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1 Introduction

Typically, vector fields are stored as a set of sample vectors at discrete locations.
Vector values at unsampled points are defined by interpolating some subset of
the known sample values. In this work, we consider two-dimensional domains
represented as triangular meshes with samples at all vertices, and vector values on
the interior of each triangle are computed by piecewise linear interpolation.

Many of the commonly used techniques for studying properties of the vector
field require integration techniques that are prone to inconsistent results. Analysis
based on such inconsistent results may lead to incorrect conclusions about the data.
For example, vector field visualization techniques integrate the paths of massless
particles (streamlines) in the flow [25] or advect a texture using line integral
convolution (LIC) [2]. Techniques like computation of the topological skeleton of
a vector field [9, 10], require integrating separatrices, which are streamlines that
asymptotically bound regions where the flow behaves differently [11]. Since these
integrations may lead to compound numerical errors, the computed streamlines may
intersect, violating some of their fundamental properties such as being pairwise
disjoint. Detecting these computational artifacts to allow further analysis to proceed
normally remains a significant challenge.
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1.1 Contributions

To address this challenge in situations where consistent analysis is required, we
propose a new representation of flow through each triangle. This representation,
called edge maps, approximates the flow by mapping pairs of boundary points that
are on the same streamline to each other. Once computed, edge maps replace the
numerical integration of streamlines with a lookup, which enforces that computed
streamlines never cross. With implementation in mind, we can merge adjacent pairs
of mapped points to provide a multi-resolution approximation of the edge map,
enabling us to build more compact representations of the flow. At any resolution of
merging, the edge maps still guarantee consistent streamlines. At the finest scale of
resolution, streamlines remain accurate on triangle boundaries, while at the coarsest
scale (the maximum possible amount of merging), the edge map represents one class
of possible flow behavior. We enumerate these possibilities and show there are 23
equivalence classes that can exist for triangles in a piecewise linearly interpolated
vector field. While the discussion within this work is primarily theoretical, an
implementation of edge maps and their applications have been described in [1].

2 Related Work

One step towards producing consistent streamlines is to use higher accuracy
integration techniques. Some recent results that improve on the traditional Runge-
Kutta based techniques include the local exact method (LEM) of Kipfer et al. [13]
that follows the lead of Nielson and Jung [16]. LEM solves an ODE for simplices
on unstructured grids representing the position of the particle as a function of
time, starting at a given position. While the solution is often more expensive than
numeric integration, given an entry point of a particle to a triangle, LEM gives its
exact path within the triangle. However, the exit point is calculated numerically as
an intersection with the triangle edges which is prone to numeric errors. Hence,
consistency of streamlines still cannot be guaranteed. Despite this, it is the most
accurate technique available since it does not incur integration error. Although
our work focuses on the mathematical properties of edge maps, we mention these
results since a system using edge maps could first rely on such a computation for
construction. Using LEM we can get a more accurate construction of edge maps.

Consistency becomes particularly desirable when computing structural proper-
ties of vector fields. Helman and Hesselink [10] compute a vector field’s topological
skeleton by segmenting the domain of the field using streamlines traced from each
saddle of the field along its eigenvector directions. The nodes of the skeleton
are critical points of the vector field and its arcs are the separatrices connecting
them. Subsequently, the skeleton extraction has been extended to include periodic
orbits [28]. Three dimensional variants of the topological skeleton have also been
proposed [9, 12, 24, 27]. The reader should refer to [7, 14, 21] for more detailed
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Fig. 1 A triangle is
represented as three vectors,
which impart a flow through
the interior

surveys. However, it is well known that computing the topological skeleton can be
numerically unstable due to errors inherent in the integration of separatrices and
inconsistencies among neighboring triangles [4, 8, 16, 23].

A number of techniques have been proposed to extract the topological skeleton
in a stable and efficient manner [3, 17, 22, 28]. Recent work of Reininghaus and
Hotz [18] construct a combinatorial vector based on Forman’s discrete Morse the-
ory [6]. Using combinatorial fields allows the extraction of a consistent topological
structure. However, combinatorial vector fields are limited by their high complexity,
leading to later improvements to the algorithm [19]. While provably consistent, it
is unclear how close the topological structure of the combinatorial field is to that
of the original, piecewise linear, field. By comparison, this work proposes a multi-
resolution technique that is both consistent and provides control over the level of
approximation of the field.

3 Edge Maps

Let VW M ! R
2 be a 2-dimensional vector field defined on a manifold M . V is

represented as a set of vector values sampled on the vertices of a triangulation
of M. Specifically, each vertex pi has the vector value V.pi / associated with it.
The vector values on the interior of each triangle T with vertices fpi ; pj ; pkg
in the triangulation are interpolated linearly using V.pi /, V.pj /, and V.pk/ (see
Fig. 1).

Given a vector field V, we can define the flow �.x; t/ of V. Treating V as a
velocity field, the flow intuitively describes the parametric path that a massless
particle travels according to the instantaneous velocity defined by V. We define
�.x; t/ as the solution of the differential equation:

d�.x; t/

dt
D V.x/

with the initial condition �.x; 0/ D x0. Fixing a point x and varying t , we call the
collection of points produced by � a streamline.
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3.1 Preliminaries

For the remainder of this work, we will assume the vector values for V on the interior
of a triangle are defined by linearly interpolating the three vectors at the vertices of
a triangle, T . We make three simplifying assumptions: (1) the vectors at all the
vertices of the triangle are non-zero, (2) the vectors at any two vertices sharing
an edge are not antiparallel, and (3) the vectors at two vertices on an edge e are
not both parallel to e. Any such configuration is unstable, and can be avoided by
a slight perturbation. These small perturbations ensure a point to point mapping
between the boundary of the triangle, and hence makes edge maps bijective. As we
will see in the following sections, these assumptions will significantly reduce the
complexity of many of the arguments as the locations of critical points become well
defined.

Under the aforementioned assumptions, we can begin studying the properties of
linearly varying vector fields. We first note the following two important properties
that follow from our assumptions.

Property 1. Within T , V defines at most one critical point.

Proof. Critical points are defined as points x where V.x/ D 0. Consider the
component scalar fields V1, V2 where V.x/ D .V1.x/; V2.x//. As the triangle is
linearly varying, the graphs of V1 and V2 are planes lifted from the triangle. Critical
points are the set of points where both these two planes intersect the constant plane
of height zero. As we know from planar geometry, two planes either intersect in
another plane or a line, and consequently these three planes intersect in a plane, a
line, or a point.

If these three planes intersect in a plane, this defines an infinite number of zeros,
which can only happen when assumption (1) is violated. If these planes intersect in
a line, the only way that line passes through T is when either (1) is violated (because
two vertices are zero) or (2) is violated for at least two edges.

In all other cases, either a single critical point is defined (within the interior of
T ) or the field defines critical values outside of T . ut
Property 2. On the line ` obtained by extending, from both sides, any edge e of a
triangle T , there exists at the most one point where the vector field is tangential to `.

Proof. Without loss of generality, rotate ` to be the x-axis and decompose V into
its x and y components, i.e., V.�/ D .Vx.�/; Vy.�//. Following the linearity of the
vector field V, Vy is also linear. By assumptions (1) and (3), Vy D 0 can only happen
once, meaning that V is tangential to ` at only one point. We further note that on
either side of this zero crossing, Vy has a different sign, and hence the flow changes
directions from flowing upwards to downwards, or vice versa. ut
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a b c d

Fig. 2 Based on the flow at a point on the boundary of a triangle, the point can be classified as
one of the following: (a) Inflow point, (b) Outflow point, (c) External transition point (ETP), and
(d) Internal transition point (ITP)

3.2 Defining Edge Maps

For a triangle T , let @T and VT be the boundary and interior of T respectively. We
first examine the behavior of the flow at any point on @T . The flow behavior can
be classified into four types (as illustrated in Fig. 2) depending upon the location of
that particle under flow �.x; t/ for positive and negative time t. Let " > 0. Given a
point p 2 @T such that �.x; 0/ D p, we define the following:

Definition 1 (Inflow Point). If for all t 2�0; "�, �.x; t/ 2 VT and �.x; �t/ … T ,
then p is an inflow point.

Definition 2 (Outflow Point). If for all t 2�0; "�, �.x; t/ … T and �.x; �t/ 2 VT ,
then p is an outflow point.

Definition 3 (External Transition Point (ETP)). If for all t 2�0; "�, �.x; ˙t/

… T , then p is an external transition point (ETP).

Definition 4 (Internal Transition Point (ITP)). If for all t 2�0; "�, �.x; ˙t/ 2 VT ,
then p is an internal transition point (ITP).

The concept of transition points is similar to that of boundary switch points
mentioned in [5, 15, 26]. The above four definitions account for all possible
behaviors of flow as it touches @T , since our assumptions only allow the possibility
where flow travels along the edge instantaneously. Our ultimate goal is to model the

flow through VT . To start, we first pair points as they travel along the same streamline.

Definition 5 (Origin-Destination Pair (o–d pair)). Let a; b 2 R and a � b such
that �.x; Œa; b�/ � T where p D �.x; a/ and q D �.x; b/. We call .p; q/ an
origin-destination pair if the time interval Œa; b� is maximal where p; q 2 @T and

�.x; �a; bŒ/ � VT . We call p an origin point and q a destination point.

Here, maximal interval means that the time range Œa; b� produces the largest
possible streamline contained within VT , bounded by two points p and q on @T .
Inflow, outflow, and transition points all play different roles in o–d pairs. The
simplest case is for inflow and outflow points. Since the streamline of an inflow

point p flows to the VT , p will be paired up with the point q (either an outflow point
or ITP) where this streamline first touches the boundary after p.
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An ITP flows to VT in both positive and negative time, thus creating at most two

such maximal intervals for which a streamline is completely contained in VT . Hence,
an ITP may participate in two o–d pairs. In one pair it is an origin point while in
the other it is a destination point. If the streamline is an orbit touching @T only at
the ITP, we pair the ITP with itself, resulting in a single o–d pair. In this case, the

streamline of the orbit has many time intervals Œa; b� where �.x; �a; bŒ/ � VT , all of
which are of equal length. On the contrary, an ETP always forms an o–d pair with

itself, since the streamline does not flow to VT . Hence its maximal time range will be
when a D b.

Thus, all origin points are either inflow points or transition points; and all
destination points are either outflow points or transition points. Note that if x is
chosen such that �.x; t/ is an orbit contained entirely in VT , then such a streamline
will never converge to @T and hence any p and q on it will not form an o–d pair.
Moreover, there are some points that do not converge to @T , because of the presence
of a critical point in T . Such points can be classified as unmapped inflow points
(associated with a sink), unmapped outflow points (associated with a source), or sepx
points (intersections of the saddle separatrices with @T ), and they are not included
in the definition of o–d pairs.

Since we can determine the existence of an o–d pair for every point on @T we can
define a mapping to describe the transversal behavior of flow through points on @T .
Let P � @T be the set of all origin points, and Q � @T be the set of all destination
points.

Definition 6 (Edge Map). An edge map of T is defined as a map �W P ! Q, such
that �.p/ D q, if .p; q/ is an o–d pair.

We will also call q the image of p under �.

We claim that � is a bijection between P and Q, and thus its inverse is also well
defined. We call � as the forward edge map, since it maps an origin point to its
destination point under forward flow. Its inverse ��1 maps a destination point to its
origin point, and hence is called the backward edge map.

Using the forward and backward edge maps, integration of streamlines can be
replaced with a map lookup that traverses the triangle. Using only this lookup,
a streamline travelling through a triangulated vector field is approximated as a
sequence of points on the boundaries of triangles through the field. This approxi-
mation discards the flow behavior of the interior of triangles, but as we shall see,
maintains enough information to maintain consistency of streamlines.

3.3 Approximating Edge Maps

In this paper, we intend to define a feasible representation for storing and using
an approximated edge map �� as a data structure to represent �. We achieve this by
grouping the point to point exact mapping � into connected intervals which preserve
its ordering, forming what we call the links.
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Definition 7 (Link). Let O be a connected subset of P , and D be a connected
subset of Q, where D D �.O/. Let @O be the end points (boundary) of O . We call
�W O ! D a link if � is continuous, order-preserving, and �.x/ D �.x/ for each
x 2 @O . We call the set O an origin interval and the set D a destination interval.

A link � allows for a second level of approximation of � on some subsets of the

domain of �. Let VO be the interior of O . For each point p 2 VO, we allow the mapped
points �.p/ to shift from its original �.p/, except at the boundaries of O .

Although, � is an approximation, we at least require that it preserves the
ordering of streamlines. The property of order-preservation handles this notion by
disallowing links which have streamlines that cross. To enforce order-preservation,
first note that since O is a connected subset of @T , it can be parameterized as a single
interval. Similarly, since � is continuous, we will only build links where �.O/ is a
single interval, again parameterizable. As long as we preserve the ordering within
this parameterization, � is a valid link. Thus, the property of order-preservation leads
to the following theorem.

Theorem 1. Order-preserving links always produce consistent (pairwise disjoint)
streamlines.

Since each � may only be defined on a subset of P , to completely approximate �

we need a set of links. This motivates the following definition.

Definition 8 (Approximated Edge Map). An approximated edge map �� of � is a
collection of n links �i W Oi ! Di , such that the fOig and fDig form partitioning
of P and Q respectively.

We can see that an edge map can be subdivided into links in many ways to
form such a partitioning. Since the boundaries of each link are “snapped” to require
�.x/ D �.x/, using more links enforces more accuracy. Once the partitioning of P

is defined, one way of approximating � as �� is creating links �i which are linearly
mapped between Oi and Di , as proposed in [1]. Such a � satisfies the properties of
order-preservation, and provides a simpler map lookup computation.

Earlier, we pointed out that certain points on @T can be classified as unmapped
inflow, unmapped outflow or sepx points, and do not participate in any o–d pair. It
follows from the definition of the link that these points cannot be included in either
of the origin or destination intervals, and hence do not get included in any link.
Connected subsets of such points are called unmapped intervals.

3.4 Base Edge Maps

Links can be created by merging the origin and destination sets of adjacent o–d
pairs such that the origin and destination intervals remain connected sets and the
orientation of the link is preserved. It turns out that this merging process can be
expanded only so much, until specific points where the continuity of the flow
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Fig. 3 The base edge map
for the triangle in Fig. 1 has
three links (shown in different
colors). It is generated by
splitting the boundary at
ITP’s (white circles), their
images (grey dots), and ETP’s
(white squares)

breaks. At this maximal amount of merging, we have a minimal set of links in the
approximated edge map.

Definition 9 (Base Edge Map). A base edge map of T is an approximated edge
map �� such that the number of links is minimal. Links of a base map are called
base links.

This merging of o–d pairs into a single link cannot be done across transition
points, sepx points, and ITP images. This follows since orientation of a link cannot
be preserved across transition points while sepx points and ITP images break the
continuity of the map. Thus, the intervals in a base edge map are bounded by the
transition points, sepx points, and the image points of ITPs. A base edge map can
be readily constructed by identifying these points and splitting the boundary of
a triangle at these points into intervals. The intervals can be paired up into links
using connectivity information. Figure 3 shows the creation of base edge maps for
a regular triangle (with no critical point in the interior).

4 Classification of Base Edge Maps

There are many ways to approximate an edge map � as a set of links. Using the
concept of a base edge map, many different edge maps can be reduced to the
same base edge map. Thus, a base edge map can be thought of as representative
of an infinite number of edge maps, each representing the same flow behavior.
This motivates a study of all possible base edge maps, which leads to a notion of
equivalence classes of the edge maps that represent all possible types of linearly
varying flow. In what follows, all proofs are included in the appendix.

4.1 Equivalence of Maps

While the notion of reducing any edge map to its base edge map is well defined,
we need to define why two base edge maps are considered equivalent in order to
declare them as belonging to the same class. Before discussing equivalence, we shall
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enumerate all the features of a map that we would like to include when comparing
two maps.

• Pairing of intervals .Oi ; Di / as links.
• Orientation of links .Oi ! Di /.
• Cyclic order of all intervals (including unmapped) on @T .

We define a way to construct a mixed graph from any edge map � approximated by
�� and the set of links f�1; �2; : : : ; �ng. Our goal is to capture all the above features
into the graph. A mixed graph G .V; E; A/ can be constructed such that:

• Nodes: V D fIkg where Ik is either an origin interval Oi , a destination interval

Di , an unmapped interval Uj , or a sink or source Sp in VT .
• Undirected Edges: E D ffI1; I2gg where I1 and I2 are adjacent on @T .
• Directed Edges: A D f.I1; I2/g where either �i W I1 ! I2 (corresponding to a

link); I1 D Uj and I2 D Sp (an unmapped inflow interval); or I1 D Sp and
I2 D Uj (an unmapped outflow interval).

An example of such a graph is shown in Fig. 4. Though unmapped intervals
do not participate in the edge map, they have a structural bearing on the map and
consequently on the mixed graph. They separate links that would otherwise appear
contiguous and could be potentially merged. In the case of a saddle, while the
sepx points are also unmapped, they need not have an explicit place in the graph

Fig. 4 Construction of mixed
graph from a map. Points of
the magenta interval do not
form o–d pairs since they
flow directly to Sp
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as their existence can be inferred from its neighboring intervals (and consequently

the existence of a saddle in VT ).

Definition 10 (Equivalence). Two edge maps are considered equivalent if the
mixed graphs of their base edge maps are isomorphic.

Under this definition of equivalence, we present a group theoretic approach for
counting all possible equivalence classes of base edge maps. We use the Groups,
Algorithms, and Programming (GAP) system [20] to do the following computation.
There are three important steps: generation of initial sample space; restricting this
space to those possible in linearly varying flow; and identifying equivalences.

4.2 Initial Sample Space

Our analysis for all possible equivalence classes first considers all possibilities for
links and unmapped intervals. We start by disallowing an interval from spanning
beyond an edge. This simplifying assumption helps enumerate the sample space,
and later we shall remove these splits caused by vertices, allowing links to span
across them. From the definition of base links and given the property that all links
of a base edge map are bounded by transition points, sepx points, and ITP images,
any base edge map has a bounded number of links and unmapped intervals.

Let a; b; c symbolically represent the edges of T and d be either the sink or

source in VT , if it exists. For an interval I , its location, loc.I /, can be any of the
four values in L D fa; b; c; d g. In the following lemma we show that in G , no
two directed edges having their origin nodes in the same location can have their
destination nodes in the same location. Said more formally:

Lemma 1 (Edge Level Links). Let G .V; E; A/ be a mixed graph of an edge map
where no node Ii spans more than one edge of @T and let loc.Ii / be its location.
Consider two directed edges .I1; I2/; .I3; I4/ 2 A. If loc.I1/ D loc.I3/ and
loc.I2/ D loc.I4/, then .I1; I2/; .I3; I4/ can be merged.

From Lemma 1 we see that there are a maximum of 13 directed edges in the
graph of any edge map with edge level links, as each pair in S D L � L can only
appear once and the pair .d; d/ cannot appear because d is either a source or a sink,
but not both. Moreover, no pair .d; �/ can co-exist with a pair .�; d /, again because d

is either a source or a sink. Thus, each configuration for any set of directed edges A

can be represented as certain elements of P.S/, the power set of S . Consequently,
the number of possible configurations for directed edges is 213.

Under rotations of T , certain directed edges are equivalent. For example,
f.a; b/; .b; c/g is equivalent to f.b; c/; .c; a/g. Similarly, f.b; b/; .c; c/g is equiv-
alent to f.c; c/; .a; a/g and f.a; a/; .b; b/g. We next eliminate such equivalences
under rotation by using the action of a permutation group that imparts rotations
.a ! b ! c ! a/ and .a ! c ! b ! a/.
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These permutations allow us to enumerate the possibilities for the set A; however,
they still lack any cyclic ordering of nodes to form the undirected edges E in G . We
generate all the mixed graphs under the constraint that there is a maximum of one
TP on the interior of an edge (a consequence of Property 2) by grouping all intervals
sharing the same edge label. We do this by first generating permutations of all
origin/unmapped inflow nodes and destination/unmapped outflow nodes separately
on every edge. All possible orderings of nodes on that edge are then the Cartesian
product of these two sets. This ultimately constructs the set of all possible mixed
graphs (our initial sample space) which numbers more than 100 million.

4.3 Restricting Cases

Our initial enumeration of all graphs is quite large, but contains many invalid graphs.
Using the following lemmas based on the linear nature of V, we filter this initial set.
In particular, the following must hold:

Lemma 2 (ITP-vertex). An ITP cannot exist on a vertex of T .

Next, Lemma 3 states an important fact that can be used to qualify a critical point
based on the existence of an ETP on the interior of an edge of the triangle.

Lemma 3 (ETP-Saddle). Let q 2 @T � fpi ; pj ; pkg be an ETP. If there exists a

critical point Sp 2 VT , then Sp is a saddle.

Based on these lemmas, we enforce the following rules on all mixed graphs:

1. Directed edges of G cannot intersect. (Since streamlines never intersecting in
piecewise linear flow.)

2. ITP cannot exist on vertices. (Lemma 2)
3. ETPs cannot exist on edges when there is source or sink (Lemma 3 and

Property 1).

We can label some undirected edges of a mixed graph as either ITPs or ETPs
using the combinatorial structure of the graph. For an undirected edge fI1; I2g in
G , if I1 and I2 switch between inflow to outflow, then fI1; I2g is a combinatorial
TP. Moreover, if I1 and I2 do not have a directed edge between them in A, then the
TP is an combinatorial ITP. Images of an ITP are directly implied by its directed
edges. Similarly, if I1 and I2 have a directed edge between them, then the TP is a
combinatorial ETP. We remark that in a very few number of cases, combinatorial
ETPs actually correspond to an interior flow that wraps to itself, creating an orbit in
the triangle. These cases are not distinguished by the flow maps, but can only appear

if there is no source or sink within VT .
Though the above analysis does not label all the undirected edges, these are

sufficient to enforce the above mentioned rules to restrict the sample space of mixed
graphs to under one thousand. After labeling combinatorial ITPs and ETPs, the



152 S. Jadhav et al.

second and third rule can be enforced directly. We enforce the first rule using a
stack method of detecting intersections between links. In a valid map, any link that
has its intervals on @T divides the triangle into two halves such that no other link
has intervals in both the halves, thus forming a last in, first out sequence on @T

equivalent to pairing parentheses in a mathematical expression.

4.4 Identifying Equivalences

For the final equivalence computation in GAP, we merge contiguous directed edges
so that all mixed graphs become base edge maps. We next use the dihedral group
for all graph symmetries as well as the permutation group for all labelings of
nodes. The dihedral group is useful for comparing the mixed graphs under all rigid
transformations. The permutation group also includes inversion of the flow direction
of directed edges to compare similarities in base edge maps under global inversion
of flow. Using GAP, we enumerate all graphs that fall in the same orbit under
its actions, each set of which represents an equivalence class for the graphs. This
process produces 43 map classes as an output.

Since our mixed graph definition does not explicitly encode saddles or orbits,
we then manually invalidate more cases based on some additional lemmas, many
of which would be challenging to encode within GAP, but are simple to remove by
inspection. We rely on two properties for the behavior of ITPs:

Lemma 4 (ITP-Saddle). If there is a saddle in VT , then an ITP cannot be present
on @T .

Additionally, Lemma 5 limits the location of a critical point Sp within the
interior of the triangle when an ITP exists. In particular, Sp must be enclosed by
the streamline extending from an ITP.

Lemma 5 (ITP-CP Enclosure). Let x 2 @T be an ITP whose images xb; xf 2 @T

and Sp be a critical point in VT . Sp is an element of the area bounded by the
streamline �.x; t/ and @T where t 2 Œa; b� s.t. �.x; a/ D xb and �.x; b/ D xf .

Thus, the following rules are enforced on the remaining cases to get the final
equivalence classes:

1. The graphs should not violate Lemma 4.
2. The graphs should not violate Lemma 5.
3. There can be a maximum of one critical point. If there is a sink or a source in the

map, there cannot a sepx point (Property 1, since a sepx point means there must
additionally be a saddle).

4. There have to be exactly four sepx points or none at all (By definition of a linear
saddle).
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To enforce the above rules, we need to identify combinatorial sepx points in the
graphs. Since, we have merged all contiguous directed edges, the graphs represent
the base edge maps. Thus, any unlabeled undirected edges have to correspond to
sepx points, since all ETP, ITP and ITP images have already been labeled. Knowing
the labeling of each undirected edge allows us to hand invalidate 20 of the 43 cases
produced by GAP. 23 classes persist after the invalidations, visualized in Fig. 5. We
have generated vector values for triangles to realize each of these cases as well,
confirming the following result:

Theorem 2. Under Definition 10 for equivalence, there are 23 equivalence classes
of edge maps for triangles in a linearly varying vector field.

5 Discussion

Edge maps are a natural way to encode one facet of the information a triangulated
vector field presents. The study of the equivalence classes of edge maps helps us
understand different structures of flow possible on a triangle. Every class represents
a large number of possible realizations of the flow. While some of the edge map
classes represent a more generic flow in terms of a point-to-point map, some of them
may reflect degeneracies in the flow. For example, class 4 (first column, third row
in Fig. 5) represents the flow imparted by an orbit in a triangle. While it is widely
known that such a field is unstable under small perturbations, its corresponding edge
map class also represents this instability.

The main benefit of edge maps is that they explicitly store the origins and
destinations of flow through individual triangles. This gives a direct control on how
the streamlines are computed, enabling us to enforce consistency. While they store
how streamlines travel across triangles, they discard any notion of what is happening
within the triangle. However, they can still preserve the global structure of the flow
in the sense that starting at a single point and traversing through a series of maps
will give an accurate representation of the destination even if the path it takes is only
approximated. If a higher resolution of the shape of a streamline is desired, it may
be achieved by using numerical integration as a progressive computation. This is
generally not required if the mesh is sufficiently fine.

In their current form, the maps drop all notion of time in their construction. One
could model a “unit” of time as a jump across a single triangle. It might be more
meaningful to add how long it takes to get from origin to destination across the
triangle. The time it takes to travel through a link could then be added into the edge
map. This modification would allow a more accurate representation of flow.

We believe that edge maps have the potential to complement existing techniques
for processing vector fields. Since they maintain consistency while providing a level
of control over accuracy, one could conceivably design algorithms for visualization
and topological analysis that can leverage these properties. Some example appli-
cations we have already considered include error analysis of streamline integration
techniques [1].
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Fig. 5 The 23 equivalent classes of mixed graphs, along with one possible rendition of edge map
for piecewise linear flow for each class, in the order of increasing number of links
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The structure of an edge map depends on the flow as well as the geometry of the
underlying mesh. The current study of edge maps is based on linear interpolation.
As future work, there are two apparent ways to generalize this study. One is by
extending it to a generalized interpolation scheme; and another way is to extend it
to higher dimensional simplices and other types of meshes.
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Appendix

Proofs from Sect. 4.2

Proof (Lemma 1). In all the cases that follow, if I1 and I3 lie on an edge of T then
we assume that there exists a subset I5 2 @T such that I5 lies between I1 and I3.
Similarly, there exists I6 2 @T between I2 and I4. In such a scenario, I5 is a set of
inflow points and I6 is a set of outflow points, otherwise there will be more than one
TP on the same edge. We know from Property 2 that this is not possible. Let a; b; c

be the edges of T and d the critical point in VT . We enumerate all possibilities of
locations for the four intervals:

1. loc.I1/ and loc.I3/ is any edge, e; and loc.I2/ and loc.I4/ is d .
2. loc.I1/ and loc.I3/ is d ; and loc.I2/ and loc.I4/ is any edge, e.

(This is symmetric to case 1 in reverse flow.)
3. loc.I1/ and loc.I3/ is any edge, e1; and loc.I2/ and loc.I4/ is another edge, e2.
4. loc.I1/ and loc.I3/ is any edge, e; and loc.I2/ and loc.I4/ is the same edge e.
5. loc.I1/, loc.I3/, loc.I2/, and loc.I4/ is d .

(This case is not possible since the one critical point is either source or sink but
not both.)

From the discussion in Sect. 3.4 we know that we can merge adjacent o–d pairs
except across transition points, sepx points, and ITP images. For all the above cases,
streamlines on I5 and I6 are bounded by .I1; I2/ and .I3; I4/ irrespective of their
locations. Therefore, since there cannot be a TP on I5 or I6, we can also rule out
ITP images. Similarly, sepx points are impossible since all four sepx points will
have to lie on I5 and I6 which would imply a TP on them. Thus, under the given
constraint, .I1; I2/ and .I3; I4/ can be merged. ut
Proofs from Sect. 4.3

Proof (Lemma 2). Let vertex pj of T be an ITP. From the definition of ITP, the

curve �.x; ˙t/ 2 VT for all t 2�0; "�, such that �.x; 0/ D pj . The streamline
�.x; ˙t/ is a C 1 continuous curve, while the two edges of T meeting at pj define a
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a b c

Fig. 6 (a) In Lemma 2, a streamline passing through a vertex .pj / of triangle T must exit and
re-enter T . (b) The first case in Lemma 3, multiple switches in flow across line of the edge. (c) The
second case in Lemma 3, more than one critical point

corner. By C 1 continuity, �.x; ˙t/ has a well defined tangent everywhere, including
at pj , but since the interior angle of T at pj is less than � , this is not possible

for �.x; ˙t/ being contained in VT . Thus, the streamline �.x; ˙t/ must exit T to
maintain its continuity (as shown in Fig. 6a). This contradicts the definition of an
ITP, implying an ITP is not possible on a vertex. ut

Proof (Lemma 3). Let an ETP xe exist on an edge a, of T . Thus, �.xe; ˙t/ … T

for t 2�0; "�. Let Sp 2 VT be the critical point. From Property 1 we know that
there is exactly one interior critical point in the vector field. Therefore, if Sp is a
sink, all streamlines eventually flow to it; if Sp is a source, all streamlines emerge
from it; and if Sp is an orbit, all streamlines are closed loops. Thus, if Sp is a sink
or a source, �.xe; t/ will have to flow to, or emerge from it. This cannot happen
without crossing the line ` of edge a. There are two ways in which �.xe; t/ can
cross `. First, it may make multiple switches of direction (Fig. 6b) over `, violating
Property 2. Second, one of the images (backward or forward) gets trapped in the
enclosure of �.xe; t/ and flows to a critical point inside (Fig. 6c), violating the fact
that there is exactly one defined critical point. If Sp is an orbit, the closed loop has to
enclose Sp else it would define another orbit. Thus again �.xe; t/ is forced to cross
`, violating Property 2. Thus Sp has to be a saddle. ut
Proofs from Sect. 4.4

Proof (Lemma 4). Let an ITP xi exist on an edge a of T , Thus, �.xi ; ˙t/ 2 VT
for t 2�0; "�. Let Sp 2 VT be the critical point. Assume, to build a contradiction,
that Sp is a saddle. This assumption implies that all streamlines including �.xi ; t/

are parallel to the separatrices of the saddle as t ! ˙1. We show that �.xi ; t/

crosses the line of an edge of T multiple times to stay parallel to the separatrices in
those limits of t , contradicting Property 2. This follows since at least one separatrix
intersects the line of every edge of T forcing multiple intersections of �.xi ; t/ with
the line of the edge to which xi belongs. Hence, Sp cannot be a saddle. The cases
for saddle sectors are shown in Fig. 7a, b. ut

Proof (Lemma 5). Let an ITP xi exist on an edge a, of T and Sp be a critical

point in VT . Assume, to build a contradiction, that Sp exists outside the enclosure of
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a b c

Fig. 7 (a) and (b) Lemma 4: Cases of saddle sectors intersecting @T invalidating the existence of
an ITP on @T . (c) Construction of a new triangle as in Lemma 5 to place both the forward and
backward images of an ITP are on the same edge

�.xi ; t/ in VT . We show that this is not possible. Since xi is an ITP, Sp is not a saddle
according to Lemma 4. Let a; b; c be the three edges of T .Now we enumerate all
possible combinations of edges on which xi , xf , and xb can lie:

1. edge.xi / D edge.xb/ D edge.xf /.
The only way to realize this case is an orbit such that xi D xf D xb . Such an
orbit immediately encloses the critical point.

2. edge.xi / D edge.xb/ or edge.xi / D edge.xf /.
These two cases are symmetrical under reversal of flow. If either xf or xb lie
on the same edge as xi , by Property 2, the other image gets enclosed into the
�.xi ; t/ and has to flow to a critical point.

3. edge.xi / ¤ edge.xb/ D edge.xf /.
In this case, both xb and xf lie on the same edge indicating a switch from inflow
to outflow. This implies that there exists at least one TP between them including
the two points. If one of xf and xb is a TP, it has to be an ITP since part of its

streamline is already in VT . Due to Property 2, the other image of this ITP has to
flow into a critical point in the enclosure of �.xi ; t/. If a point in the interior is a
TP, this TP cannot be an ETP since we have already established that Sp is not a
saddle and an ETP would violate Lemma 3. Now one of the images of this ITP
can flow back to the same edge, but the other has to flow to Sp . Thus Sp is in the
enclosure of �.xi ; t/.

4. edge.xi / ¤ edge.xb/ ¤ edge.xf /.
In this case, we can always construct a new triangle by connecting xf and xb as
an edge and arbitrarily choosing a third point such that Sp still lies in the interior
of the new triangle as shown in Fig. 7c. An argument identical to case 3 can now
be applied. ut
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