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Preface 

 
 

The Software for Science and Engineering (SSE) Task Force commenced in June 2009 with a 
charge that consisted of the following three elements: 

• Identify specific needs and opportunities across the spectrum of scientific software 
infrastructure.  Characterize the specific needs and analyze technical gaps and 
opportunities for NSF to meet those needs through individual and systemic approaches. 

• Design responsive approaches.  Develop initiatives and programs led (or co-led) by NSF 
to grow, develop, and sustain the software infrastructure needed to support NSF’s 
mission of transformative research and innovation leading to scientific leadership and 
technological competitiveness. 

• Address issues of institutional barriers.  Anticipate, analyze and address both institutional 
and exogenous barriers to NSF’s promotion of such an infrastructure. 

 
The SSE Task Force members participated in bi-weekly telecons to address the given charge. 
The telecons often included additional distinguished members of the scientific community 
beyond the task force membership engaged in software issues, as well as personnel from federal 
agencies outside of NSF who manage software programs.  It was quickly acknowledged that a 
number of reports loosely and tightly related to SSE existed and should be leveraged. By 
September 2009, the task formed had formed three subcommittees focused on the following 
topics: (1) compute-intensive science, (2) data-intensive science, and (3) software evolution. 
 
Throughout the process of preparing this report, it was deemed important to seek input from the 
broader community. This was accomplished through a combination of birds-of-a-feather sessions 
at conferences, participation in relevant workshops, and individual conversations at conferences 
and our respective institutions. In particular, we participated in the series of International 
Exascale Software Workshops co-sponsored by DOE and NSF in 2009, a birds-of-a-feather 
session at SC 2009, and informal discussions at SC 2010. Further, presentations were given at 
DDDAS Workshop in August 2010 and the CI-EPSCOR Workshop in October 2010. In 
addition, some of the members of the SSE Task Force were members of five other NSF ACCI 
task forces working simultaneously on other reports in this series, thereby allowing for cross-
referencing of materials among the different task forces. Approximately two years from 
inception, we are pleased to deliver the final version of the SSE task force report. 
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Software is a critical and pervasive component of the cyberinfrastructure for science and engineering.  It 
is the software that binds together the hardware, networks, data, and users such that new knowledge and 
discovery result from cyberinfrastructure.   Furthermore, software must evolve to meet rapid changes in 
hardware architectures as well as any new functionality that is demanded and results when communities 
advance in various disciplines.  According to many federal reports, software is a, if not the, “grand 
challenge” of cyberinfrastructure.   Yet, software is historically among the least coordinated and 
systematically funded components of cyberinfrastructure.  Accordingly, the NSF Advisory Committee on 
Cyberinfrastructure has chartered a Task Force on Software for Science and Engineering (SSE) to identify 
findings and form recommendations to NSF on how best to fulfill its mission of promoting the progress of 
science and to help meet the demand on software to deliver ubiquitous, reliable, and easily accessible 
computer and data services. 
 
Software infrastructure has evolved organically and inconsistently, with its development and adoption 
coming largely as by-products of community responses to other targeted initiatives.  Software creation is 
very often encouraged and a legitimate focus of NSF-funded projects.  The long-term funding for the 
evolution and maintenance of software is often difficult to support through NSF.  Support of software 
infrastructure for NSF-funded projects and large community initiatives generally depends upon funding 
sources that are one-time, sporadic, and domain-specific where the focus is on the science or engineering 
outcomes.  Currently, there is no systematic and periodic process for determining software requirements 
and priorities across the NSF community.  Nor are there generally accepted quantitative metrics for 
determining what software researchers most heavily use. 
 
Good software needs to be developed in a comprehensive, end-to-end fashion.  Software infrastructure 
should enable users to exploit, integrate, and cross-leverage evolving software tools.  Some of the 
challenges include coordinating the interfaces between software and other components that need to 
interoperate to accomplish the science and engineering goals of interest.  Increases in code complexity for 
addressing the paradigm shifts in computer architectures (including using accelerators and multi/many 
core chips) threaten to exceed the capacity of the research community for software development and 
support.  Good software infrastructure not only meets needs that are recognized at the time of its design, 
but is extensible for the meeting of unanticipated needs for long periods between occasional fresh starts 
due to so-called “disruptive technologies”.  Furthermore, it is important that software infrastructure 
address issues related to open access, portability, reuse, composability, and dissemination. We are at a 
most opportune time for NSF to rethink the research, development, and maintenance of our software 
infrastructure.   
 
The Task Force on Software for Science and Engineering has formed the following major 
recommendations on how NSF can best support the research, development, and maintenance of software 
infrastructure: 
1. NSF should develop a multi-level (individual, team, institute), long-term program of support of 

scientific software elements ranging from complex applications to tools of utility in multiple domains. 
Such programs should also support extreme scale data and simulation and the needs of NSF’s Major 
Research Equipment and Facilities (MREFC) projects.  

2. NSF should take leadership in promoting verification, validation, sustainability, and reproducibility 
through software developed with federal support.  

3. NSF should develop a consistent policy on open sources software that promotes scientific discovery 
and encourages innovation. 

4. NSF support for software should entail collaborations among all of its divisions, related federal 
agencies, and private industry. 

5. NSF should utilize its Advisory Committees to obtain community input on software priorities. 

Executive Summary 
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The mission of NSF, “To promote the progress 
of science; to advance the national health, 
prosperity, and welfare; to secure the national 
defense…,” is increasingly dependent on 
cyberinfrastructure, which includes hardware, 
networks, data, software, and trained users.  
Software is a critical and pervasive component 
of the cyberinfrastructure for science and 
engineering.  It is the software that binds 
together the hardware, networks, data, and users 
such that new knowledge and discovery result 
from cyberinfrastructure. Furthermore, software 
must evolve to meet rapid changes in hardware 
architectures as well as new functionality that is 
demanded and results when communities 
advance in various disciplines.  According to 
many federal reports, software is a, if not the, 
“grand challenge” of cyberinfrastructure.   Yet, 
software is historically among the least 
coordinated and systematically funded 
components of cyberinfrastructure.  
Accordingly, the NSF Advisory Committee on 
Cyberinfrastructure has chartered a Task Force 
on Software for Science and Engineering (SSE) 
to identify findings and form recommendations 
to NSF on how best to fulfill its mission of 
promoting the progress of science and to help 
meet the demand on software to deliver 
ubiquitous, reliable, and easily accessible 
computer and data services. 
 
Software infrastructure has evolved organically 
and inconsistently, with its development and 
adoption coming largely as by-products of 
community responses to other targeted 
initiatives.  Software creation is very often 
encouraged and a legitimate focus of NSF-
funded projects. The long-term funding for the 
evolution and maintenance of software is often 

difficult to support through NSF.  Support of 
software infrastructure for NSF-funded projects 
and large community initiatives generally 
depends upon funding sources that are one-time, 
sporadic, and domain-specific where the focus is 
on the science or engineering outcomes. For 
example, ROMS – the Regional Ocean 
Modeling 
System, 
which is 
widely used 
by over 
2,000 users 
worldwide 
via an open source license, has been funded for 
many years by ONR; NSF provided some initial 
funding to develop algorithms for data 
assimilations.  
 
The “software stack” now invoked by scientists 
and engineers consists of systems software (e.g., 
operating systems, file systems, compilers), 
middleware (e.g., file transfers, multi-model 
communication, provenance), libraries (e.g., 
numerical libraries, communication libraries), 
and applications (whose creation is often driven 
by specific objectives, but which then evolve to 
become shared more widely than anticipated).  
While the community has functioned with the 
organic and ad hoc development of this software 
stack, the stack is becoming fragile due to 
stresses from many directions: increasing 
complexity, dynamic and adaptive resource 
requirements, dependencies across layers of the 
software stack, hardware that responds to market 
forces that are not science-driven; increasing 
diversity of the community to be supported, 
which is becoming larger and on average 
broader and less computationally sophisticated 

Software is a critical and 
pervasive component of the 
cyberinfrastructure for 
science and engineering. 

1 
Introduction 
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than the more technologically oriented 
“pioneers” who invent the software 
infrastructure; expansion of expected 
functionality; reliability requirements that 
become stricter, and so forth.  Some of these 
causes of stress are signs of progress.  For 
example, computational simulation and data 
analysis have been critical to innumerable 
scientific endeavors with the result that scientists 
who are not computing experts today are 
computing successfully in large numbers.  
However, future development and maintenance 
of the software infrastructure on which the 
computing community critically depends will be 
difficult if our support mechanisms continue in 
the current ad hoc mode.  The confluence of 
these stresses, especially with respect to rapid 
hardware changes and ripeness of scientific 
opportunity, suggests that we are at a most 
opportune time for NSF to rethink the research, 
development, and maintenance of our software 
infrastructure. Furthermore, it is important that 
software infrastructure address issues related to 
open access, portability, reuse, composability, 
and dissemination. 
 
The identification of software standards that 
deserve to be supported is one of the roles that 
NSF’s peer-review processes can facilitate.  
However, today’s ad hoc and loosely 
coordinated approaches to software 
infrastructure allow unanticipated breakthroughs 
and chances for new ideas to arise and influence 
the entire cyber-ecosystem; this must not be lost 
in a well-meaning attempt to make the 
ecosystem more efficient through designation of 
approaches as preferred or deprecated.  Good 
software reliably and efficiently encodes 
expertise in processing data and delivers it 
across well-understood interfaces to users and 
other developers and integrators who require 
that expertise.  However, some principles for 
software design and some metrics for software 
evaluation are subjective and controversial, and 
should not be prescribed too narrowly or rigidly.  
A balance must be preserved between 
standardization for efficiency and flexibility for 
innovation. 
 
Good software needs to be developed in a 
comprehensive end-to-end fashion. Software 

infrastructure should enable users to exploit, 
integrate, and cross-leverage evolving software 
tools.  Some of the challenges include 
coordinating the interfaces between software and 
other components that need to interoperate to 
accomplish the science and engineering goals of 
interest.  Further, increases in code complexity 
for addressing the paradigm shifts in computer 
architectures (including using accelerators and 
multi/many core chips) threaten to exceed the 
capacity of the research community for software 
development and support.  Good software 
infrastructure not only meets the needs that are 
recognized at the time of its design, but is 
extensible for the meeting of unanticipated 
needs for long periods between occasional fresh 
starts due to so-called “disruptive technologies”.   
 
Software has become an essential tool for 
knowledge discovery in many disciplines and 
often also itself serves as a representation of 
knowledge.  Hence, there is an urgent need to 
dedicate increasing resources to software, 
especially given the architecture transitions 
anticipated for the coming decade.  Because of 
NSF’s prestige and the peer-consensus care with 
which it sets priorities, there is an important role 
for NSF in the global context of 
cyberinfrastructure.  The resources that NSF can 
bring to the table to enable its own scientists and 
engineers to be productive are formidable and 
necessary.  An equally necessary role for NSF is 
to stimulate investments of others and expand 
the reward structure for contributions to 
cyberinfrastructure in the international scientific 
workplace, whether in universities, government 
laboratories, or industry. 
 
Any effort to rethink software infrastructure 
must involve stakeholders from academia, 

industry, and 
national 

laboratories, as 
well as the 
other basic 
science and 

mission 
agencies.  

Further, the 
focus of this effort should include all software in 
support of NSF’s science and engineering 

There is currently no 
systematic and periodic 
process for determining 
software requirements 
and priorities across the 
NSF community. 
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mission, not only the high-end software that is 
most visibility.  There is currently no systematic 
and periodic process for determining software 
requirements and priorities across the NSF 
community.  Nor are there generally accepted 
quantitative metrics for determining what 
software researchers most heavily use.  In the 
absence of such inventories of requirements and 
usage, it will be difficult for NSF to do an 
optimal job of allocating resources to software 
projects.  However, some sure-fire 
improvements to current programs are clearly 
possible and should be pursued simultaneously 
with improvements to tracking of needs and use. 
 
In responding to the recommendations of the 
Taskforce on Software for Science and 
Engineering, NSF should keep in mind that 
while no single agency can influence the entire 
open global cyber-ecosystem, NSF can aspire to 
set forth compelling principles and examples 
and to offer compelling incentives for software 
compatibility.  NSF’s influence could be 
tremendous because of its dominance in 
university-
based computer 
science and 
mathematics 
research in the 
United States 
and its 
willingness to 
fund leading 
edge, high-risk research.  While NSF’s 
recognized responsibilities in cyberinfrastructure 
are long-term, the SSE Taskforce is but a first 
step intended to facilitate discussion among NSF 
administrators and within the community.   
 
The next three sections, Sections 2 through 4, 
provide the analysis of the needs and 
opportunities of software infrastructure with 
respect to three areas: compute intensive 
science; data, federation, and collaboration; and 
software evolution. The first two areas represent 
the hardware and observational facilities that are 
expected to yield new scientific results and the 
third is needed to represent the complex cycle of 
software from creation to hardening and beyond.  
It is recognized that there is significant overlap 
among all three areas.  The first two areas, 

however, are intended to represent the 
continuum between compute intensive science 
and data intensive science.  Section 5 provides a 
discussion of the institutional barriers with 
respect to SSE followed by a brief summary of 
related activities ongoing in other agencies in 
Section 6.  The findings and recommendations 
are summarized in Sections 7 and 8, 
respectively. 
 

NSF can aspire to set 
forth compelling 
principles and examples 
and to offer compelling 
incentives for software 
compatibility. 
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Advanced computing is an essential tool in 
addressing scientific problems of strategic 
international importance, including climate 
prediction, nanoscience, new materials, drug 
design, biomedical modeling, and next-
generation power sources; it is equally essential 
to solve commercial and industrial problems in 
financial modeling, engineering, and real-time 
decision systems.  For example, the Southern 
California Earthquake Center (SCEC) seeks to 
develop a predictive understanding of 
earthquake processes aimed at providing society 
with improved understanding of seismic 
hazards.  In partnership with earthquake 
engineers, the SCEC researchers are developing 
the ability to conduct end-to-end simulations 
(“rupture to rafters”) to extend their 
understanding of seismic hazards to include 
earthquake risks and risk mitigation strategies.  
 
Simulations of physical entities are increasing in 
accuracy through finer scale approximations, 
inclusion of increasingly realistic physics, and 
integration of models across different scales. In 

other 
systems, 
process 

analysis and 
planning 

simulations 
involve 

integration of 
models across 

several 
modalities 

and behaviors 
of the system.  

For any scale of computing these changes 
invariably lead to increasing complexity in 
software and, for compute-intensive science, a 
dependency on layers of software from the 
application interface, mathematical and 
communication libraries, down to compilers and 

the operating system. The increasing software 
complexity and uncertainty about the computer 
architecture and programming model will impact 
the life-cycle of simulation software from 
inception to new science results.  
 
Compute Systems 
In recent years there have been a number of 
studies and research community workshops that 
have made the case for simulation and 
computational requirements; see [6,7,12, 
14,15,23,25] to name a few. Many of these 
meetings have been focused on high-
performance (petascale through exascale) 
computation – but their findings regarding 
algorithms and software are not restricted to 
extreme computing. For example, the report on 
exascale computing for energy and environment 
[23] notes the following:  

“The current belief is that the broad 
market is not likely to be able to adopt 
multicore systems at the 1000-processor 
level without a substantial revolution in 
software and programming techniques for 
the hundreds of thousands of 
programmers who work in industry and do 
not yet have adequate parallel 
programming skills.”  

Programmers targeting the desktop of tomorrow 
will face many of the same issues encountered 
with today’s high-end computing.  These issues 
include multi- and many-core programming 
challenges, dealing with heterogeneous 
computer architectures possibly requiring 
support for mixed arithmetic, and as noted above 
a dependency on a deep software stack.  
 
Issues for computing software include the 
capacity to deal with large-scale concurrency 
and heterogeneity from the desktop architecture 
up to the peta- and exascale systems. It is 
expected that Moore’s law is only likely to apply 
for the next decade after which time we will 

2 Compute Intensive 
Science 

The increasing software 
complexity and 
uncertainty about the 
computer architecture 
and programming model 
will impact the life-cycle 
of simulation software 
from inception to new 
science results.  
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have hit the limits of miniaturization; the days of 
increasing clock rates and instruction-level 
parallelism will be over.  Hence processors are 
being built that have multiple cores and slower 
clock rates requiring software designed and 
written in a multi-threaded fashion.  It is 
increasingly the case that desktops and the core 
building blocks for larger systems are made up 
of multicore chips with additional accelerator 
hardware such as a graphics processor unit 
(GPU) or similar.  This adds increased 
complexity and a requirement for software that 
can behave appropriately in these heterogeneous 
environments.    
 
Power usage is becoming increasingly 
important.  Software that can interact with the 
hardware system to enable power-saving actions 
(such as powering down idle hardware 
components) to reduce power consumption need 
to be part of the design space. 
 
The ability to move codes from one computer 
system to another and to have efficient and 
effective use of the resources are going to 
continue to be of great importance and likely to 
increase in difficulty due to the complexity of 
the systems and the software.  There needs to be 
more research and development focused on 
automatic generation, auto-tuning, and other 
areas that will allow software to be developed at 
a high-level, yet will adapt to the underlying 
architecture. 
 
Recommendation:  NSF should support the 
development of portable systems through such 
things as automatic code generation and auto-
tuning approaches.  
 
Recommendation: NSF should encourage close 
communication between chip designers, system 
builders, and software developers through 
appropriate collaborative research grants. 
 

The Software Stack  
The layers of software underpinning any given 
simulation application will typically consist of a 
mix of open source community-supported 
software, commercial tools and libraries, and 
application-specific components developed by 

research students and post doctoral researchers 
[25]. In general the “software infrastructure” for 
compute-intensive applications is a rather ad hoc 
patchwork of supported and unsupported 
software [3]. In many cases key simulation 
codes grow organically, as research code is 
added to an existing body of code, resulting in 
unsustainable applications that cannot be easily 
verified, in which error propagation from one 
part of the code to others may not be well 
understood, and indeed the in-house developed 
software is not likely to perform efficiently 
across any number of computer platforms.  Such 
shortcomings will increase with the increasing 
multilevel, complex hierarchy of the hardware 
platforms. 

Application Software 
The ACCI Task Force report on Grand 
Challenges [16] articulates well the requirements 
for the grand challenge applications in CS&E; 
similarly in [3] the software infrastructure is 
foreseen for that driven by applications in four 
areas of science, namely astrophysics, 
atmospheric sciences, evolutionary biology, and 
chemical separations. The requirements 
identified include some general requirements of 
scalable software systems; higher-level 
abstractions to allow application developers an 
easier development environment; the provision 
of efficient, portable “plug and play” libraries; 
and code generation techniques to support 
portability. Here, as in more recent reports, there 
is an urgent call and warning from specific 
research communities with notes like the 
following: “The increases in code complexity 
could exceed the capacity of the national centers 
for software development and support.” 
 
The compute-
intensive 
application 
challenges 
require 
research, 
support, 
services, 
education and training to affect a change in 
culture in some cases. Many applications 
involve multiple models at different scales or for 
different elements of the application. A lack of 

“The increases in code 
complexity could exceed 
the capacity of the national 
centers for software 
development and support.” 
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standards in application programming interfaces, 
data models and formats, and interoperability of 
programming models makes this integration of 
different models challenging. This is equally 
true beyond the simulation code itself as it is 
usually part of a pipeline of activity – model 
creation, calculation, analysis and visualization. 
Without agreed upon interfaces and data 
formats, building this pipeline is difficult and 
time consuming. To enable portability without 
constant rewriting of code, we need different 
approaches including adaptive algorithms to 
adapt to problem characteristics and also 
architectural constraints.  
 
Further, support and services are needed to 
provide guidance to application developers on 
best practices for software engineering, 
provisioning of software tools to assist in code 
development, and processes to ensure good 
computational components are understood and 
used, not reinvented. The route to sustainable 
software is complex and application 
communities cannot be expected to go it alone. 

Recommendation:  NSF should support 
standards development in both application 
specific data formats, and generic requirements 
for multi-scale, multi-model integration.  

Development Environments 
The development environment is the suite of 
software and tools that the application developer 
might use to create the application code. It 
includes the programming language, 
programming model, software frameworks, 
compilers and libraries as well as the debugging 
and optimization tools. As noted above, software 
longevity is going to be difficult to maintain in 
an ever-changing hardware environment. This 
will be true of development environment 
software and tools as well as the application 
software.   The ACCI Task Force report on 
Grand Challenges notes “The Message Passing 
Interface (MPI) based programming model 
based on an inherently flat architecture ……will 
need to be reinvented to meet application 
challenges….”.  While this refers to high-
performance applications, the same is true of 
desk-top application environments and standard 

programming models for programming 
heterogeneous nodes.  
  
In the past, frameworks and toolkits, such as 
PETSc  [18], have been developed that ease the 
burden on application developers by providing a 
collection of tools, interfaces, algorithms that 
allow a level of encapsulation and abstraction 
that is easy for applications to use effectively at 
the same time providing efficient use of the 
underlying resources.  Research is required into 
new approaches to enable a simpler 
programming environment for application 
developers – allowing composability and 
portability of software components. 

Numerical Libraries 
While there have been great advances in 
computing hardware, algorithms and software 
libraries have contributed as much to increases 
in computational simulation capability as have 
improvements in hardware [14,15]. Increasing 
complexity of applications and resources can be 
dealt with only through the availability of good 
software.  The fast moving developments in 
hardware architectures and the lack of software 
standards to support those developments are 
major challenges for the creation of a stable 
software infrastructure.    

In many fields there are well-defined software 
components that provide the building blocks for 
computational simulations and more could be 
gained by this approach. Some studies [5,7, 
9,12,23,25] have identified the cross application 
components that indicate the layers of software 
dependencies for the suite of applications. The 
International Exascale Software Project (IESP) 
[6] is developing a technology roadmap to allow 
an international collaboration on the 
development of the software infrastructure to 
support an exascale machine.  
 
Recommendation:   NSF should support the 
development of new and sustainability of 
existing numerical libraries. This will provide a 
bootstrap for old and new application codes.  
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Systems Software and Runtime 
Systems 
The increasing heterogeneity of computer 
systems indicates that the software stack 
requires significant support from systems 
software and runtime systems to manage 
threads, schedule computations, ensure 
appropriate load balance across the system.  The 
development of such systems software and 
runtime support is most likely to land at the feet 
of the hardware vendors and provides a key 
place for integration with the open source 
developments of numerical libraries, 
development environments, and of course 
application codes.    The IESP roadmap 
recommends the use of application codes as co-
design vehicles that will support this integrated 
approach to development of the software 
systems.  
 
Recommendation: Support is needed to enable 
collaboration with industry computer vendors 
and software developers.  
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In the 25 years since the establishment of the 
first NSF supercomputer centers, the 
performance of the fastest supercomputers has 
increased by six orders of magnitude, from 109 
to 1015 floating point operations per second. This 
remarkable evolution and concurrent 
improvements in numerical methods have 
transformed how many disciplines study 
complex phenomena. Computational simulation 
is by now a mainstream method of scientific 
research and discovery, and as a result, both the 
number of users of computational methods and 
the demands for computing facilities and 
software has grown greatly. 
 
In a more recent and in some respects yet more 
remarkable development, the past 10 years have 
also seen the emergence of new approaches to 
scientific and engineering discovery based on 
the analysis of large volumes of data [11]. 
Developments in sensor technology, laboratory 
automation, computational simulation, and 
storage technologies have together enabled a 
dramatic explosion in available data in many 
fields. Just 15 years ago, a popular book 
described methods for managing O (109) bytes 
(gigabytes) [27]. Now, individual experiments in 
high-energy physics can generate O (1015) bytes 
(petabytes) per year; in other communities, 
individual instruments may generate terabytes 
per day, and the aggregate volume, distributed 
over many facilities, also reaches petabytes. This 
data deluge shows no signs of slowing — 
indeed, the pace of exponential growth in 
available data appears to be accelerating, driven 
both by technological innovation and 
competitive pressures, as researchers realize that 
more data leads to more rapid progress.  
Furthermore, the fact that data relevant to a 
problem solution comes from multiple sources, 
collected in different modalities, timescales, and 
formats, adds to the complexity.  One of the 
greatest scientific and engineering challenges of 
the twenty-first century is to understand and 

make effective use of this growing body of 
information. 
 
A third wave of change is the continued 
commoditization of computing, resulting in the 
emergence of both ever-more powerful campus 
computing resources, or resources consisting of 
multiple heterogeneous, interconnected 
computing platforms that may be geographically 
distributed, or resources such as those supported 
by commercial “cloud” computing service 
providers that leverage new economies of 
massive scale. The success of simulation and the 
data explosion drive an expanding need for 
computing; these technological and business 
model developments mean that this need can 
increasingly be met outside traditional 
supercomputer centers. 
 
These developments demand a new view of 
cyberinfrastructure. No longer is it sufficient to 
focus attention on making a few high-end 
supercomputers usable by a relatively small 
number of expert users. Instead, a 21st Century 
cyberinfrastructure must recognize that 
computing will be performed by many more 
people, in many places; that for many 
researchers, data analysis will be as important 
as, or even more important than, simulation; and 
that research and innovation will become 
increasingly distributed and collaborative. 
 
These developments have particularly 
challenging implications for the nature of 
scientific software, and the scientific 
community’s needs for improvements in how 
that software is developed and supported. (It is 
noted that many of these needs have been 
identified by Jim Gray [10] in talks and papers 
delivered before his untimely disappearance.) In 
the following, we first review the nature of 
software needs, and then propose approaches to 
meeting those needs. 
 

3 Data, Federation & 
Collaboration 
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Changing Software Needs 
Exponentially bigger data demands a 
fundamental change in the scientific work 
process. For example, not too long ago, a 
graduate student in biology might spend several 
years sequencing a single gene, producing 
ultimately a few thousand bytes of data. While 
information technology was used in this 
research, it was not the rate-limiting factor. 
Today, a graduate student can produce billions 
of base pairs per day using modern sequencing 
machines. The collection, reconstruction, 
integration, management, sharing, analysis, and 
re-analysis of this data, and also associated 
modeling tasks (e.g., hypothesis testing for 
statistical inference)—and the management of 
many such tasks over time—are the rate limiting 
steps in the research process. Each step typically 
requires sophisticated software—software that 
often does not exist (old standbys, such as Excel 
and LabView, can no longer cope), but that is 
beyond the skills and resources of the typical 
research group to create.  
 
Another problem that will face almost all 
scientific disciplines in the future is the need for 
intelligent text mining to extract semantic 
information from the huge and growing 
literature. Hand annotation of both textual 
information and experimental data can only 
hope to reach a tiny percentage of the literature 
and data currently ‘published’. Tools and 
technologies are therefore needed to automate 
the extraction of semantic information from text 
and data as well as tools to assist in annotation 
to capture the provenance of data sets. 
Application workflows are likely to become 
increasingly important as both experiments and 
simulations become increasingly complex and 
multidisciplinary.      
 
The generation of large quantities of data also 
has a second-order effect on the scientific work 
process. As more data becomes publicly 
available, research increasingly often involves 
analysis of data produced by others. The 
research process frequently also becomes more 
collaborative. Again, significant software 
challenges emerge, relating for example to 
discovery, access, sharing, integration, analysis, 
and correlation (fusion) of data from multiple 

sources and locations, and the protection of data 
from unauthorized access and tampering. 
 
Recommendation: Funding agencies should 
also encourage agreement by the different 
research communities on ontologies, shared 
vocabularies, and data formats specific to their 
research fields.  
 
Agreement on such things will be important for 
the exchange and reuse of data by different 
researchers and by multiple research 
communities. Just as there is a social issue with 
recognizing computational science as a valid 
discipline worthy of academic rewards, so too, 
there is a need for recognition of data curators 
and data archivists who make possible the 
preservation and reuse of data. 
 
The impact of the aforementioned changes on 
cyberinfrastructure needs is seen clearly in large 
instrumentation projects. Software is needed to 
cope with distributed generation and use of data 
tools for large scale data federation across 
multiple instruments and users.  Software costs 
now dominate capital expenditure in many such 
projects. For example, in ground-based 
astronomical sky surveys, software costs may be 
one-quarter to one-half of total budget. Software 
constitutes 10% of the cost of the Ocean 
Observatory Initiative. Participants in such 
projects nevertheless complain of inadequate 
software and assert that software budgets cover 
only basic system operations, not the equally 
important work of data analysis.  
 
Outside the relatively narrow world of big 
experiments, researchers across all NSF 
programs report 
tremendous 
problems with 
all aspects of the 
data pipeline. 
Groups with 
substantial 
internal 
expertise and 
resources 
assemble their own one-off solutions. Others fail 
to deal with the problems of managing and 
analyzing large datasets. Data sharing and 

Software is needed to 
cope with distributed 
generation and use of 
data tools for large scale 
data federation across 
multiple instruments 
and users. 
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collaboration prove to be persistent problems. 
Across the board, there seems to be both large 
underinvestment and substantial duplication of 
effort. 
 
The data explosion demands an extensive set of 
new tools and technologies so that researchers 
cannot only make sense of their own 
experimental data, but can also build on existing 
data and develop technologies to support 
reproducible research. Ease of use must be a 
priority, given the broad candidate user 
community. Ideally, these tools will be as easy 
to use as today’s Web 2.0 technologies: blogs, 
wikis, social networks, tagging, RSS feeds and 
so on. In addition, semantic technologies to 
assist scientists in discover and aggregation of 
relevant datasets and tools that build on this 
semantic infrastructure to allow computer-
assisted inference and interpretation of such 
combined datasets will be necessary to support 
the chain of data to information to knowledge. It 
is also likely that some or most of these tools 
and technologies will have a Cloud component 
and may involve the use of commercial Cloud 
services. The tools must also allow for a variety 
of different levels of security and different 
security technologies in setting up Grand 
Challenge collaboratories/Virtual Organizations. 
All of these technologies will be needed to build 
a powerful and intelligent cyberinfrastructure for 
the next generation of scientific challenges.  
 
Recommendation: The data deluge requires an 
increased level of support for software 
development in the areas of data, federation, 
and collaboration—areas that have historically 
received less support than high-performance 
computing software. NSF should establish new 
programs to support software development and 
support in these areas. These programs should 
be designed to support the needs of not only 
high-end applications dealing with petabytes, 
but also the thousands of small laboratories 
struggling with terabytes. 
 
Data Requirements 
Data collection. New sensors of many types are 
transforming data collection in many fields. 
Reliable software is needed for operating large 
numbers of sensors, collecting data from such 

sensors, synthesizing derived data from sensor 
output, and other related tasks.  Such software 
needs to be developed in a more organized 
fashion to enable broad and robust use. 
 
Laboratory instrumentation and management 
systems. There is a need for generic components 
to build Laboratory Information Management 
Systems (LIMS) that can be adapted to the needs 
of specific research fields and requirements. 
Integration of these systems with data curation, 
annotation, and analysis functions is becoming 
increasingly important.  
 
Data modeling, semantics, and integration. In a 
more data-intensive research future, different 
data sets from different communities must often 
be compared and 
combined with 
new data in a 
variety of 
“scientific mash-
ups.” Integration 
of simulation 
data with 
experimental 
data as is 
common in the 
climate and weather modeling communities will 
also become increasingly important. Software is 
required to assist with data modeling, with the 
representation and exchange (and automated 
extraction) of semantic information, and with the 
mechanics of large-scale data integration. 
 
Data management and analysis. Software for 
managing large quantities of data of different 
types, and for enabling compute- and data-
intensive computations on that data, are key 
requirements in many fields. Technologies such 
as distributed file systems (e.g., HDFS, PVFS, 
Sector), data-parallel languages (e.g., 
MapReduce, Sphere), and parallel scripting 
languages (e.g., Swift [26]) have important roles 
to play, but will require considerable extension 
to deal with the challenges of next-generation 
data and analysis.  
 
Data mining and statistical inference. 
Confronted with large quantities of noisy data, 
researchers turn to data mining and statistical 

Software is required to 
assist with data 
modeling, with the 
representation and 
exchange of semantic 
information, and with 
the mechanics of large-
scale data integration. 
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inference procedures to identify meaningful 
patterns. While research is needed to advance 
fundamental methods, there is also an urgent 
need to create scalable, usable implementations 
of known methods. Existing libraries of data 
analysis algorithms, such as those associated 
with the open source R software, have been 
tremendously useful, but do not scale to 
terabytes and petabytes of data. New efforts are 
required to build out scalable software systems 
that will facilitate the use of the most modern 
algorithms. 
 
Text mining. A problem that will face almost all 
scientific disciplines in the future is text mining 
to extract semantic information from the huge 
and growing literature [20]. Hand annotation of 
both textual information and experimental data 
can only hope to reach a tiny percentage of the 
literature and data currently ‘published’. Tools 
and technologies are therefore needed to 
automate the extraction of semantic information 
from both text and data as well as to assist in 
annotation to capture the provenance of data 
sets. 
 
Workflows. Scientific workflows, which provide 
for the expression, invocation, documentation, 
and exchange of mashups, are likely to become 
increasingly important as both experiments and 
simulations become increasingly complex and 
multidisciplinary. Open source systems such as 
Kepler and Taverna have proven popular. Such 
systems need to be developed further to increase 
ease of use, support scaling to larger problems, 
address other aspects of the scientific discovery 
process, and incorporate provenance recording 
capabilities. 
 
Visualization Requirements 
The human visual system is an extremely 
powerful tool for discerning patterns and 
identifying features in data. Visualization tools 
play an important role in scientific data analysis. 
Existing tools provide powerful capabilities, but 
as in other areas, the need to deal with 
exponentially larger data volumes and to 
integrate across more data sources of different 
types leads to new challenges that current 
software is not capable of addressing.  Visual 
data analysis, facilitated by interactive 

interfaces, enables the detection and validation 
of expected results while enabling unexpected 
discoveries in science. It allows for the 
validation of new theoretical models, provides 
comparison between models and datasets, 
enables quantitative and qualitative querying, 
improves interpretation of data, and facilitates 
decision-making. Scientists can use visual data 
analysis systems to explore “what if'” scenarios, 
define hypotheses, and examine data under 
multiple perspectives and assumptions. They can 
identify connections between large numbers of 
attributes and quantitatively assess the reliability 
of hypotheses. In essence, visual data analysis is 
an integral part of scientific problem solving and 
discovery.  This is far from a solved problem 
and many avenues for future research remain 
open and discussed in [13]. 
 
Federation and Collaboration 
Requirements 
The most interesting data is usually elsewhere. 
Thus research depends on the ability to discover, 
negotiate permissions for, access, and analyze 
distributed data. The instruments that produce 
data and the computers used to analyze data may 
also be remote. To support these modes of use, 
tools are needed to address authentication, 
authorization, resource discovery, secure 
resource access, and other resource federation 
functions. These tools can build on and must 
often integrate commodity solutions (e.g., 
OpenID and SAML for authentication) but often 
require specialization for specific scientific use 
cases.  
 
Systems such as the cancer Biomedical 
Informatics Grid (caBIG), Biomedical 
Informatics Research Network (BIRN), Earth 
System Grid (ESG), Open Science Grid (OSG), 
and TeraGrid involve large-scale deployments of 
resource federation (a.k.a. “grid”) tools based on 
Globus and other software. Looking forward, we 
see a need for large increases in scale, deeper 
integration with campus infrastructures, and 
considerable improvements in performance, 
functionality, and usability, as the number of 
users of distributed cyberinfrastructure grows 
rapidly. The scale of unmet need in these areas 
is enormous. 
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To further encourage resource federation, 
funding agencies should also encourage 
agreement by the different research communities 
on ontologies, shared vocabularies and data 
formats. Agreement on such things will be 
important for the exchange and reuse of data by 
different researchers and by multiple research 
communities.  
 
 
Establishing a Quantitative Basis for 
Resource Allocation Decisions 
Given the reality of far more software needs 
than can feasibly be supported by government 
funding, it is important that the NSF and other 
agencies have access to reliable quantitative data 
concerning the usage of different software 
systems. One may debate what data is most 
meaningful and how to obtain that data reliably, 
but it seems uncontroversial to assert that data is 
useful. A few existing systems, notably Condor 
and Globus, incorporate usage reporting 
mechanisms that provide detailed data on how, 
where, and when their software is used, but for 
the most part, the only quantitative data 
available is counts of software downloads, a 
highly unreliable predictor of actual usage. 
 
Quantitative usage data can also help inform 
software development and support activities, for 
example by showing what features of software 
are most used and what sorts of failures occur 
most frequently. 
  
Recommendation:   Require that NSF-
supported software incorporate automated 
usage reporting mechanisms to provide accurate 
data on usage. In this way, we can enable 
quantitative comparisons of the extent that 
different software systems are used within the 
NSF community.   
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All software must evolve to keep up with 
changes in systems, usage, and to include new 
algorithms and techniques.  The scientific 
community has an interest in ensuring that the 
software it needs will continue to be available, 
efficient, and employ state-of-the-art 
technology.  A recent NSF report [24] has 
defined sustainable software as software that is 
well-maintained and available for current 
systems.  In supporting software evolution, we 
extend the concept of sustainable software to 
include the changes that are made to software to 
keep it effective and relevant; this often means 
adding new features, changing the structure to 
better fit new system architectures, and the 
adoption of new algorithms and techniques.  
This requires more than simply ensuring that 
existing software remains available as systems 
change. In this section, we consider options for 
supporting the evolution of software.  We begin 
by considering open source software separately 
from proprietary and closed source software.  
Both are important, but each will require a 
different approach. 

Supporting Open Source Software 
Software codes exist but need to be maintained 
and updated as science and systems evolve. 
Successful scientific software, with a large 
community of users, typically has a life cycle of 
several decades. Such software thus spans 
multiple generations of hardware requiring 
constant updates to adapt to new architectural 
features including ever increasing degrees of 
parallelism at multiple granularities or 
heterogeneity, such as clusters with mixed 
commodity CPUs and GPGPUs.  Additionally, 
software requires revisions and updates to 
provide enhanced functionally through the  

 
incorporation of improved models, algorithms or 
emerging techniques for sensitivity analysis, 
optimization and uncertainty quantification. By 
considering scientific software developed over 
the last several decades, we can identify three 
broad classes of open source software.  
 
1. Orphaned Software.  This is software that 

is no longer being developed and has no one 
interested in owning or developing the 
software. However, this software is still in 
use and serving the needs of the scientific 
community.  

2. Prototype Software. This is software that is 
good enough to test an approach or illustrate 
a method, but it is not at a stage where the 
broader community can use it. Such 
software (also known as research software), 
is typically not well tested, and lacking well 
defined interfaces and user guides. Such 
software is still being developed or used by 
its developers; otherwise, it would be in the 
Orphan Software category.  

3. Healthy Software.  These are robust 
software codes, often developed by groups 
that are used by the broader scientific 
community. They may offer functionality 
that spans multiple scientific domains, such 
as middleware for performance modeling or 
data integration, or offer functionality 
required to promote scientific inquiry in 
specific domains along narrow themes.  

 
Open source software sustainability requires 
support for the entire software lifecycle 
including effective and differentiated pathways 
for managing the three classes of software. 
Orphaned Software should be “re-homed” into a 
group that can provide support for it.  Further 
developments should be focused on maintaining 

4 Software Evolution 
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the software in usable form to support the needs 
of its user base through activities to allow 
porting to new platforms and associated tuning, 
testing, and documentation.  Two obvious 
models exist for funding support of orphaned 
software: either a direct funding to the group 
that supports the software or a support 
agreement paid by the users of the software.   
 
Prototype Software that is still under 
development by its authors requires considerable 
assessment of its future potential to determine 
the type of support that may be most 
appropriate. For example, if the software reflects 
significant advances in algorithms or 

methodology 
but its potential 
for broad use is 
difficult to 
assess, it may 
be best to 

provided 
targeted support 
to the 

developers to improve the quality of the 
software. One approach is to use a software 
institute where the developers can bring their 
code, work with experts (and expert tools) to 
analyze, understand, and update their code to 
modern software engineering standards.  The 
developers then take that code home and 
continue to work on it, but with a new 
understanding of software engineering principles 
and methods that could eventually enable its 
transformation into Healthy Software. An 
alternative is to create a branch of the code – 
freezing the development at a certain point.  This 
approach deliberately creates Orphan Software, 
which can be supported as described earlier.  
 
Healthy Software, which is in use in the 
scientific community while it continues to be 
developed, requires significant support for 
sustainability.  The development of such 
software often involves groups of faculty and 
students. Now the central support needs concern 
the development effort required to update the 
software to enable its use on new and emerging 
hardware and the incorporation of new “state-of-
the-art” algorithms and methodologies. These 
projects could benefit from support for scientific 

programmers or software engineers who can 
continue to maintain and engineer the software 
for effective use by the community, while 
faculty and students focus on research toward 
new advances. Although it is extremely 
important to avoid the use of public funds to 
develop software that competes with commercial 
code, significant support for software 
development staff is often vital for promoting 
open software evolution and use. For example, 
when such software provides functionality for a 
relatively small or specialized community or it 
addresses systems issues associated with new 
leadership class hardware, significant support 
may be needed for further development given 
the complex nature of underlying problems or 
the constant need to update software to maintain 
its “state-of-the-art” quality. If the usage 
landscape for such software changes over time, 
its eventual commercialization could be enabled 
and encouraged through appropriate licensing 
modes.  
 
All three classes of software could benefit from 
common infrastructure and standards. For 
example, centralized mechanisms to provide bug 
tracking and initial problem determination can 
be a valuable service for both developers and 
users. Additionally, common infrastructure in 
the form of test systems, including both legacy 
systems for testing backward compatibility and 
new and highly parallel systems to enable new 
software updates and advances. Additionally, 
access to version control and collaborative 
software development frameworks can help 
promote sound software engineering practices, 
and group engagement and collaboration. 
Finally and most importantly, NSF should 
support and promote the development of 
community standards that are critical for 
enabling wider software development and use. 
For example, NSF provided support for travel to 
the MPI Forum meetings, which resulted in the 
MPI standard that has been pivotal in the 
broader development and use of parallel codes. 
NSF should support such community 
infrastructure and standardization efforts at 
multiple levels, including support for the 
formation of standards forums in a variety of 
topical areas, provisioning of shared community 
infrastructure for software lifecycle management 

All software must evolve 
to keep up with changes 
in systems, usage, and 
the inclusion of new 
algorithms and 
techniques. 
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and support for conferences, workshops and 
training events to promote software evolution 
and sustainable open source software for 
science. 
 

Open Source Software, Intellectual 
Property, and Industry-University 
Collaboration: Challenges and 
Opportunities 
The landscape of science has been significantly 
changed by the rise of open source software, 
such as the LAPACK numerical library, the 
MPICH message-passing library, the VTK 
graphics toolkit, Grid collaboration toolkits such 

as Condor and 
Globus, and 
cluster toolkits 
such as 
ROCKS and 
OSCAR.  Such 

open software has led to many large-scale 
national and international research projects that 
depend on sharing of software infrastructure 
across tens of institutions and hundreds to 
thousands of individuals, posing particular 
challenges in software sharing and licensing. 
Negotiating myriad institutional licenses has 
typically proven intractable, and almost all such 
projects have adopted some version of an open 
source software model, often a variant of the 
“BSD model” (derived from the original 
University of California at Berkeley license for 
UNIX), which allows reuse in new and diverse 
ways.  We note there are several open source 
software license options [21]; the choice of 
which open source license to use is sometimes 
not obvious. Several open source licenses allow 
universities and researchers both to foster 
collaboration and sharing in addition to retaining 
the option to generate license revenues, create 
protectable intellectual property, or generate 
proprietary software from research software. 
With other open source licenses, such as the 
GPL or the QPL, the options for 
commercialization and intellectual property 
protection can sometimes be more complicated 
!  but still often possible.  
 

Recommendation:  NSF should recommend 
open source distribution of software developed 
through its programs, while also recommending 
that grantees be aware of different open source 
license options and requirements at the 
grantee's home institution. 
 
Supporting Commercial Software 
Building an entire cyberinfrastructure on open 
source software is likely to be difficult to create 
and sustain. A “mixed source” approach that 
utilizes the strengths of commercial software 
companies in significant areas is much more 
likely to lead to a sustainable and affordable 
software infrastructure. Some key pieces of 
software may only have commercial versions or 
the current commercial versions may be 
substantially better than open source versions.  
Many would argue that compilers fit this 
description; parallel debuggers certainly do.  
Particularly for high-end platforms (such as the 
NSF Track 1 and Track 2 systems), there are 
many demanding and unique problems that are 
not faced by the commodity market.   In such 
instances, NSF and government agencies have 
an important role to play towards supporting 
advances that are critical to promote their 
scientific missions. For example, NSF could 
fund customization to meet the needs of its 
scientific community; in the recent past, DOE 
has taken this approach with Totalview. More 
simply, NSF could pay for software much as it 
does for specialized hardware and other research 
instruments.  Alternatively, NSF could seek to 
promote innovation, that is, fund the 
development of novel approaches rather than 
seek complicated extensions to existing software 
to fit highly specialized instances. Such funding 
could go to either commercial, non-commercial 
providers or industry-university partnerships 
with appropriate contractual and licensing 
agreements to enable both commercialization 
and broader use for research and education.  
 
Recommendation:  It is important to recognize 
that NSF should carefully avoid using public 
money to fund software efforts that compete 
unfairly with private industry.  However, in 
cases where there is no viable market, such is 
often the case for specialized software for 
massively parallel computers, NSF (and other 

The landscape of science 
has been significantly 
changes by the rise of 
open source software. 
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agencies) may need to support open source 
software, using one of the mechanisms 
described.   
 
Collaboration and Software 
Development 
Many software projects involve multiple groups; 
these groups are often geographically separated.  
Particularly for the “prototype” open source 
software, these groups often need to interact 
frequently.  In many cases, this interaction 
makes use of the simplest tools – email and a 
source code control system.  While there are 
many collaboration tools available, these are 
rarely used by groups who are creating (or 
extending) software as part of their NSF-funded 
activities.  As an adjunct to the software center 
concept, there is an opportunity to develop 
and/or adopt more integrated tools to enhance 
collaboration among software development 
groups and between the software developers and 
their users. 
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Researchers in the area of software spend 
significant time in the initial development of 
software, for which the focus is on the 
instantiation of a new idea, the widespread use 
of some software infrastructure, or the 
evaluation of concepts for a new standard.  
Correspondingly, the evaluation of effort 
associated with software needs to include the 
user base for a given software infrastructure, 
participation and publication within a software 
standards effort, or the level of maintenance 
required to evolve software to satisfy the 
dynamic needs of the user community.  It is the 
case, however, that the conventional criteria of 
conference and journal publications and research 
grants are often used when evaluating research 
in the area of software.   There is a lack of well-
developed metrics for the impact and quality of 
scientific software.  Unlike universally accepted 
citation-based metrics of papers, published 
citations of software is rarely practiced.   
 
Recommendation: NSF should work with 
institutions to identify appropriate metrics that 
match the effort necessary for successful 
development and maintenance of scientific 
software.  
 
Requirements for cyberinfrastructure software 
are not unique to the US: similar needs arise in 
every country with an advanced scientific 
research and education enterprise. Common 
solutions to these needs can have two major 
advantages: they reduce total costs, by avoiding 
redundant effort, and they facilitate international 
cooperation within scientific disciplines that use 
these solutions, by reducing barriers due to 
different software systems. These factors are 
important in every area of cyberinfrastructure, 
but are particularly compelling in the case of 
data, federation, and collaboration software due 
to the frequently international nature of the 
associated collaborations. For example, in 
climate research, different teams worldwide 
build their own earth system models, but all 

teams cooperate on the comparison of 
simulation output from different models with 
each other and with observations. 
 
Recommendation: Cooperation on 
cyberinfrastructure software development can 
both reduce total costs by reducing redundant 
effort and reduce barriers to scientific 
collaboration by avoiding the creation of 
noninteroperable software silos. However, such 
cooperation can be difficult because of different 
priorities and funding cycles. NSF should work 
with foreign funding bodies to establish 
programs that incentivize cooperative 
development and support for cyberinfrastructure 
software. 
 

5 Institutional Barriers 
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It is noted that many federal agencies and 
international agencies have significant 
investments in science software infrastructure. 
In the sections below, we summarize some of 
the software programs with these agencies.  
 
 
Air Force Office of Scientific Research 
(AFOSR) 
The Air Force Office of Scientific Research is 
the basic research component of the Air Force 
Research Laboratory.  As such, AFOSR fosters 
fundamental research advancing the state of the 
art in a number of areas critical to continued 
dominance of air, space, and cyberspace.   
Within the broad scope of transformational 
opportunities supported by AFOSR, areas 
relevant to the scope of the present report 
include research in mathematical and 
computational sciences, and in information and 
computer sciences, aimed to identify, discover, 
and further foundational knowledge, for 
addressing challenges and creating new 
capabilities underlying the design, 
implementation and deployment of complex 
systems relevant to the Air Force.   
 
Within this context, and related to advances in 
new approaches and capabilities for such 
systems, disciplinary as well as multidisciplinary 
research priorities include:  new mathematical  
computational methods;  advanced software  
methods  for systems engineering and support of 
dynamic and  complex adaptive systems that 
need to be highly-autonomic, composable, and 
evolvable; adaptive management of 
heterogeneous systems of sensors, and data and 
information fusion; dynamic integration of real-
time data  acquisition and control with advanced 
multiscale application models, and other 

dynamic data driven applications systems.  
Support environments of such systems require 
advanced, multicore-based computer 
architectures, computing models, and dynamic 
runtime environments,  comprising of complex 
distributed computational, communication, and 
data acquisition and control platforms, ad-hoc, 
mobile, complex and heterogeneous 
communication networks, and distributed 
sensing networks.  
  
Research to address such challenges and enable 
breakthrough advances is funded through 
AFSOR programs supporting academic research 
as well as fundamental and basic research in Air 
Force Research Laboratories.  In addition, such 
research is often conducted in collaboration with 
other entities in DoD and other agencies 
supporting fundamental research, such as NSF, 
DOE, NASA, NOAA, NIST, etc.  Programmatic 
modalities include programs supporting 
individual investigator projects, as well as 
Multidisciplinary University Research Initiative 
(MURI) programs, and technology transfer 
programs such as the Small Business 
Technology Transfer Program (STTR). 
 
Department of Energy (DOE) 
The Office of Advanced Scientific Computing 
Research in the Department of Energy’s Office 
of Science supports multidisciplinary SciDAC 
(Scientific Discovery through Advanced 
Computing) projects aimed at developing future 
energy systems, studying global climate change, 
accelerating research in designing new 
materials, improving environmental cleanup 
methods, and understanding physics from the 
tiniest particles to massive supernovae 
explosions. SciDAC Centers for Enabling 
Technologies conduct a mix of research and 
software development to produce software 
solutions required by SciDAC scientific 

6 Other Agencies 
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applications, in such areas as solvers, file 
systems, data management, and distributed 
computing. 
 
The SciDAC program has established SciDAC 
Institutes that are university-led centers of 
excellence intended to increase the presence of 
the program in the academic community and to 
complement the efforts of the SciDAC Centers 
for Enabling Technologies. Under SciDAC-2, 
the four institutes receive a total of $8.2M 
annually for a period of five years. Midterm 
reviews of the institutes occur after three years. 
The Institutes assist the SciDAC Scientific 
Applications with overcoming the challenges to 
effectively utilizing petascale computing; the 
centers are also given the flexibility to pursue 
new research topics and be responsive to the 
broader community.  
 

National Institutes of Health (NIH) 
The National Institutes of Health have many 
programs that support the development of 
software.  One such program is BISTI 
(Biomedical Information Science and 
Technology Initiative), which is a consortium of 
representatives from each of the NIH institutes 
and centers that focus on biomedical computing 
issues at NIH. BISTI was established in 2000. 
The mission of BISTI is to make optimal use of 
computer science and technology to address 
problems in biology and medicine by fostering 
new basic understandings, collaborations, and 
transdisciplinary initiatives between the 
computational and biomedical sciences. BISTI 
coordinates research grants, training 
opportunities, and scientific symposia associated 
with biomedical computing. Proposal for such 
grants must include a software dissemination 
plan, with appropriate timelines. There is no 
prescribed single license for software produced 
through BISTI grants. The software, however, 
should be freely available to biomedical 
researchers and educators in the non-profit 
sector. The terms of the software availability 
should permit the commercialization of 
enhanced or customized versions of the 
software, or incorporation of the software or 
pieces of it into other software packages. 
Further, to preserve utility to the community, the 

software should be transferable such that another 
individual or team can continue development in 
the event the software is “orphaned”.  
 
 
Engineering and Physical Sciences 
Research Council (EPSRC) 
EPSRC has a Software Sustainability program 
that is focused on research infrastructure that 
aids in the long term sustainability of software 
that enables high quality research. EPSRC has 
invested  £5.0M into this program. The objective 
can be fulfilled through the following services: 
• The development of software to an 

acceptable quality for wider deployment, 
through the application of additional 
software engineering to prototype software 
delivered by UK research projects. 

• The maintenance of software that enables 
high quality research through the 
management of a repository for selected 
software. 

• Community outreach and promotion to 
ensure effective update of the services that 
the infrastructure will provide. 

• Engagement with the international 
community through activities such as the 
dissemination of e-research software, 
establishing best practices and standards, 
providing internationally recognized codes. 

 
Proposals can be funded for up to five years in 
duration. Applicants are encouraged to engage 
the National Grid Service (NGS) with their 
projects. 
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• Software is a critical and pervasive 

component of the cyberinfrastructure for 
science and engineering. 

• Software is a tool for new knowledge 
discovery in many disciplines and often also 
itself serves as a representation of 
knowledge. 

• NSF does not adequately support software 
evolution and lifecycle costs. 

• Software needs to address questions of open 
access, portability, reuse, composability and 
dissemination. 

• Increasing complexity of applications, and 
resources can only be dealt with by the 
availability of good software. 

• There is a lack of well-developed metrics for 
the impact and quality of scientific software. 
Unlike universally accepted citation-based 
metrics of papers, published citation of 
software is rarely practiced. 

• The lack of NSF support for the 
development of robust prototype complex 
software frameworks and tools often results 
in repetitive development that can hinder the 
full potential of advances in science and 
engineering 

• Increases in code complexity for addressing 
the paradigm shifts in architecture 
(including using accelerators and 
multi/many core chips) threaten to exceed 
the capacity of the research community for 
software development and support.  

• Fast moving developments in the 
information technology environment and the 
lack of software standards to support those 
developments are a major challenge for the 
creation of new software tools. 

 

 

 

 

 

 

 

• Uncertainty about the computer architecture 
and programming model will impact the 
evolution of simulation software from 
inception to new science results. 

• The software infrastructure for science is 
often a patchwork of supported and 
unsupported software in a rather ad-hoc 
approach. In many cases key simulation 
codes grow organically as a new research 
code is added to an existing body of code, 
resulting in unsustainable applications that 
cannot be easily verified, where error 
propagation from one part of the code to 
others may not be well understood. 

• Research is required into new approaches to 
enable a simpler programming environment 
for application developers – allowing 
composability, portability and ease of 
developing software.  

• A lack of standards in application 
programming interfaces, data models and 
formats, and interoperability of 
programming models makes the integration 
of different pieces of software representing 
different models and different phases of the 
workflow challenging.  

• Software for operating large numbers of 
sensors, collecting data from such sensors, 
synthesizing derived data from sensor 
output, etc., needs to be developed in a more 
organized fashion to enable broad and robust 
use. 

• Integration of simulation data with 
experimental data, as is common in the 
climate and weather modeling communities, 
will be increasingly important in all areas. 
Software is required to assist with data 
modeling, with the representation and 

7 Summary of Findings 
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exchange (and automated extraction) of 
semantic information, and with the 
mechanics of large-scale data integration. 

• Software is needed to manage data 
acquisition from experiments and its 
integration with data curation, annotation, 
and analysis functions. 

• Software is needed to cope with distributed 
generation and use of data tools for large 
scale data federation across multiple 
instruments and users. 

• Ease of use and integration of scientific and 
engineering software with collaborative 
tools will be a priority. 
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 Summary of Recommendations 
1. NSF should develop a multi-level 

((individual, team, institute), long-term 
program of support of scientific software 
elements ranging from complex applications 
to tools of use in multiple domains. Such 
programs should also support extreme scale 
data and simulation and the needs of 
MREFCs.  

2. NSF should take leadership with promoting 
verification, validation, sustainability, and 
reproducibility of software with federal 
support.   

3. NSF should develop a consistent policy on 
open sources software that promotes 
scientific discovery and encourages 
innovation. 

4. NSF support for software should entail 
collaborations among all of its divisions, 
related federal agencies and private industry. 

5. NSF should utilize the Advisory 
Committees to obtain community input on 
software priorities through workshops and 
town hall meetings involving the broad 
community. 
 

While the above summary recommendations 
capture the essence of the deliberations of this 
taskforce we provide below additional detail that 
may be used to interpret these recommendations. 
 
Programs 
1. Under the SSE umbrella, NSF should 

support both of the following types of 
activities: (1) projects that are headlined by 
actual complex applications, which use a 
variety of software components in a 
vertically integrated manner (“end-user 
projects/science-pull”) and (2) projects that 
develop and apply software components that 

are common to many applications 
(“technology projects/science-push”).   
 
 
 
 
 
 
 
 
 
Typical outcomes under the SSE program, at 
any of its levels (single investigators, teams, 
centers) include the hardening of prototype 
software, the integration of new software 
technology into existing software, and 
engaging in cross-disciplinary production 
collaborations with experts in the use of the 
software. 
 

a. Under SSE technology 
projects/science-push, NSF should 
support a variety of activities, 
including: developing and 
provisioning of software 
components, extension of 
applicability of software outside of 
the domain of original development, 
porting of software to architectures 
outside of the domain of original 
development so that it operates 
across all relevant architectural 
scales, development and promotion 
of community standards for 
software, development of new and 
maintenance of existing numerical 
libraries, training in software use, 
training in software development, 
and archiving and re-homing of 
orphaned software of enduring 
importance to the scientific or 
engineering community. 
 

2. Under SSE, NSF should proactively support 
projects that merge proven simulation 
methods and proven data (experiments, 
observations, sensor inputs, etc.) at scale. 
 

3. Under SSE, NSF should focus attention on 
the data and software needs of the major 
NSF research facilities (MREFCs). 

8 Recommendations 
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4. SSE project budgets should accommodate 

adequate human resources at the level of 
post-graduate software engineer, and not 
penalize such allocations on the basis that 
there is insufficient training of student 
researchers.  Participation of student 
researchers should also be encouraged 
through aspects of such projects that relate 
to doctoral dissertation-worthy work. 

 

5. Under SSE, NSF should support the 
development of portable systems. 

 
 
Policy & Practices  
6. NSF should encourage best practices in 

validation and verification of the software 
that it sponsors under the SSE, including 
standard software engineering best practices 
(error reporting, unit testing during 
development, regression testing, versioning, 
automated code analysis, argument type-
checking at interfaces, performance 
profiling, bug tracking, etc.) as well as 
application-specific best practices 
(physically relevant test harnesses, built-in 
modified equation analysis, built-in 
sensitivity analysis, built-in Jacobian 
checking, built-in declarations of verifiable 
properties of data objects, requirements for 
multi-scale and multi-model integration, 
argument value-checking at interfaces, code 
instrumentation that automatically reports on 
usage over the internet to developers, etc.). 

 
7. NSF should explore the legal and technical 

issues with respect to the different open 
sources licenses to encourage a consistent 
policy on open sources software developed 
under SSE and provide information on the 
implications of the different licenses to the 
researchers.   

 
8. NSF should encourage reproducibility (e.g., 

detailed provenance of results and data) in 
all computational results that it sponsors, 
including the preservation of the software 
and data used in the research. 

 

9. NSF should seek to offer pathways to 
software sustainability, as sustainability is 
essential to encourage end-users to stake 
portions of their careers on the long-term 
availability of important components of the 
software infrastructure for which there is no 
commercial market. 

 
10. NSF should promote discussion amongst its 

own personnel and with leadership at 
institutions where its principal investigators 
are employed, to consider development and 
provisioning of Complex Software 
Infrastructures activities, as meritorious in 
promotions and raises. 

 

11. NSF should develop, acquire, and apply 
metrics for review of SSE projects that are 
complementary to the standard criterion of 
intellectual merit.  Impact remains a key 
metric.  One of the new metrics for merit 
review is that the community has come 
together to identify one or more common 
needs that are met by the proposed project 

 
 
Collaborations 
12. NSF should foster a healthy software 

industry through the SSE through: (1) 
avoiding competition with commercial 
industry when adequate software already 
exists, (2) sponsoring the acquisition of 
commercial software as part of the cost of 
doing research when adequate software 
exists, (3) encouraging collaborative 
University-Industry innovation, and 
transitioning into the commercial 
marketplace software developed under the 
SSE umbrella, (4) promote close 
communication between chip designers, 
system builders, and software developers, 
(5) encourage the formation of public-
private transitions through new and 
innovative partnerships between academe 
and industry, and (6) provide SBIR-like 
programs to facilitate the commercialization 
process. 
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13. NSF should seek to fund SSE projects 
through participation from all relevant 
science and engineering Directorates and 
Offices, not by OCI alone, in order to insure 
that the investments are adequately funded 
and correctly purposed. 

 
14. NSF should consider novel ways of teaming 

with other agencies of the U.S. government 
that support software research and 
development to cross-leverage advances 
providing for the common open-source 
infrastructure(s). NSF should sustain its 
current strength in supporting software 
innovation while increasing its role in the 
support of the lifecycle costs of such 
software in partnership with mission 
agencies like the Department of Energy and 
National Institutes of Health. 

 
15. NSF should consider novel ways of teaming 

with agencies of other nations that support 
software research and development to cross-
leverage advances providing for the 
common open-source infrastructure(s). 

 
 

16. NSF should utilize the different Advisory 
Committees to obtain community input on 
software (e.g., orphaned codes) for which 
there is a need for sustainability and/or 
evolution.  The input can be obtained via 
workshops, web-based surveys, professional 
societies, etc. 
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