
National Science Foundation
Advisory Committee for CyberInfrastructure
Task Force on Software for Science and Engineering
Final Report, March 2011

Task Force Co-Chairs from the ACCI
David Keyes, KAUST and Columbia

Valerie Taylor, TAMU

ACCI Members
Tony Hey, Microsoft

Stuart Feldman, Google

Community Panelists
Gabrielle Allen, LSU
Phillip Colella, LBNL

Peter Cummings, Vanderbilt
Frederica Darema, AFOSR

Jack Dongarra, UT
Thom Dunning, UIUC
Mark Ellisman, UCSD

Ian Foster, ANL and UofC
William Gropp, UIUC
Chris Johnson, Utah

Chandrika Kamath, LLNL
Ravi Madduri, ANL

Michael Mascagni, FSU
Steve Parker, NVIDIA

Padma Raghavan, PennState
Anne Trefethen, Oxford

Scott Valcourt, UNH

Principal NSF Liaison
Abani Patra, SUNY Buffalo

NSF Liaisons

Fahmida Choudhury, SBE, Clark Cooper, ENG, Peter McCartney, BIO, Manish Parashar, OCI,
Tom Russell, OIA Barry Schneider, OCI, Jen Schopf, OCI, Nigel Sharp, MPS

Although this report was prepared by a task force commissioned by the National Science Foundation, all
opinions, findings, and recommendations expressed within it are those of the task force and do not
necessarily reflect the views of the National Science Foundation.

2

Preface

The Software for Science and Engineering (SSE) Task Force commenced in June 2009 with a
charge that consisted of the following three elements:

• Identify specific needs and opportunities across the spectrum of scientific software
infrastructure. Characterize the specific needs and analyze technical gaps and
opportunities for NSF to meet those needs through individual and systemic approaches.

• Design responsive approaches. Develop initiatives and programs led (or co-led) by NSF
to grow, develop, and sustain the software infrastructure needed to support NSF’s
mission of transformative research and innovation leading to scientific leadership and
technological competitiveness.

• Address issues of institutional barriers. Anticipate, analyze and address both institutional
and exogenous barriers to NSF’s promotion of such an infrastructure.

The SSE Task Force members participated in bi-weekly telecons to address the given charge.
The telecons often included additional distinguished members of the scientific community
beyond the task force membership engaged in software issues, as well as personnel from federal
agencies outside of NSF who manage software programs. It was quickly acknowledged that a
number of reports loosely and tightly related to SSE existed and should be leveraged. By
September 2009, the task formed had formed three subcommittees focused on the following
topics: (1) compute-intensive science, (2) data-intensive science, and (3) software evolution.

Throughout the process of preparing this report, it was deemed important to seek input from the
broader community. This was accomplished through a combination of birds-of-a-feather sessions
at conferences, participation in relevant workshops, and individual conversations at conferences
and our respective institutions. In particular, we participated in the series of International
Exascale Software Workshops co-sponsored by DOE and NSF in 2009, a birds-of-a-feather
session at SC 2009, and informal discussions at SC 2010. Further, presentations were given at
DDDAS Workshop in August 2010 and the CI-EPSCOR Workshop in October 2010. In
addition, some of the members of the SSE Task Force were members of five other NSF ACCI
task forces working simultaneously on other reports in this series, thereby allowing for cross-
referencing of materials among the different task forces. Approximately two years from
inception, we are pleased to deliver the final version of the SSE task force report.

3

Table of Contents
EXECUTIVE SUMMARY ... 4

CHAPTER 1: INTRODUCTION ... 5

CHAPTER 2: COMPUTE INTENSIVE SCIENCE ... 8
COMPUTE SYSTEMS .. 8
THE SOFTWARE STACK ... 9
APPLICATION SOFTWARE .. 9
DEVELOPMENT ENVIRONMENTS ... 10
NUMERICAL LIBRARIES ... 10
SYSTEM SOFTWARE AND RUNTIME SYSTEMS ... 11

CHAPTER 3: DATA, FEDRATION, & COLLABORATION ... 12
CHANGING SOFTWARE NEEDS .. 13
DATA REQUIREMENTS ... 14
VISUALIZATION REQUIREMENTS ... 15
FEDERATION AND COLLABORATION REQUIREMENTS .. 15
ESTABLISHING A QUANTITATIVE BASIS FOR RESOURCE ALLOCATION DECISIONS 16

CHAPTER 4: SOFTWARE EVOLUTION ... 17
SUPPORTING OPEN SOURCE SOFTWARE ... 17
OPEN SOURCE SOFTWARE, IP AND INDUSTRY-UNIVERSITY COLLABORATION 19
SUPPORTING COMMERCIAL SOFTWARE .. 19
COLLABORATION AND SOFTWARE DEVELOPMENT .. 20

CHAPTER 5: INSTITUTIONAL BARRIERS ... 21

CHAPTER 6: OTHER AGENCIES ... 22
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFOSR) .. 22
DEPARTMENT OF ENERGY (DOE) ... 22
NATIONAL INSTITUTES OF HEALTH .. 23
ENGINEERING AND PHYSICAL SCIENCES RESEARCH COUNCIL (EPSRC) ... 23

CHAPTER 7: SUMMARY OF FINDINGS ... 24

CHAPTER 8: RECOMMENDATIONS .. 26

REFERENCES .. 29

4

Software is a critical and pervasive component of the cyberinfrastructure for science and engineering. It
is the software that binds together the hardware, networks, data, and users such that new knowledge and
discovery result from cyberinfrastructure. Furthermore, software must evolve to meet rapid changes in
hardware architectures as well as any new functionality that is demanded and results when communities
advance in various disciplines. According to many federal reports, software is a, if not the, “grand
challenge” of cyberinfrastructure. Yet, software is historically among the least coordinated and
systematically funded components of cyberinfrastructure. Accordingly, the NSF Advisory Committee on
Cyberinfrastructure has chartered a Task Force on Software for Science and Engineering (SSE) to identify
findings and form recommendations to NSF on how best to fulfill its mission of promoting the progress of
science and to help meet the demand on software to deliver ubiquitous, reliable, and easily accessible
computer and data services.

Software infrastructure has evolved organically and inconsistently, with its development and adoption
coming largely as by-products of community responses to other targeted initiatives. Software creation is
very often encouraged and a legitimate focus of NSF-funded projects. The long-term funding for the
evolution and maintenance of software is often difficult to support through NSF. Support of software
infrastructure for NSF-funded projects and large community initiatives generally depends upon funding
sources that are one-time, sporadic, and domain-specific where the focus is on the science or engineering
outcomes. Currently, there is no systematic and periodic process for determining software requirements
and priorities across the NSF community. Nor are there generally accepted quantitative metrics for
determining what software researchers most heavily use.

Good software needs to be developed in a comprehensive, end-to-end fashion. Software infrastructure
should enable users to exploit, integrate, and cross-leverage evolving software tools. Some of the
challenges include coordinating the interfaces between software and other components that need to
interoperate to accomplish the science and engineering goals of interest. Increases in code complexity for
addressing the paradigm shifts in computer architectures (including using accelerators and multi/many
core chips) threaten to exceed the capacity of the research community for software development and
support. Good software infrastructure not only meets needs that are recognized at the time of its design,
but is extensible for the meeting of unanticipated needs for long periods between occasional fresh starts
due to so-called “disruptive technologies”. Furthermore, it is important that software infrastructure
address issues related to open access, portability, reuse, composability, and dissemination. We are at a
most opportune time for NSF to rethink the research, development, and maintenance of our software
infrastructure.

The Task Force on Software for Science and Engineering has formed the following major
recommendations on how NSF can best support the research, development, and maintenance of software
infrastructure:
1. NSF should develop a multi-level (individual, team, institute), long-term program of support of

scientific software elements ranging from complex applications to tools of utility in multiple domains.
Such programs should also support extreme scale data and simulation and the needs of NSF’s Major
Research Equipment and Facilities (MREFC) projects.

2. NSF should take leadership in promoting verification, validation, sustainability, and reproducibility
through software developed with federal support.

3. NSF should develop a consistent policy on open sources software that promotes scientific discovery
and encourages innovation.

4. NSF support for software should entail collaborations among all of its divisions, related federal
agencies, and private industry.

5. NSF should utilize its Advisory Committees to obtain community input on software priorities.

Executive Summary

5

The mission of NSF, “To promote the progress
of science; to advance the national health,
prosperity, and welfare; to secure the national
defense…,” is increasingly dependent on
cyberinfrastructure, which includes hardware,
networks, data, software, and trained users.
Software is a critical and pervasive component
of the cyberinfrastructure for science and
engineering. It is the software that binds
together the hardware, networks, data, and users
such that new knowledge and discovery result
from cyberinfrastructure. Furthermore, software
must evolve to meet rapid changes in hardware
architectures as well as new functionality that is
demanded and results when communities
advance in various disciplines. According to
many federal reports, software is a, if not the,
“grand challenge” of cyberinfrastructure. Yet,
software is historically among the least
coordinated and systematically funded
components of cyberinfrastructure.
Accordingly, the NSF Advisory Committee on
Cyberinfrastructure has chartered a Task Force
on Software for Science and Engineering (SSE)
to identify findings and form recommendations
to NSF on how best to fulfill its mission of
promoting the progress of science and to help
meet the demand on software to deliver
ubiquitous, reliable, and easily accessible
computer and data services.

Software infrastructure has evolved organically
and inconsistently, with its development and
adoption coming largely as by-products of
community responses to other targeted
initiatives. Software creation is very often
encouraged and a legitimate focus of NSF-
funded projects. The long-term funding for the
evolution and maintenance of software is often

difficult to support through NSF. Support of
software infrastructure for NSF-funded projects
and large community initiatives generally
depends upon funding sources that are one-time,
sporadic, and domain-specific where the focus is
on the science or engineering outcomes. For
example, ROMS – the Regional Ocean
Modeling
System,
which is
widely used
by over
2,000 users
worldwide
via an open source license, has been funded for
many years by ONR; NSF provided some initial
funding to develop algorithms for data
assimilations.

The “software stack” now invoked by scientists
and engineers consists of systems software (e.g.,
operating systems, file systems, compilers),
middleware (e.g., file transfers, multi-model
communication, provenance), libraries (e.g.,
numerical libraries, communication libraries),
and applications (whose creation is often driven
by specific objectives, but which then evolve to
become shared more widely than anticipated).
While the community has functioned with the
organic and ad hoc development of this software
stack, the stack is becoming fragile due to
stresses from many directions: increasing
complexity, dynamic and adaptive resource
requirements, dependencies across layers of the
software stack, hardware that responds to market
forces that are not science-driven; increasing
diversity of the community to be supported,
which is becoming larger and on average
broader and less computationally sophisticated

Software is a critical and
pervasive component of the
cyberinfrastructure for
science and engineering.

1
Introduction

6

than the more technologically oriented
“pioneers” who invent the software
infrastructure; expansion of expected
functionality; reliability requirements that
become stricter, and so forth. Some of these
causes of stress are signs of progress. For
example, computational simulation and data
analysis have been critical to innumerable
scientific endeavors with the result that scientists
who are not computing experts today are
computing successfully in large numbers.
However, future development and maintenance
of the software infrastructure on which the
computing community critically depends will be
difficult if our support mechanisms continue in
the current ad hoc mode. The confluence of
these stresses, especially with respect to rapid
hardware changes and ripeness of scientific
opportunity, suggests that we are at a most
opportune time for NSF to rethink the research,
development, and maintenance of our software
infrastructure. Furthermore, it is important that
software infrastructure address issues related to
open access, portability, reuse, composability,
and dissemination.

The identification of software standards that
deserve to be supported is one of the roles that
NSF’s peer-review processes can facilitate.
However, today’s ad hoc and loosely
coordinated approaches to software
infrastructure allow unanticipated breakthroughs
and chances for new ideas to arise and influence
the entire cyber-ecosystem; this must not be lost
in a well-meaning attempt to make the
ecosystem more efficient through designation of
approaches as preferred or deprecated. Good
software reliably and efficiently encodes
expertise in processing data and delivers it
across well-understood interfaces to users and
other developers and integrators who require
that expertise. However, some principles for
software design and some metrics for software
evaluation are subjective and controversial, and
should not be prescribed too narrowly or rigidly.
A balance must be preserved between
standardization for efficiency and flexibility for
innovation.

Good software needs to be developed in a
comprehensive end-to-end fashion. Software

infrastructure should enable users to exploit,
integrate, and cross-leverage evolving software
tools. Some of the challenges include
coordinating the interfaces between software and
other components that need to interoperate to
accomplish the science and engineering goals of
interest. Further, increases in code complexity
for addressing the paradigm shifts in computer
architectures (including using accelerators and
multi/many core chips) threaten to exceed the
capacity of the research community for software
development and support. Good software
infrastructure not only meets the needs that are
recognized at the time of its design, but is
extensible for the meeting of unanticipated
needs for long periods between occasional fresh
starts due to so-called “disruptive technologies”.

Software has become an essential tool for
knowledge discovery in many disciplines and
often also itself serves as a representation of
knowledge. Hence, there is an urgent need to
dedicate increasing resources to software,
especially given the architecture transitions
anticipated for the coming decade. Because of
NSF’s prestige and the peer-consensus care with
which it sets priorities, there is an important role
for NSF in the global context of
cyberinfrastructure. The resources that NSF can
bring to the table to enable its own scientists and
engineers to be productive are formidable and
necessary. An equally necessary role for NSF is
to stimulate investments of others and expand
the reward structure for contributions to
cyberinfrastructure in the international scientific
workplace, whether in universities, government
laboratories, or industry.

Any effort to rethink software infrastructure
must involve stakeholders from academia,

industry, and
national

laboratories, as
well as the
other basic
science and

mission
agencies.

Further, the
focus of this effort should include all software in
support of NSF’s science and engineering

There is currently no
systematic and periodic
process for determining
software requirements
and priorities across the
NSF community.

7

mission, not only the high-end software that is
most visibility. There is currently no systematic
and periodic process for determining software
requirements and priorities across the NSF
community. Nor are there generally accepted
quantitative metrics for determining what
software researchers most heavily use. In the
absence of such inventories of requirements and
usage, it will be difficult for NSF to do an
optimal job of allocating resources to software
projects. However, some sure-fire
improvements to current programs are clearly
possible and should be pursued simultaneously
with improvements to tracking of needs and use.

In responding to the recommendations of the
Taskforce on Software for Science and
Engineering, NSF should keep in mind that
while no single agency can influence the entire
open global cyber-ecosystem, NSF can aspire to
set forth compelling principles and examples
and to offer compelling incentives for software
compatibility. NSF’s influence could be
tremendous because of its dominance in
university-
based computer
science and
mathematics
research in the
United States
and its
willingness to
fund leading
edge, high-risk research. While NSF’s
recognized responsibilities in cyberinfrastructure
are long-term, the SSE Taskforce is but a first
step intended to facilitate discussion among NSF
administrators and within the community.

The next three sections, Sections 2 through 4,
provide the analysis of the needs and
opportunities of software infrastructure with
respect to three areas: compute intensive
science; data, federation, and collaboration; and
software evolution. The first two areas represent
the hardware and observational facilities that are
expected to yield new scientific results and the
third is needed to represent the complex cycle of
software from creation to hardening and beyond.
It is recognized that there is significant overlap
among all three areas. The first two areas,

however, are intended to represent the
continuum between compute intensive science
and data intensive science. Section 5 provides a
discussion of the institutional barriers with
respect to SSE followed by a brief summary of
related activities ongoing in other agencies in
Section 6. The findings and recommendations
are summarized in Sections 7 and 8,
respectively.

NSF can aspire to set
forth compelling
principles and examples
and to offer compelling
incentives for software
compatibility.

8

Advanced computing is an essential tool in
addressing scientific problems of strategic
international importance, including climate
prediction, nanoscience, new materials, drug
design, biomedical modeling, and next-
generation power sources; it is equally essential
to solve commercial and industrial problems in
financial modeling, engineering, and real-time
decision systems. For example, the Southern
California Earthquake Center (SCEC) seeks to
develop a predictive understanding of
earthquake processes aimed at providing society
with improved understanding of seismic
hazards. In partnership with earthquake
engineers, the SCEC researchers are developing
the ability to conduct end-to-end simulations
(“rupture to rafters”) to extend their
understanding of seismic hazards to include
earthquake risks and risk mitigation strategies.

Simulations of physical entities are increasing in
accuracy through finer scale approximations,
inclusion of increasingly realistic physics, and
integration of models across different scales. In

other
systems,
process

analysis and
planning

simulations
involve

integration of
models across

several
modalities

and behaviors
of the system.

For any scale of computing these changes
invariably lead to increasing complexity in
software and, for compute-intensive science, a
dependency on layers of software from the
application interface, mathematical and
communication libraries, down to compilers and

the operating system. The increasing software
complexity and uncertainty about the computer
architecture and programming model will impact
the life-cycle of simulation software from
inception to new science results.

Compute Systems
In recent years there have been a number of
studies and research community workshops that
have made the case for simulation and
computational requirements; see [6,7,12,
14,15,23,25] to name a few. Many of these
meetings have been focused on high-
performance (petascale through exascale)
computation – but their findings regarding
algorithms and software are not restricted to
extreme computing. For example, the report on
exascale computing for energy and environment
[23] notes the following:

“The current belief is that the broad
market is not likely to be able to adopt
multicore systems at the 1000-processor
level without a substantial revolution in
software and programming techniques for
the hundreds of thousands of
programmers who work in industry and do
not yet have adequate parallel
programming skills.”

Programmers targeting the desktop of tomorrow
will face many of the same issues encountered
with today’s high-end computing. These issues
include multi- and many-core programming
challenges, dealing with heterogeneous
computer architectures possibly requiring
support for mixed arithmetic, and as noted above
a dependency on a deep software stack.

Issues for computing software include the
capacity to deal with large-scale concurrency
and heterogeneity from the desktop architecture
up to the peta- and exascale systems. It is
expected that Moore’s law is only likely to apply
for the next decade after which time we will

2 Compute Intensive
Science

The increasing software
complexity and
uncertainty about the
computer architecture
and programming model
will impact the life-cycle
of simulation software
from inception to new
science results.

9

have hit the limits of miniaturization; the days of
increasing clock rates and instruction-level
parallelism will be over. Hence processors are
being built that have multiple cores and slower
clock rates requiring software designed and
written in a multi-threaded fashion. It is
increasingly the case that desktops and the core
building blocks for larger systems are made up
of multicore chips with additional accelerator
hardware such as a graphics processor unit
(GPU) or similar. This adds increased
complexity and a requirement for software that
can behave appropriately in these heterogeneous
environments.

Power usage is becoming increasingly
important. Software that can interact with the
hardware system to enable power-saving actions
(such as powering down idle hardware
components) to reduce power consumption need
to be part of the design space.

The ability to move codes from one computer
system to another and to have efficient and
effective use of the resources are going to
continue to be of great importance and likely to
increase in difficulty due to the complexity of
the systems and the software. There needs to be
more research and development focused on
automatic generation, auto-tuning, and other
areas that will allow software to be developed at
a high-level, yet will adapt to the underlying
architecture.

Recommendation: NSF should support the
development of portable systems through such
things as automatic code generation and auto-
tuning approaches.

Recommendation: NSF should encourage close
communication between chip designers, system
builders, and software developers through
appropriate collaborative research grants.

The Software Stack
The layers of software underpinning any given
simulation application will typically consist of a
mix of open source community-supported
software, commercial tools and libraries, and
application-specific components developed by

research students and post doctoral researchers
[25]. In general the “software infrastructure” for
compute-intensive applications is a rather ad hoc
patchwork of supported and unsupported
software [3]. In many cases key simulation
codes grow organically, as research code is
added to an existing body of code, resulting in
unsustainable applications that cannot be easily
verified, in which error propagation from one
part of the code to others may not be well
understood, and indeed the in-house developed
software is not likely to perform efficiently
across any number of computer platforms. Such
shortcomings will increase with the increasing
multilevel, complex hierarchy of the hardware
platforms.

Application Software
The ACCI Task Force report on Grand
Challenges [16] articulates well the requirements
for the grand challenge applications in CS&E;
similarly in [3] the software infrastructure is
foreseen for that driven by applications in four
areas of science, namely astrophysics,
atmospheric sciences, evolutionary biology, and
chemical separations. The requirements
identified include some general requirements of
scalable software systems; higher-level
abstractions to allow application developers an
easier development environment; the provision
of efficient, portable “plug and play” libraries;
and code generation techniques to support
portability. Here, as in more recent reports, there
is an urgent call and warning from specific
research communities with notes like the
following: “The increases in code complexity
could exceed the capacity of the national centers
for software development and support.”

The compute-
intensive
application
challenges
require
research,
support,
services,
education and training to affect a change in
culture in some cases. Many applications
involve multiple models at different scales or for
different elements of the application. A lack of

“The increases in code
complexity could exceed
the capacity of the national
centers for software
development and support.”

10

standards in application programming interfaces,
data models and formats, and interoperability of
programming models makes this integration of
different models challenging. This is equally
true beyond the simulation code itself as it is
usually part of a pipeline of activity – model
creation, calculation, analysis and visualization.
Without agreed upon interfaces and data
formats, building this pipeline is difficult and
time consuming. To enable portability without
constant rewriting of code, we need different
approaches including adaptive algorithms to
adapt to problem characteristics and also
architectural constraints.

Further, support and services are needed to
provide guidance to application developers on
best practices for software engineering,
provisioning of software tools to assist in code
development, and processes to ensure good
computational components are understood and
used, not reinvented. The route to sustainable
software is complex and application
communities cannot be expected to go it alone.

Recommendation: NSF should support
standards development in both application
specific data formats, and generic requirements
for multi-scale, multi-model integration.

Development Environments
The development environment is the suite of
software and tools that the application developer
might use to create the application code. It
includes the programming language,
programming model, software frameworks,
compilers and libraries as well as the debugging
and optimization tools. As noted above, software
longevity is going to be difficult to maintain in
an ever-changing hardware environment. This
will be true of development environment
software and tools as well as the application
software. The ACCI Task Force report on
Grand Challenges notes “The Message Passing
Interface (MPI) based programming model
based on an inherently flat architecture ……will
need to be reinvented to meet application
challenges….”. While this refers to high-
performance applications, the same is true of
desk-top application environments and standard

programming models for programming
heterogeneous nodes.

In the past, frameworks and toolkits, such as
PETSc [18], have been developed that ease the
burden on application developers by providing a
collection of tools, interfaces, algorithms that
allow a level of encapsulation and abstraction
that is easy for applications to use effectively at
the same time providing efficient use of the
underlying resources. Research is required into
new approaches to enable a simpler
programming environment for application
developers – allowing composability and
portability of software components.

Numerical Libraries
While there have been great advances in
computing hardware, algorithms and software
libraries have contributed as much to increases
in computational simulation capability as have
improvements in hardware [14,15]. Increasing
complexity of applications and resources can be
dealt with only through the availability of good
software. The fast moving developments in
hardware architectures and the lack of software
standards to support those developments are
major challenges for the creation of a stable
software infrastructure.

In many fields there are well-defined software
components that provide the building blocks for
computational simulations and more could be
gained by this approach. Some studies [5,7,
9,12,23,25] have identified the cross application
components that indicate the layers of software
dependencies for the suite of applications. The
International Exascale Software Project (IESP)
[6] is developing a technology roadmap to allow
an international collaboration on the
development of the software infrastructure to
support an exascale machine.

Recommendation: NSF should support the
development of new and sustainability of
existing numerical libraries. This will provide a
bootstrap for old and new application codes.

11

Systems Software and Runtime
Systems
The increasing heterogeneity of computer
systems indicates that the software stack
requires significant support from systems
software and runtime systems to manage
threads, schedule computations, ensure
appropriate load balance across the system. The
development of such systems software and
runtime support is most likely to land at the feet
of the hardware vendors and provides a key
place for integration with the open source
developments of numerical libraries,
development environments, and of course
application codes. The IESP roadmap
recommends the use of application codes as co-
design vehicles that will support this integrated
approach to development of the software
systems.

Recommendation: Support is needed to enable
collaboration with industry computer vendors
and software developers.

12

In the 25 years since the establishment of the
first NSF supercomputer centers, the
performance of the fastest supercomputers has
increased by six orders of magnitude, from 109
to 1015 floating point operations per second. This
remarkable evolution and concurrent
improvements in numerical methods have
transformed how many disciplines study
complex phenomena. Computational simulation
is by now a mainstream method of scientific
research and discovery, and as a result, both the
number of users of computational methods and
the demands for computing facilities and
software has grown greatly.

In a more recent and in some respects yet more
remarkable development, the past 10 years have
also seen the emergence of new approaches to
scientific and engineering discovery based on
the analysis of large volumes of data [11].
Developments in sensor technology, laboratory
automation, computational simulation, and
storage technologies have together enabled a
dramatic explosion in available data in many
fields. Just 15 years ago, a popular book
described methods for managing O (109) bytes
(gigabytes) [27]. Now, individual experiments in
high-energy physics can generate O (1015) bytes
(petabytes) per year; in other communities,
individual instruments may generate terabytes
per day, and the aggregate volume, distributed
over many facilities, also reaches petabytes. This
data deluge shows no signs of slowing —
indeed, the pace of exponential growth in
available data appears to be accelerating, driven
both by technological innovation and
competitive pressures, as researchers realize that
more data leads to more rapid progress.
Furthermore, the fact that data relevant to a
problem solution comes from multiple sources,
collected in different modalities, timescales, and
formats, adds to the complexity. One of the
greatest scientific and engineering challenges of
the twenty-first century is to understand and

make effective use of this growing body of
information.

A third wave of change is the continued
commoditization of computing, resulting in the
emergence of both ever-more powerful campus
computing resources, or resources consisting of
multiple heterogeneous, interconnected
computing platforms that may be geographically
distributed, or resources such as those supported
by commercial “cloud” computing service
providers that leverage new economies of
massive scale. The success of simulation and the
data explosion drive an expanding need for
computing; these technological and business
model developments mean that this need can
increasingly be met outside traditional
supercomputer centers.

These developments demand a new view of
cyberinfrastructure. No longer is it sufficient to
focus attention on making a few high-end
supercomputers usable by a relatively small
number of expert users. Instead, a 21st Century
cyberinfrastructure must recognize that
computing will be performed by many more
people, in many places; that for many
researchers, data analysis will be as important
as, or even more important than, simulation; and
that research and innovation will become
increasingly distributed and collaborative.

These developments have particularly
challenging implications for the nature of
scientific software, and the scientific
community’s needs for improvements in how
that software is developed and supported. (It is
noted that many of these needs have been
identified by Jim Gray [10] in talks and papers
delivered before his untimely disappearance.) In
the following, we first review the nature of
software needs, and then propose approaches to
meeting those needs.

3 Data, Federation &
Collaboration

13

Changing Software Needs
Exponentially bigger data demands a
fundamental change in the scientific work
process. For example, not too long ago, a
graduate student in biology might spend several
years sequencing a single gene, producing
ultimately a few thousand bytes of data. While
information technology was used in this
research, it was not the rate-limiting factor.
Today, a graduate student can produce billions
of base pairs per day using modern sequencing
machines. The collection, reconstruction,
integration, management, sharing, analysis, and
re-analysis of this data, and also associated
modeling tasks (e.g., hypothesis testing for
statistical inference)—and the management of
many such tasks over time—are the rate limiting
steps in the research process. Each step typically
requires sophisticated software—software that
often does not exist (old standbys, such as Excel
and LabView, can no longer cope), but that is
beyond the skills and resources of the typical
research group to create.

Another problem that will face almost all
scientific disciplines in the future is the need for
intelligent text mining to extract semantic
information from the huge and growing
literature. Hand annotation of both textual
information and experimental data can only
hope to reach a tiny percentage of the literature
and data currently ‘published’. Tools and
technologies are therefore needed to automate
the extraction of semantic information from text
and data as well as tools to assist in annotation
to capture the provenance of data sets.
Application workflows are likely to become
increasingly important as both experiments and
simulations become increasingly complex and
multidisciplinary.

The generation of large quantities of data also
has a second-order effect on the scientific work
process. As more data becomes publicly
available, research increasingly often involves
analysis of data produced by others. The
research process frequently also becomes more
collaborative. Again, significant software
challenges emerge, relating for example to
discovery, access, sharing, integration, analysis,
and correlation (fusion) of data from multiple

sources and locations, and the protection of data
from unauthorized access and tampering.

Recommendation: Funding agencies should
also encourage agreement by the different
research communities on ontologies, shared
vocabularies, and data formats specific to their
research fields.

Agreement on such things will be important for
the exchange and reuse of data by different
researchers and by multiple research
communities. Just as there is a social issue with
recognizing computational science as a valid
discipline worthy of academic rewards, so too,
there is a need for recognition of data curators
and data archivists who make possible the
preservation and reuse of data.

The impact of the aforementioned changes on
cyberinfrastructure needs is seen clearly in large
instrumentation projects. Software is needed to
cope with distributed generation and use of data
tools for large scale data federation across
multiple instruments and users. Software costs
now dominate capital expenditure in many such
projects. For example, in ground-based
astronomical sky surveys, software costs may be
one-quarter to one-half of total budget. Software
constitutes 10% of the cost of the Ocean
Observatory Initiative. Participants in such
projects nevertheless complain of inadequate
software and assert that software budgets cover
only basic system operations, not the equally
important work of data analysis.

Outside the relatively narrow world of big
experiments, researchers across all NSF
programs report
tremendous
problems with
all aspects of the
data pipeline.
Groups with
substantial
internal
expertise and
resources
assemble their own one-off solutions. Others fail
to deal with the problems of managing and
analyzing large datasets. Data sharing and

Software is needed to
cope with distributed
generation and use of
data tools for large scale
data federation across
multiple instruments
and users.

14

collaboration prove to be persistent problems.
Across the board, there seems to be both large
underinvestment and substantial duplication of
effort.

The data explosion demands an extensive set of
new tools and technologies so that researchers
cannot only make sense of their own
experimental data, but can also build on existing
data and develop technologies to support
reproducible research. Ease of use must be a
priority, given the broad candidate user
community. Ideally, these tools will be as easy
to use as today’s Web 2.0 technologies: blogs,
wikis, social networks, tagging, RSS feeds and
so on. In addition, semantic technologies to
assist scientists in discover and aggregation of
relevant datasets and tools that build on this
semantic infrastructure to allow computer-
assisted inference and interpretation of such
combined datasets will be necessary to support
the chain of data to information to knowledge. It
is also likely that some or most of these tools
and technologies will have a Cloud component
and may involve the use of commercial Cloud
services. The tools must also allow for a variety
of different levels of security and different
security technologies in setting up Grand
Challenge collaboratories/Virtual Organizations.
All of these technologies will be needed to build
a powerful and intelligent cyberinfrastructure for
the next generation of scientific challenges.

Recommendation: The data deluge requires an
increased level of support for software
development in the areas of data, federation,
and collaboration—areas that have historically
received less support than high-performance
computing software. NSF should establish new
programs to support software development and
support in these areas. These programs should
be designed to support the needs of not only
high-end applications dealing with petabytes,
but also the thousands of small laboratories
struggling with terabytes.

Data Requirements
Data collection. New sensors of many types are
transforming data collection in many fields.
Reliable software is needed for operating large
numbers of sensors, collecting data from such

sensors, synthesizing derived data from sensor
output, and other related tasks. Such software
needs to be developed in a more organized
fashion to enable broad and robust use.

Laboratory instrumentation and management
systems. There is a need for generic components
to build Laboratory Information Management
Systems (LIMS) that can be adapted to the needs
of specific research fields and requirements.
Integration of these systems with data curation,
annotation, and analysis functions is becoming
increasingly important.

Data modeling, semantics, and integration. In a
more data-intensive research future, different
data sets from different communities must often
be compared and
combined with
new data in a
variety of
“scientific mash-
ups.” Integration
of simulation
data with
experimental
data as is
common in the
climate and weather modeling communities will
also become increasingly important. Software is
required to assist with data modeling, with the
representation and exchange (and automated
extraction) of semantic information, and with the
mechanics of large-scale data integration.

Data management and analysis. Software for
managing large quantities of data of different
types, and for enabling compute- and data-
intensive computations on that data, are key
requirements in many fields. Technologies such
as distributed file systems (e.g., HDFS, PVFS,
Sector), data-parallel languages (e.g.,
MapReduce, Sphere), and parallel scripting
languages (e.g., Swift [26]) have important roles
to play, but will require considerable extension
to deal with the challenges of next-generation
data and analysis.

Data mining and statistical inference.
Confronted with large quantities of noisy data,
researchers turn to data mining and statistical

Software is required to
assist with data
modeling, with the
representation and
exchange of semantic
information, and with
the mechanics of large-
scale data integration.

15

inference procedures to identify meaningful
patterns. While research is needed to advance
fundamental methods, there is also an urgent
need to create scalable, usable implementations
of known methods. Existing libraries of data
analysis algorithms, such as those associated
with the open source R software, have been
tremendously useful, but do not scale to
terabytes and petabytes of data. New efforts are
required to build out scalable software systems
that will facilitate the use of the most modern
algorithms.

Text mining. A problem that will face almost all
scientific disciplines in the future is text mining
to extract semantic information from the huge
and growing literature [20]. Hand annotation of
both textual information and experimental data
can only hope to reach a tiny percentage of the
literature and data currently ‘published’. Tools
and technologies are therefore needed to
automate the extraction of semantic information
from both text and data as well as to assist in
annotation to capture the provenance of data
sets.

Workflows. Scientific workflows, which provide
for the expression, invocation, documentation,
and exchange of mashups, are likely to become
increasingly important as both experiments and
simulations become increasingly complex and
multidisciplinary. Open source systems such as
Kepler and Taverna have proven popular. Such
systems need to be developed further to increase
ease of use, support scaling to larger problems,
address other aspects of the scientific discovery
process, and incorporate provenance recording
capabilities.

Visualization Requirements
The human visual system is an extremely
powerful tool for discerning patterns and
identifying features in data. Visualization tools
play an important role in scientific data analysis.
Existing tools provide powerful capabilities, but
as in other areas, the need to deal with
exponentially larger data volumes and to
integrate across more data sources of different
types leads to new challenges that current
software is not capable of addressing. Visual
data analysis, facilitated by interactive

interfaces, enables the detection and validation
of expected results while enabling unexpected
discoveries in science. It allows for the
validation of new theoretical models, provides
comparison between models and datasets,
enables quantitative and qualitative querying,
improves interpretation of data, and facilitates
decision-making. Scientists can use visual data
analysis systems to explore “what if'” scenarios,
define hypotheses, and examine data under
multiple perspectives and assumptions. They can
identify connections between large numbers of
attributes and quantitatively assess the reliability
of hypotheses. In essence, visual data analysis is
an integral part of scientific problem solving and
discovery. This is far from a solved problem
and many avenues for future research remain
open and discussed in [13].

Federation and Collaboration
Requirements
The most interesting data is usually elsewhere.
Thus research depends on the ability to discover,
negotiate permissions for, access, and analyze
distributed data. The instruments that produce
data and the computers used to analyze data may
also be remote. To support these modes of use,
tools are needed to address authentication,
authorization, resource discovery, secure
resource access, and other resource federation
functions. These tools can build on and must
often integrate commodity solutions (e.g.,
OpenID and SAML for authentication) but often
require specialization for specific scientific use
cases.

Systems such as the cancer Biomedical
Informatics Grid (caBIG), Biomedical
Informatics Research Network (BIRN), Earth
System Grid (ESG), Open Science Grid (OSG),
and TeraGrid involve large-scale deployments of
resource federation (a.k.a. “grid”) tools based on
Globus and other software. Looking forward, we
see a need for large increases in scale, deeper
integration with campus infrastructures, and
considerable improvements in performance,
functionality, and usability, as the number of
users of distributed cyberinfrastructure grows
rapidly. The scale of unmet need in these areas
is enormous.

16

To further encourage resource federation,
funding agencies should also encourage
agreement by the different research communities
on ontologies, shared vocabularies and data
formats. Agreement on such things will be
important for the exchange and reuse of data by
different researchers and by multiple research
communities.

Establishing a Quantitative Basis for
Resource Allocation Decisions
Given the reality of far more software needs
than can feasibly be supported by government
funding, it is important that the NSF and other
agencies have access to reliable quantitative data
concerning the usage of different software
systems. One may debate what data is most
meaningful and how to obtain that data reliably,
but it seems uncontroversial to assert that data is
useful. A few existing systems, notably Condor
and Globus, incorporate usage reporting
mechanisms that provide detailed data on how,
where, and when their software is used, but for
the most part, the only quantitative data
available is counts of software downloads, a
highly unreliable predictor of actual usage.

Quantitative usage data can also help inform
software development and support activities, for
example by showing what features of software
are most used and what sorts of failures occur
most frequently.

Recommendation: Require that NSF-
supported software incorporate automated
usage reporting mechanisms to provide accurate
data on usage. In this way, we can enable
quantitative comparisons of the extent that
different software systems are used within the
NSF community.

17

All software must evolve to keep up with
changes in systems, usage, and to include new
algorithms and techniques. The scientific
community has an interest in ensuring that the
software it needs will continue to be available,
efficient, and employ state-of-the-art
technology. A recent NSF report [24] has
defined sustainable software as software that is
well-maintained and available for current
systems. In supporting software evolution, we
extend the concept of sustainable software to
include the changes that are made to software to
keep it effective and relevant; this often means
adding new features, changing the structure to
better fit new system architectures, and the
adoption of new algorithms and techniques.
This requires more than simply ensuring that
existing software remains available as systems
change. In this section, we consider options for
supporting the evolution of software. We begin
by considering open source software separately
from proprietary and closed source software.
Both are important, but each will require a
different approach.

Supporting Open Source Software
Software codes exist but need to be maintained
and updated as science and systems evolve.
Successful scientific software, with a large
community of users, typically has a life cycle of
several decades. Such software thus spans
multiple generations of hardware requiring
constant updates to adapt to new architectural
features including ever increasing degrees of
parallelism at multiple granularities or
heterogeneity, such as clusters with mixed
commodity CPUs and GPGPUs. Additionally,
software requires revisions and updates to
provide enhanced functionally through the

incorporation of improved models, algorithms or
emerging techniques for sensitivity analysis,
optimization and uncertainty quantification. By
considering scientific software developed over
the last several decades, we can identify three
broad classes of open source software.

1. Orphaned Software. This is software that

is no longer being developed and has no one
interested in owning or developing the
software. However, this software is still in
use and serving the needs of the scientific
community.

2. Prototype Software. This is software that is
good enough to test an approach or illustrate
a method, but it is not at a stage where the
broader community can use it. Such
software (also known as research software),
is typically not well tested, and lacking well
defined interfaces and user guides. Such
software is still being developed or used by
its developers; otherwise, it would be in the
Orphan Software category.

3. Healthy Software. These are robust
software codes, often developed by groups
that are used by the broader scientific
community. They may offer functionality
that spans multiple scientific domains, such
as middleware for performance modeling or
data integration, or offer functionality
required to promote scientific inquiry in
specific domains along narrow themes.

Open source software sustainability requires
support for the entire software lifecycle
including effective and differentiated pathways
for managing the three classes of software.
Orphaned Software should be “re-homed” into a
group that can provide support for it. Further
developments should be focused on maintaining

4 Software Evolution

18

the software in usable form to support the needs
of its user base through activities to allow
porting to new platforms and associated tuning,
testing, and documentation. Two obvious
models exist for funding support of orphaned
software: either a direct funding to the group
that supports the software or a support
agreement paid by the users of the software.

Prototype Software that is still under
development by its authors requires considerable
assessment of its future potential to determine
the type of support that may be most
appropriate. For example, if the software reflects
significant advances in algorithms or

methodology
but its potential
for broad use is
difficult to
assess, it may
be best to

provided
targeted support
to the

developers to improve the quality of the
software. One approach is to use a software
institute where the developers can bring their
code, work with experts (and expert tools) to
analyze, understand, and update their code to
modern software engineering standards. The
developers then take that code home and
continue to work on it, but with a new
understanding of software engineering principles
and methods that could eventually enable its
transformation into Healthy Software. An
alternative is to create a branch of the code –
freezing the development at a certain point. This
approach deliberately creates Orphan Software,
which can be supported as described earlier.

Healthy Software, which is in use in the
scientific community while it continues to be
developed, requires significant support for
sustainability. The development of such
software often involves groups of faculty and
students. Now the central support needs concern
the development effort required to update the
software to enable its use on new and emerging
hardware and the incorporation of new “state-of-
the-art” algorithms and methodologies. These
projects could benefit from support for scientific

programmers or software engineers who can
continue to maintain and engineer the software
for effective use by the community, while
faculty and students focus on research toward
new advances. Although it is extremely
important to avoid the use of public funds to
develop software that competes with commercial
code, significant support for software
development staff is often vital for promoting
open software evolution and use. For example,
when such software provides functionality for a
relatively small or specialized community or it
addresses systems issues associated with new
leadership class hardware, significant support
may be needed for further development given
the complex nature of underlying problems or
the constant need to update software to maintain
its “state-of-the-art” quality. If the usage
landscape for such software changes over time,
its eventual commercialization could be enabled
and encouraged through appropriate licensing
modes.

All three classes of software could benefit from
common infrastructure and standards. For
example, centralized mechanisms to provide bug
tracking and initial problem determination can
be a valuable service for both developers and
users. Additionally, common infrastructure in
the form of test systems, including both legacy
systems for testing backward compatibility and
new and highly parallel systems to enable new
software updates and advances. Additionally,
access to version control and collaborative
software development frameworks can help
promote sound software engineering practices,
and group engagement and collaboration.
Finally and most importantly, NSF should
support and promote the development of
community standards that are critical for
enabling wider software development and use.
For example, NSF provided support for travel to
the MPI Forum meetings, which resulted in the
MPI standard that has been pivotal in the
broader development and use of parallel codes.
NSF should support such community
infrastructure and standardization efforts at
multiple levels, including support for the
formation of standards forums in a variety of
topical areas, provisioning of shared community
infrastructure for software lifecycle management

All software must evolve
to keep up with changes
in systems, usage, and
the inclusion of new
algorithms and
techniques.

19

and support for conferences, workshops and
training events to promote software evolution
and sustainable open source software for
science.

Open Source Software, Intellectual
Property, and Industry-University
Collaboration: Challenges and
Opportunities
The landscape of science has been significantly
changed by the rise of open source software,
such as the LAPACK numerical library, the
MPICH message-passing library, the VTK
graphics toolkit, Grid collaboration toolkits such

as Condor and
Globus, and
cluster toolkits
such as
ROCKS and
OSCAR. Such

open software has led to many large-scale
national and international research projects that
depend on sharing of software infrastructure
across tens of institutions and hundreds to
thousands of individuals, posing particular
challenges in software sharing and licensing.
Negotiating myriad institutional licenses has
typically proven intractable, and almost all such
projects have adopted some version of an open
source software model, often a variant of the
“BSD model” (derived from the original
University of California at Berkeley license for
UNIX), which allows reuse in new and diverse
ways. We note there are several open source
software license options [21]; the choice of
which open source license to use is sometimes
not obvious. Several open source licenses allow
universities and researchers both to foster
collaboration and sharing in addition to retaining
the option to generate license revenues, create
protectable intellectual property, or generate
proprietary software from research software.
With other open source licenses, such as the
GPL or the QPL, the options for
commercialization and intellectual property
protection can sometimes be more complicated
! but still often possible.

Recommendation: NSF should recommend
open source distribution of software developed
through its programs, while also recommending
that grantees be aware of different open source
license options and requirements at the
grantee's home institution.

Supporting Commercial Software
Building an entire cyberinfrastructure on open
source software is likely to be difficult to create
and sustain. A “mixed source” approach that
utilizes the strengths of commercial software
companies in significant areas is much more
likely to lead to a sustainable and affordable
software infrastructure. Some key pieces of
software may only have commercial versions or
the current commercial versions may be
substantially better than open source versions.
Many would argue that compilers fit this
description; parallel debuggers certainly do.
Particularly for high-end platforms (such as the
NSF Track 1 and Track 2 systems), there are
many demanding and unique problems that are
not faced by the commodity market. In such
instances, NSF and government agencies have
an important role to play towards supporting
advances that are critical to promote their
scientific missions. For example, NSF could
fund customization to meet the needs of its
scientific community; in the recent past, DOE
has taken this approach with Totalview. More
simply, NSF could pay for software much as it
does for specialized hardware and other research
instruments. Alternatively, NSF could seek to
promote innovation, that is, fund the
development of novel approaches rather than
seek complicated extensions to existing software
to fit highly specialized instances. Such funding
could go to either commercial, non-commercial
providers or industry-university partnerships
with appropriate contractual and licensing
agreements to enable both commercialization
and broader use for research and education.

Recommendation: It is important to recognize
that NSF should carefully avoid using public
money to fund software efforts that compete
unfairly with private industry. However, in
cases where there is no viable market, such is
often the case for specialized software for
massively parallel computers, NSF (and other

The landscape of science
has been significantly
changes by the rise of
open source software.

20

agencies) may need to support open source
software, using one of the mechanisms
described.

Collaboration and Software
Development
Many software projects involve multiple groups;
these groups are often geographically separated.
Particularly for the “prototype” open source
software, these groups often need to interact
frequently. In many cases, this interaction
makes use of the simplest tools – email and a
source code control system. While there are
many collaboration tools available, these are
rarely used by groups who are creating (or
extending) software as part of their NSF-funded
activities. As an adjunct to the software center
concept, there is an opportunity to develop
and/or adopt more integrated tools to enhance
collaboration among software development
groups and between the software developers and
their users.

21

Researchers in the area of software spend
significant time in the initial development of
software, for which the focus is on the
instantiation of a new idea, the widespread use
of some software infrastructure, or the
evaluation of concepts for a new standard.
Correspondingly, the evaluation of effort
associated with software needs to include the
user base for a given software infrastructure,
participation and publication within a software
standards effort, or the level of maintenance
required to evolve software to satisfy the
dynamic needs of the user community. It is the
case, however, that the conventional criteria of
conference and journal publications and research
grants are often used when evaluating research
in the area of software. There is a lack of well-
developed metrics for the impact and quality of
scientific software. Unlike universally accepted
citation-based metrics of papers, published
citations of software is rarely practiced.

Recommendation: NSF should work with
institutions to identify appropriate metrics that
match the effort necessary for successful
development and maintenance of scientific
software.

Requirements for cyberinfrastructure software
are not unique to the US: similar needs arise in
every country with an advanced scientific
research and education enterprise. Common
solutions to these needs can have two major
advantages: they reduce total costs, by avoiding
redundant effort, and they facilitate international
cooperation within scientific disciplines that use
these solutions, by reducing barriers due to
different software systems. These factors are
important in every area of cyberinfrastructure,
but are particularly compelling in the case of
data, federation, and collaboration software due
to the frequently international nature of the
associated collaborations. For example, in
climate research, different teams worldwide
build their own earth system models, but all

teams cooperate on the comparison of
simulation output from different models with
each other and with observations.

Recommendation: Cooperation on
cyberinfrastructure software development can
both reduce total costs by reducing redundant
effort and reduce barriers to scientific
collaboration by avoiding the creation of
noninteroperable software silos. However, such
cooperation can be difficult because of different
priorities and funding cycles. NSF should work
with foreign funding bodies to establish
programs that incentivize cooperative
development and support for cyberinfrastructure
software.

5 Institutional Barriers

22

It is noted that many federal agencies and
international agencies have significant
investments in science software infrastructure.
In the sections below, we summarize some of
the software programs with these agencies.

Air Force Office of Scientific Research
(AFOSR)
The Air Force Office of Scientific Research is
the basic research component of the Air Force
Research Laboratory. As such, AFOSR fosters
fundamental research advancing the state of the
art in a number of areas critical to continued
dominance of air, space, and cyberspace.
Within the broad scope of transformational
opportunities supported by AFOSR, areas
relevant to the scope of the present report
include research in mathematical and
computational sciences, and in information and
computer sciences, aimed to identify, discover,
and further foundational knowledge, for
addressing challenges and creating new
capabilities underlying the design,
implementation and deployment of complex
systems relevant to the Air Force.

Within this context, and related to advances in
new approaches and capabilities for such
systems, disciplinary as well as multidisciplinary
research priorities include: new mathematical
computational methods; advanced software
methods for systems engineering and support of
dynamic and complex adaptive systems that
need to be highly-autonomic, composable, and
evolvable; adaptive management of
heterogeneous systems of sensors, and data and
information fusion; dynamic integration of real-
time data acquisition and control with advanced
multiscale application models, and other

dynamic data driven applications systems.
Support environments of such systems require
advanced, multicore-based computer
architectures, computing models, and dynamic
runtime environments, comprising of complex
distributed computational, communication, and
data acquisition and control platforms, ad-hoc,
mobile, complex and heterogeneous
communication networks, and distributed
sensing networks.

Research to address such challenges and enable
breakthrough advances is funded through
AFSOR programs supporting academic research
as well as fundamental and basic research in Air
Force Research Laboratories. In addition, such
research is often conducted in collaboration with
other entities in DoD and other agencies
supporting fundamental research, such as NSF,
DOE, NASA, NOAA, NIST, etc. Programmatic
modalities include programs supporting
individual investigator projects, as well as
Multidisciplinary University Research Initiative
(MURI) programs, and technology transfer
programs such as the Small Business
Technology Transfer Program (STTR).

Department of Energy (DOE)
The Office of Advanced Scientific Computing
Research in the Department of Energy’s Office
of Science supports multidisciplinary SciDAC
(Scientific Discovery through Advanced
Computing) projects aimed at developing future
energy systems, studying global climate change,
accelerating research in designing new
materials, improving environmental cleanup
methods, and understanding physics from the
tiniest particles to massive supernovae
explosions. SciDAC Centers for Enabling
Technologies conduct a mix of research and
software development to produce software
solutions required by SciDAC scientific

6 Other Agencies

23

applications, in such areas as solvers, file
systems, data management, and distributed
computing.

The SciDAC program has established SciDAC
Institutes that are university-led centers of
excellence intended to increase the presence of
the program in the academic community and to
complement the efforts of the SciDAC Centers
for Enabling Technologies. Under SciDAC-2,
the four institutes receive a total of $8.2M
annually for a period of five years. Midterm
reviews of the institutes occur after three years.
The Institutes assist the SciDAC Scientific
Applications with overcoming the challenges to
effectively utilizing petascale computing; the
centers are also given the flexibility to pursue
new research topics and be responsive to the
broader community.

National Institutes of Health (NIH)
The National Institutes of Health have many
programs that support the development of
software. One such program is BISTI
(Biomedical Information Science and
Technology Initiative), which is a consortium of
representatives from each of the NIH institutes
and centers that focus on biomedical computing
issues at NIH. BISTI was established in 2000.
The mission of BISTI is to make optimal use of
computer science and technology to address
problems in biology and medicine by fostering
new basic understandings, collaborations, and
transdisciplinary initiatives between the
computational and biomedical sciences. BISTI
coordinates research grants, training
opportunities, and scientific symposia associated
with biomedical computing. Proposal for such
grants must include a software dissemination
plan, with appropriate timelines. There is no
prescribed single license for software produced
through BISTI grants. The software, however,
should be freely available to biomedical
researchers and educators in the non-profit
sector. The terms of the software availability
should permit the commercialization of
enhanced or customized versions of the
software, or incorporation of the software or
pieces of it into other software packages.
Further, to preserve utility to the community, the

software should be transferable such that another
individual or team can continue development in
the event the software is “orphaned”.

Engineering and Physical Sciences
Research Council (EPSRC)
EPSRC has a Software Sustainability program
that is focused on research infrastructure that
aids in the long term sustainability of software
that enables high quality research. EPSRC has
invested £5.0M into this program. The objective
can be fulfilled through the following services:
• The development of software to an

acceptable quality for wider deployment,
through the application of additional
software engineering to prototype software
delivered by UK research projects.

• The maintenance of software that enables
high quality research through the
management of a repository for selected
software.

• Community outreach and promotion to
ensure effective update of the services that
the infrastructure will provide.

• Engagement with the international
community through activities such as the
dissemination of e-research software,
establishing best practices and standards,
providing internationally recognized codes.

Proposals can be funded for up to five years in
duration. Applicants are encouraged to engage
the National Grid Service (NGS) with their
projects.

24

• Software is a critical and pervasive

component of the cyberinfrastructure for
science and engineering.

• Software is a tool for new knowledge
discovery in many disciplines and often also
itself serves as a representation of
knowledge.

• NSF does not adequately support software
evolution and lifecycle costs.

• Software needs to address questions of open
access, portability, reuse, composability and
dissemination.

• Increasing complexity of applications, and
resources can only be dealt with by the
availability of good software.

• There is a lack of well-developed metrics for
the impact and quality of scientific software.
Unlike universally accepted citation-based
metrics of papers, published citation of
software is rarely practiced.

• The lack of NSF support for the
development of robust prototype complex
software frameworks and tools often results
in repetitive development that can hinder the
full potential of advances in science and
engineering

• Increases in code complexity for addressing
the paradigm shifts in architecture
(including using accelerators and
multi/many core chips) threaten to exceed
the capacity of the research community for
software development and support.

• Fast moving developments in the
information technology environment and the
lack of software standards to support those
developments are a major challenge for the
creation of new software tools.

• Uncertainty about the computer architecture
and programming model will impact the
evolution of simulation software from
inception to new science results.

• The software infrastructure for science is
often a patchwork of supported and
unsupported software in a rather ad-hoc
approach. In many cases key simulation
codes grow organically as a new research
code is added to an existing body of code,
resulting in unsustainable applications that
cannot be easily verified, where error
propagation from one part of the code to
others may not be well understood.

• Research is required into new approaches to
enable a simpler programming environment
for application developers – allowing
composability, portability and ease of
developing software.

• A lack of standards in application
programming interfaces, data models and
formats, and interoperability of
programming models makes the integration
of different pieces of software representing
different models and different phases of the
workflow challenging.

• Software for operating large numbers of
sensors, collecting data from such sensors,
synthesizing derived data from sensor
output, etc., needs to be developed in a more
organized fashion to enable broad and robust
use.

• Integration of simulation data with
experimental data, as is common in the
climate and weather modeling communities,
will be increasingly important in all areas.
Software is required to assist with data
modeling, with the representation and

7 Summary of Findings

25

exchange (and automated extraction) of
semantic information, and with the
mechanics of large-scale data integration.

• Software is needed to manage data
acquisition from experiments and its
integration with data curation, annotation,
and analysis functions.

• Software is needed to cope with distributed
generation and use of data tools for large
scale data federation across multiple
instruments and users.

• Ease of use and integration of scientific and
engineering software with collaborative
tools will be a priority.

26

 Summary of Recommendations
1. NSF should develop a multi-level

((individual, team, institute), long-term
program of support of scientific software
elements ranging from complex applications
to tools of use in multiple domains. Such
programs should also support extreme scale
data and simulation and the needs of
MREFCs.

2. NSF should take leadership with promoting
verification, validation, sustainability, and
reproducibility of software with federal
support.

3. NSF should develop a consistent policy on
open sources software that promotes
scientific discovery and encourages
innovation.

4. NSF support for software should entail
collaborations among all of its divisions,
related federal agencies and private industry.

5. NSF should utilize the Advisory
Committees to obtain community input on
software priorities through workshops and
town hall meetings involving the broad
community.

While the above summary recommendations
capture the essence of the deliberations of this
taskforce we provide below additional detail that
may be used to interpret these recommendations.

Programs
1. Under the SSE umbrella, NSF should

support both of the following types of
activities: (1) projects that are headlined by
actual complex applications, which use a
variety of software components in a
vertically integrated manner (“end-user
projects/science-pull”) and (2) projects that
develop and apply software components that

are common to many applications
(“technology projects/science-push”).

Typical outcomes under the SSE program, at
any of its levels (single investigators, teams,
centers) include the hardening of prototype
software, the integration of new software
technology into existing software, and
engaging in cross-disciplinary production
collaborations with experts in the use of the
software.

a. Under SSE technology
projects/science-push, NSF should
support a variety of activities,
including: developing and
provisioning of software
components, extension of
applicability of software outside of
the domain of original development,
porting of software to architectures
outside of the domain of original
development so that it operates
across all relevant architectural
scales, development and promotion
of community standards for
software, development of new and
maintenance of existing numerical
libraries, training in software use,
training in software development,
and archiving and re-homing of
orphaned software of enduring
importance to the scientific or
engineering community.

2. Under SSE, NSF should proactively support
projects that merge proven simulation
methods and proven data (experiments,
observations, sensor inputs, etc.) at scale.

3. Under SSE, NSF should focus attention on
the data and software needs of the major
NSF research facilities (MREFCs).

8 Recommendations

27

4. SSE project budgets should accommodate

adequate human resources at the level of
post-graduate software engineer, and not
penalize such allocations on the basis that
there is insufficient training of student
researchers. Participation of student
researchers should also be encouraged
through aspects of such projects that relate
to doctoral dissertation-worthy work.

5. Under SSE, NSF should support the
development of portable systems.

Policy & Practices
6. NSF should encourage best practices in

validation and verification of the software
that it sponsors under the SSE, including
standard software engineering best practices
(error reporting, unit testing during
development, regression testing, versioning,
automated code analysis, argument type-
checking at interfaces, performance
profiling, bug tracking, etc.) as well as
application-specific best practices
(physically relevant test harnesses, built-in
modified equation analysis, built-in
sensitivity analysis, built-in Jacobian
checking, built-in declarations of verifiable
properties of data objects, requirements for
multi-scale and multi-model integration,
argument value-checking at interfaces, code
instrumentation that automatically reports on
usage over the internet to developers, etc.).

7. NSF should explore the legal and technical

issues with respect to the different open
sources licenses to encourage a consistent
policy on open sources software developed
under SSE and provide information on the
implications of the different licenses to the
researchers.

8. NSF should encourage reproducibility (e.g.,

detailed provenance of results and data) in
all computational results that it sponsors,
including the preservation of the software
and data used in the research.

9. NSF should seek to offer pathways to
software sustainability, as sustainability is
essential to encourage end-users to stake
portions of their careers on the long-term
availability of important components of the
software infrastructure for which there is no
commercial market.

10. NSF should promote discussion amongst its

own personnel and with leadership at
institutions where its principal investigators
are employed, to consider development and
provisioning of Complex Software
Infrastructures activities, as meritorious in
promotions and raises.

11. NSF should develop, acquire, and apply
metrics for review of SSE projects that are
complementary to the standard criterion of
intellectual merit. Impact remains a key
metric. One of the new metrics for merit
review is that the community has come
together to identify one or more common
needs that are met by the proposed project

Collaborations
12. NSF should foster a healthy software

industry through the SSE through: (1)
avoiding competition with commercial
industry when adequate software already
exists, (2) sponsoring the acquisition of
commercial software as part of the cost of
doing research when adequate software
exists, (3) encouraging collaborative
University-Industry innovation, and
transitioning into the commercial
marketplace software developed under the
SSE umbrella, (4) promote close
communication between chip designers,
system builders, and software developers,
(5) encourage the formation of public-
private transitions through new and
innovative partnerships between academe
and industry, and (6) provide SBIR-like
programs to facilitate the commercialization
process.

28

13. NSF should seek to fund SSE projects
through participation from all relevant
science and engineering Directorates and
Offices, not by OCI alone, in order to insure
that the investments are adequately funded
and correctly purposed.

14. NSF should consider novel ways of teaming

with other agencies of the U.S. government
that support software research and
development to cross-leverage advances
providing for the common open-source
infrastructure(s). NSF should sustain its
current strength in supporting software
innovation while increasing its role in the
support of the lifecycle costs of such
software in partnership with mission
agencies like the Department of Energy and
National Institutes of Health.

15. NSF should consider novel ways of teaming

with agencies of other nations that support
software research and development to cross-
leverage advances providing for the
common open-source infrastructure(s).

16. NSF should utilize the different Advisory
Committees to obtain community input on
software (e.g., orphaned codes) for which
there is a need for sustainability and/or
evolution. The input can be obtained via
workshops, web-based surveys, professional
societies, etc.

29

References

1. Abern, S., Alam, S., Fahey, M., Hartman-

Baker, R., Barrett, R., Kendall, R., Kothe,
D., Messer. O. E., Mills, R., Sankaran, R.,
Tharrington, A., and James B. White III,
Scientific Application Requirements for
Leadership Computing at the Exascale,
ORNL/TM-2007/238,
http://www.nccs.gov/wp-
content/media/nccs_reports/Exascale_Reqm
s.pdf, Dec 2007.

2. Challenges In Climate Change Science and
The Role of Computing at the Extreme
Scale, Workshop Summary Report,
Department of Energy, November 6-7, 2008,
http://www.er.doe.gov/ascr/ProgramDocum
ents/Docs/ClimateReport.pdf.

3. Committee on the Potential Impact of High-
End Computing on Illustrative Fields of
Science and Engineering, National Research
Council, The Potential Impact of High-End
Capability Computing on Four Illustrative
Fields of Science and Engineering
http://www.nap.edu/catalog/12451.html,
2008.

4. Darema, F., Report on
CyberInfrastructures of Cyber-Applications-
Systems & Cyber-Systems-Software,
October 2009, preprint.

5. Darema, F., Report on Industrial
Partnerships in Cyberinfrastructure:
Innovation through CyberInfrastructure
Excellence, October 2009, preprint.

6. Dongarra, Jack, Beckman, Pete, Aerts,
Patrick, Cappello, Frank, Lippert, Thomas,
Matsuoka, Satoshi, Messina, Paul, Moore,
Terry, Stevens, Rick, Trefethen, Anne, and
Mateo Valero, The International Exascale
Software Project: A Call to Cooperative
Action by the Global High Performance
Community, 2009.

7. Exascale Computing Study: Technology
Challenges in Achieving Exascale Systems,
http://www.sdsc.edu/~allans/Exascale_final
_report.pdf, September 2008.

8. ExaScale Software Study: Software
Challenges in Extreme Scale Systems,"
DARPA Information Processing Techniques
Office, Washington DC., September 14,

2009.
http://users.ece.gatech.edu/~mrichard/Exasc
aleComputingStudyReports/ECSS%20report
%20101909.pdf.

9. Forefront Questions in Nuclear Science and
the Role of High Performance Computing
Summary Report - Summary Report,"
Department of Energy, January 26-28, 2009.
http://extremecomputing.labworks.org/nucle
arphysics/PNNL_18739_onlineversion_opt.
pdf.

10. Gray, Jim, on eScience: A Transformed
Scientific Method, in T. Hey, S. Tansley, K.
Tolle (Eds), The Fourth Paradigm: Data-
Intensive Scientific Discovery, 2009.

11. Hey, T., Tansley, S. and K. Tolle (Eds), The
Fourth Paradigm: Data-Intensive Scientific
Discovery, 2009.

12. International Exascale Software Project
Roadmap, 2009,
http://www.exascale.org/mediawiki/images/
4/42/IESP-roadmap-1.0.pdf.

13. Johnson, C. R., Moorhead, R., Munzner, H.
Pfister, H., Rheingans, P. and T. S. Yoo,
(Eds.): NIH-NSF Visualization Research
Challenges Report; IEEE Press, ISBN 0-
7695-2733-7,2006.
http://vgtc.org/wpmu/techcom/?page_id=11.

14. Keyes, D. E. (Ed.). A Science Based Case
for Large Scale Simulation. Office of
Science. Department of Energy, 2003.

15. Mathematics at the Interface of Computer
Science and Industry, the Smith Institute for
Industrial Mathematics and System
Engineering, Smith Institute for Industrial
Mathematics and System Engineering,
Oxford, UK, 2005.

16. Oden, J. T. (Ed.), Report of the NSF-ACCI
Task Force On Cyber Science and
Engineering, Grand Challenge Communities
and Virtual Organizations, 2010.

17. Oden, J. T. (Eds.), Revolutionizing
Engineering Science through Simulation, A
Report of the NSF Blue Ribbon Panel on
Simulation-Based Engineering Science,
2006.
http://www.nsf.gov/pubs/reports/sbes_final_
report.pdf.

30

18. PETSc, Portable, Extensible Toolkit for
Scientific Computation,
http://www.mcs.anl.gov/petsc.

19. Report to the President: Computational
Science: Ensuring America’s
Competitiveness, President’s Information
Technology Advisory Committee, 2005.

20. Rzhetsky, A, Seringhaus, M, and M.
Gerstein, Seeking a new biology through
text mining, Cell. 2008 Jul 11;134(1):9-13.

21. St. Laurent, Andrew M., Understanding
Open Source and Free Software Licensing,
O'Reilly, 2004.

22. Sarkar, V., Harrod, W., and Allan Snavely,
Software challenges in extreme scale
systems, Journal of Physics: Conference
Series, 2009, http://stacks.iop.org/1742-
6596/180/012045.

23. Simon, H., Zachariah, T. and R. Stevens
(Eds.), Modeling and Simulation at the
Exascale for Energy and the Environment,
June 2007,
http://www.sc.doe.gov/ascr/ProgramDocum
ents/Docs/TownHall.pdf.

24. Stewart, Craig A., Almes, Guy T. and
Bradley C. Wheeler (Eds.):
Cyberinfrastructure Software Sustainability
and Reusability: Preliminary Report from
an NSF-funded Workshop Held 27-28
March 2009.

25. Trefethen, A. E., Higham, N. J., Duff, I. S.,
and P. V. Coveney, (Eds.) Developing a
High-Performance computing/numerical
analysis roadmap, , 2009,
http://www.oerc.ox.ac.uk/research/hpc-na.

26. Wilde, M., Foster, I., Iskra, K., Beckman, P.,
Zhang, Z., Espinosa, A., Hategan, M.,
Clifford, B. and I. Raicu, Parallel Scripting
for Applications at the Petascale and
Beyond. IEEE Computer, 42 (11). 2009, 50-
60.

27. Witten, I., Moffat, A., and T. Bell,
Managing Gigabytes, 1994.

!""#$%%&&&'()*'+,-%,.%,/0%"1)2*,3/4)

