![]() ![]() Visual Exploration of High Dimensional Scalar Functions S. Gerber, P.-T. Bremer, V. Pascucci, R.T. Whitaker. In IEEE Transactions on Visualization and Computer Graphics, IEEE Transactions on Visualization and Computer Graphics, Vol. 16, No. 6, IEEE, pp. 1271--1280. Nov, 2010. DOI: 10.1109/TVCG.2010.213 PubMed ID: 20975167 PubMed Central ID: PMC3099238 |
![]() ![]() Analysis of Recurrent Patterns in Toroidal Magnetic Fields A.R. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger, J. Breslau. In IEEE Transactions on Visualization and Computer Graphics, Vol. 16, No. 6, IEEE, pp. 1431-1440. Nov, 2010. DOI: 10.1109/tvcg.2010.133 |
![]() ![]() Visualizing Summary Statistics and Uncertainty K. Potter, J.M. Kniss, R. Riesenfeld, C.R. Johnson. In Computer Graphics Forum, Vol. 29, No. 3, Wiley-Blackwell, pp. 823--831. Aug, 2010. |
![]() ![]() Connecting Genes with Diseases H Müller, R Reihs, S Sauer, K Zatloukal, M Streit, A Lex, B Schlegl, D Schmalstieg. In Information Visualisation, 2009 13th International Conference, pp. 323--330. July, 2009. DOI: 10.1109/IV.2009.86 This paper presents a visual data mining approach using the combination of clinical data, pathways and gene-expression data. The visual exploration of medical data using pathways to navigate and filter the data allows a more systematic and efficient investigation of problems in modern life science. A multiplicity of hypothesis can be evaluated in the same period of time, enabling a much better exploitation of the data. We present a system for data preprocessing and automatic classification, a set of visualization views and finally the integration in the Caleydo visualization framework, which enables the "coupling" of genetic and a broad spectrum of clinical data. With the help of the Caleydo framework the medical expert can identify connections between genetic parameters, patient subgroups, and drug responses. |
![]() ![]() A Framework for Exploring Numerical Solutions of Advection Reaction Diffusion Equations using a GPU Based Approach A.R. Sanderson, M.D. Meyer, R.M. Kirby, C.R. Johnson. In Journal of Computing and Visualization in Science, Vol. 12, pp. 155--170. 2009. DOI: 10.1007/s00791-008-0086-0 |
![]() ![]() Occam's Razor and Petascale Visual Data Analysis E.W. Bethel, C.R. Johnson, S. Ahern, J. Bell, P.-T. Bremer, H. Childs, E. Cormier-Michel, M. Day, E. Deines, P.T. Fogal, C. Garth, C.G.R. Geddes, H. Hagen, B. Hamann, C.D. Hansen, J. Jacobsen, K.I. Joy, J. Krüger, J. Meredith, P. Messmer, G. Ostrouchov, V. Pascucci, K. Potter, Prabhat, D. Pugmire, O. Rubel, A.R. Sanderson, C.T. Silva, D. Ushizima, G.H. Weber, B. Whitlock, K. Wu. In Journal of Physics: Conference Series, Journal of Physics: Conference Series, Vol. 180, No. 012084, pp. (published online). 2009. DOI: 10.1088/1742-6596/180/1/012084 One of the central challenges facing visualization research is how to effectively enable knowledge discovery. An effective approach will likely combine application architectures that are capable of running on today's largest platforms to address the challenges posed by large data with visual data analysis techniques that help find, represent, and effectively convey scientifically interesting features and phenomena. |