

Real images 0.865 0.687 0.531 0.303 0.107 0.0880 0.937

0.135 0.313 0.469 0.697 0.893

Dataset A 0.867 0.745 0.600 0.435 0.042 0.122 0.876

0.133 0.255 0.400 0.565 0.958

Dataset B 0.829 0.726 0.609 0.460 0.150 0.153 0.806

0.171 0.274 0.391 0.540 0.850

Table 6. The Mean Estimated Composition of ADU–UH–SDU Mixtures.

100% ADU 0% ADU 0% ADU 50% ADU 50% ADU 0% ADU 33% ADU

0% UH 100% UH 0% UH 50% UH 0% UH 50% UH 33% UH

Training Dataset 0% SDU 0% SDU 100% SDU 0% SDU 50% SDU 50% SDU 33% SDU RMSE R2

Real images 0.975 0.0150 0.0500 0.393 0.551 0.104 0.312 0.109 0.890

0.0200 0.980 0.0940 0.471 0.208 0.575 0.470

0.00500 0.00500 0.856 0.136 0.241 0.321 0.218

Dataset A 0.925 0.0700 0.112 0.351 0.463 0.178 0.249 0.123 0.866

0.0530 0.905 0.0970 0.327 0.0740 0.495 0.407

0.0220 0.0250 0.791 0.322 0.463 0.327 0.344

Dataset B 0.703 0.135 0.151 0.269 0.309 0.165 0.212 0.199 0.662

0.173 0.740 0.160 0.268 0.154 0.390 0.312

0.124 0.125 0.689 0.463 0.537 0.445 0.476

Table 7. The Computation Time of the Proposed Image Synthesis Model
without and with the Pyramid Optimization Scheme to Generate an Image of
Size 512 × 512.

Optimization Scheme Computation Time

Without pyramid optimization ∼420 s

With pyramid optimization ∼150 s
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characterized in an SEM image and a reasonable estimation of the
composition. Furthermore, the proposed approach in Ly et al.
(2021) achieves these accuracies relying solely on the synthetic
data generated without requiring any images of mixed materials.
This advantage eliminates the cumbersome process of sample
preparation and imaging, which scales with the number of mate-
rials involved in the mixtures.

The proposed approach provides promising results for how
generation of synthetic data can be beneficial in material science
research. However, many challenges still remain that follow-up
studies need to address. First and foremost, the performance of
both mixture estimation models, MEM-A and MEM-B, when
trained on synthetic data is still lagging behind the performance
of models when trained with real images. This finding indicates
that a gap between synthesized images and real images still exists.
Thus, the next essential step is to address this gap by developing
an image synthesis model that can generate much more realistic
images.

Second, even though the mixture estimation model can esti-
mate the compositions fairly well (when trained with either real
or synthesized images), the need for a more accurate estimation
is still of interest. This challenge can be tackled by developing
new CNN architectures or learning methodologies to improve
the estimation. For example, a semi-supervised learning method,
combining a small number of real images of mixed materials
along with a larger number of synthetic data, would have a poten-
tial of improving the overall performance.

Funding. This work is supported by the Department of Homeland Security,
Domestic Nuclear Detection Office, under Grant Number 2015-DN-077-ARI092.
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Appendix A

A.1. Image Synthesis Model Architecture and Synthesis
Process

A.1.1. Model Architecture

Figure A.1 shows the architecture of the proposed image synthesis model. This
model uses VGG-16 (Simonyan & Zisserman, 2015) pretrained on ImageNet
(Russakovsky et al., 2015) to extract feature maps for Gram matrix computa-
tion. We extracted five layers from the network in which each layer corre-
sponds to the first convolution layer of each block in VGG-16 (Simonyan &
Zisserman, 2015). Equation (3) is then carried out to minimize the difference
between the Gram matrices of the extracted layers of a set of reference images
and those of the synthesized image for a certain number of iterations to obtain
the desired synthesized image. Moreover, for each synthesized sample, the vec-
tor ω can be either randomly sampled or controlled by a user to control the
presence of each reference image in the synthesized image.

A.1.2. Image Synthesis Process

We used the architecture presented in Figure A.1 to generate images of mix-
tures of ADU–UO4 and ADU–UH–SDU. We set both α and γ to 1 and opti-
mized equation (3) with a learning rate of 0.001. For the ADU–UO4 mixtures,
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we generated images of size 512 × 512. We generated images of size 128 × 128
for the ADU–UH–SDU mixtures. The smaller resolution in the generated
images of ADU–UH–SDU mixtures is done to account for the difference in
scale between the reference images (i.e., images of 100% ADU, 100% UH,
and 100% SDU). Specifically, the images of 100% ADU, 100% UH, and
100% SDU are of size 512 × 512. These images were obtained by cropping
four overlapping regions of size 512 × 512 from the original SEM images.
However, the images of 100% ADU and 100% UH were acquired with
HFW of 1.53 and 3.06 μm, whereas the images of 100% SDU were acquired
with HFW of 6.13 μm, which means that the images of 100% ADU and
100% UH are 4× and 2× larger than the images of SDU. Thus, we performed
a scale correction process before using them as input to the image synthesis
model. The scale correction process includes resizing to 128 × 128 for any
image that is 4× larger, resizing to 256 × 256 first, and then randomly cropping
a region of 128 × 128 for any image that is 2× larger. Finally, we randomly
cropped a region of 128 × 128 for images of SDU.

A.2. Mixture Estimation Model Architecture and Operation

A.2.1. Model Architecture

The mixture estimation model is built based on the ResNet-50 (He et al., 2016)
model. We replaced the last fully connected (FC) layer with a set of layers
including FC, BN (Ioffe & Szegedy, 2015), and dropout. Moreover, we
added a global max pooling (GMP) layer in conjunction with global average
pooling (GAP) to improve the stability of feature selection. The two variants,
MEM-A and MEM-B, have the same architecture except the last FC layer and
the objective function used to train them. In the MEM-A model, the number
of nodes in the last FC corresponds to the number of materials in the mixture.
In other words, the MEM-A used for ADU–UO4 mixtures has two nodes in
the last FC layer, whereas the last FC layer in the model used for ADU–
UH–SDU mixtures has three nodes. This model was trained with binary
cross entropy objective function defined as

L = 1
M

∑M
i=1

yi · log (ŷi)+ (1− yi) · log (1− ŷi). (A.1)

where ŷi and yi are the predicted and ground-truth values of sample i, respec-
tively, and M is the total number of training samples. The MEM-B model has
three nodes in the last FC layer when used for the ADU–UH–SDU mixtures,
and a single node when used for the ADU–UO4 mixtures since the percentage
of ADU and UO4 in a mixture is complementary and can be inferred from the

other. This variant was trained with L1 objective function defined as

L = 1
M

∑M
i=1

|ŷi − yi|, (A.2)

Figure A.2 details the architecture of both variants. The top output (dashed
blue box) is used to determine the presence of materials in a given image,
and the bottom output (dashed red box) is used to estimate the precise com-
position of a given image.

A.2.2. Training and Inference

For both variants, we trained all the layers except the convolution layers within
the ResNet-50 (He et al., 2016) model for 20 epochs with a batch size of 8 and
learning rate of 0.002. After 20 epochs, we then trained the entire model with
the learning rate of 0.0002 and 0.002 for the convolution layers within the
ResNet-50 (He et al., 2016) and the rest, respectively, for another 30 epochs.
Moreover, we also used learning rate decay, which decreases the learning
rates by a factor of 0.95 every 800 iterations.

For mixtures of ADU–UO4, we trained the mixture estimation models with
input images of size 512 × 512, and the resolution of input was the same dur-
ing the inference stage. However, since there is a difference in scale between
real images of ADU, UH, and the rest of the mixtures in ADU–UH–SDU data-
set, we needed to account for this difference. During the training process, we
performed a similar scale correction process as described in the image synthe-
sis model above. On the other hand, we wanted to predict materials or estimate
the composition on the entire image. Thus, we resized any images that are 4×
larger to 128 × 128 and any images that are 2× larger to 256 × 256 in the infer-
ence stage. Furthermore, the scale correction process is applied only to real
images since we already take into account the scale difference for synthesized
images in the image synthesis model.

A.3. Micro-Average and Macro-Average AUC

The AUC value is the area under the curve defined by the true positive rate
(TPR) as a function of the false positive rate (FPR). Thus, the AUC of a
class, k, can be defined as

AUCk = TRAPZ(TPRk, FPRk), (A.3)

where TRAPZ is the area under a curve, which is defined by TPRk as a

Fig. A.1. The architecture of the proposed image synthesis model. We utilized the VGG-16 network (Simonyan & Zisserman, 2015) pretrained on ImageNet
(Russakovsky et al., 2015) to extract feature maps used to compute Gram matrices in the objective function. Each extracted feature map is labeled with a different
color in the figure. The solid lines show the forward path and the dashed lines represent the backward path to update the white noise input.
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function of FPRk, computed using the trapezoid rule (2021). Then, the micro-
average AUC is computed as

AUCmicro-avg = TRAPZ
∑
k

TPRk,
∑
k

FPRk

( )
. (A.4)

Meanwhile, the macro-average AUC is defined as

AUCmacro-avg = 1
Nk

∑Nk

k

AUCk, (A.5)

where Nk is the total number of classes.

A.4. Large Structures Synthesis with Pyramid Optimization

Generating images with the pyramid optimization strategy helps reduce the
computation time as indicated in Table 7. In this section, we demonstrate
another advantage of using the proposed pyramid optimization strategy. The
pyramid optimization strategy operates on different resolution scales while
maintaining the pre-determined kernel size of the filters in the convolution
layers; in turn, it enlarges the region the outputs of the convolution layers rep-
resent. Hence, the proposed pyramid is able to capture larger structures.
Figure A.3 presents an example of this advantage. The last two images in
that figure are generated images synthesizing without and with the pyramid
optimization strategy, respectively, from using the same reference image on
the left. As seen in that figure, the generated image synthesized without the
pyramid optimization strategy failed to capture large structures. In contrary,
the generated image synthesized with the pyramid optimization strategy prop-
erly generated large structures similar to those in the reference image.

Fig. A.2. The architecture of the mixture estimation model, which has two variants. Both variants have the same architecture except the output layer. The first
variant (dashed dark blue rectangle), referred to as MEM-A, is used to predict the presence of materials in a given input image. The second variant (dashed
dark red rectangle), referred to as MEM-B, is tasked with estimating the exact composition of a given input image. These two variants were trained separately
for the experiments described above.

Fig. A.3. A side-by-side comparison of generated images that were synthesized without and with pyramid optimization strategy from the same reference image.

Microscopy and Microanalysis 11

https://doi.org/10.1017/S1431927621012915
Downloaded from https://www.cambridge.org/core. University of Utah, on 10 Nov 2021 at 17:40:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1431927621012915
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	Determining the Composition of a Mixed Material with Synthetic Data
	Introduction
	Materials and Methods
	Mixtures of Uranium Oxides
	Image Synthesis Model
	Synthesizing Mixed Samples
	Pyramid Optimization

	Mixture Estimation Model

	Results and Discussion
	Image Synthesis Model
	Mixture Estimation Model
	Identifying Materials
	Composition Estimation

	Analysis
	Computation Time
	Diversity Analysis


	Conclusion
	Funding
	References
	Appendix A
	Image Synthesis Model Architecture and Synthesis Process
	Model Architecture
	Image Synthesis Process

	Mixture Estimation Model Architecture and Operation
	Model Architecture
	Training and Inference

	Micro-Average and Macro-Average AUC
	Large Structures Synthesis with Pyramid Optimization


