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We present a numerical technique to visualize covariance and cross-covariance fields of a stochastic sim-
ulation. The method is local in the sense that it demonstrates the covariance structure of the solution
at a point with its neighboring locations. When coupled with an efficient stochastic simulation solver,
our framework allows one to effectively concurrently visualize both the mean and (cross-)covariance infor-
mation for two-dimensional (spatial) simulation results. Most importantly, the visualization provides the
scientist a means to identify interesting correlation structure of the solution field. The mathematical setup
is discussed, along with several examples to demonstrate the efficacy of this approach.
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1. INTRODUCTION

In the past two decades, there has been a tremendous growth of interest within the computational science and engineer-
ing (CS&E) community concerning the topics of Validation and Verification (V&V) and Uncertainty Quantification
(UQ) in the context of numerical simulation results. With the advent of such UQ computational techniques as stochas-
tic finite element method [1] and generalized Polynomial Chaos method [2], there is an increasing need to convey UQ
results in concise, informative ways. Visualization is the lens often through which scientists investigate their data.
In response to the surge of UQ focus within the simulation community, uncertainty visualization is considered one
of the top visualization research problems by the scientific visualization community [3]. In this paper, we provide
a numerical technique and corresponding visualization methodology for visualizing covariance and cross-covariance
fields derived from stochastic simulation data. Our framework allows one to effectively visualize both the mean and
covariance information concurrently for two-dimensional (spatial) simulation results. From this, the corresponding
visual representations allow the scientist a means of identifying interesting correlation structure within the solution
field.

1.1 Motivation

Our work was originally motivated by a bioengineering application in which we were employing the gPC Galerkin
approach to understand the impact of variations in organ conductivity on the classic bioelectric electrocardiograph
(ECG) forward problem [4]. In that study, the conductivity of the lungs (and other various organ groups) were
considered to be expressed by a collection of independent uniform random variables. Two-dimensional forward ECG
simulations were conducted, and the corresponding mean and standard deviation fields were displayed. In Figure 1
we provide example flood-contour visualizations as presented in [4].

Although plotting the mean and standard deviation in separate plots has been the standard way to visualize the
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(a) Mean for ± 50% lung conductivity (b) Standard deviation for ± 50% lung conductivity

Figure 1: Effects of stochastic variation in conductivities of the lungs on torso potentials: These contour plots corre-
spond to the stochastic behavior of the electrical potential across a slice through the torso resulting from stochastic
organ conductivities. Figure (a) shows the mean for a stochastic interval of ± 50% from the reference lung conduc-
tivity, while Figure (b) shows the associated standard deviation. In the figure depicting the standard deviation of torso
potentials, the region of varying conductivity is indicated by the region enclosed by the dotted contours. All units in
the plot are mV.

results, practitioners, when presented such plots, prefer a way to overlay the two visualizations for concurrent ex-
amination and, more importantly, a way to visualize the correlation structure of the field to fully assimilate the
significance of the results with respect to the underlying practical problem. This, along with the experience of the
authors on this topic, motivated the current work – that is, to find a means of simultaneously portraying both mean
and (cross-)covariance information in one visualization.

1.2 Related Work

The field of uncertainty visualization, though still in its early development, is not new. Simultaneous with the two
decades of UQ simulation research there has also been a host of visualization research projects aimed at providing
corresponding UQ visualization techniques. For example, as early as 1996, three uncertainty visualization results
surface within visualization community. (1) Lodha et al. [5] proposed a number of methods to visualize uncertainty.
(2) Wittenbrink et al. [6] proposed a new vector glyph to show both the magnitude and direction of uncertainty. (3)
Pang et al. [7] broadly surveyed different kinds of uncertainty visualization methods and provide a formal classifica-
tion of uncertainty visualization. Pang et al.’s work is regarded as one of the most comprehensive surveys of current
uncertainty visualization methodologies to date.

Here we briefly summarize Pang et al.’s aforementioned work. In this work, uncertainty is classified into three
categories: statistical, error and range. The different forms of uncertainty are introduced into the pipeline as data are
acquired, transformed and visualized. They propose a classification on uncertainty visualization with five characteris-
tics: (1) value of datum and its associated value uncertainty (scalar, vector, tensor, multivariate), (2) location of datum
and its associated positional uncertainty (0D, 1D, 2D, 3D, time, etc.), (3) extent of datum location and value (discrete
or continuous), (4) visualization extent (discrete or continuous), and (5) axes mapping defining visualization map-
ping (experiential or abstract). They then develop a number of new uncertainty visualization methods and organize
them based on how the uncertainty information is encoded into seven categories: add glyphs, add geometry, modify
geometry, and modify attributes, animation, sonification, and psychovisual approaches.

With Pang et al.’s original work in place, a diverse number of further contributions sprang forth. For example,
Johnson and Sanderson [8] discussed the need for uncertainty visualization in the scientific imaging field. Typically
error and uncertainty of data are included as 2D graphs but left out of two-dimensional and three-dimensional visual-
izations. The expression of error or uncertainty can be made by various techniques (depending on the application) such
as glyphs which can either be new glyphs specific for conveying error, or by altering the size and orientation of current
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glyphs using error or uncertainty as a variable. Also adding new visual cues to the visualization can be used as a way
to convey uncertainty: bump maps, blurring, textures, and other lighting attributes, for example, can be used, taking
advantage of the fact that these techniques may distract the eye, thus giving a cue that there are problems/uncertainties
in these areas.

Further research has been accomplished on visual attributes used to visualize uncertainty. Djurcilov et al. [9] in-
troduced uncertainty in volume-rendering by using pseudo-color, adding noise and altering texture. Rhodes et al. [10]
presented uncertainty in isosurface by visualizing uncertainty with hue, brightness, and saturation. Grigoryan and
Rheingans [11] introduced point-based primitives to show surface uncertainty by displacing individual surface points
along its normal by an amount proportional to a random number multiplied with the local uncertainty value, hence
creating a “fuzzy surface” to convey the surface uncertainty. Hengl [12] described GIS methods for visualisation of
uncertainty based on the Hue-Saturation-Intensity (hue, saturation, and intensity), color model and calculations with
colors using the color mixture (CM) concept. Hengl and Toomanian [13] illustrated how color mixing and pixel mix-
ing can be used to visualize uncertainty to represent prediction error in soil property maps. MacEachren et al. [14]
reviewed and assessed progress toward visual tools and methods to help analysts manage and understand informa-
tion uncertainty. They conclude by identifying seven key research challenges in visualizing information uncertainty,
particularly as it applies to decision making and analysis.

There is some research on using texture as a technique for uncertainty visualization. Interrante [15] introduced
textures to visualize spatial uncertainty by distorting regularity in natural textures. Sanderson et al. [16] created a
method for visualizing vector fields while potentially presenting uncertainty by using a reaction-diffusion model to
generate texture patterns with variable shapes, sizes, and orientations. Botchen et al. [17] proposed two texture-based
techniques to visualize uncertainty in time-dependent two-dimensional flow fields. The first method employed a cross
advection perpendicular to the flow direction. The second method applied isotropic diffusion that implemented by
Gaussian filtering. They compare these techniques with an adapted multi-frequency noise approach.

Cedilnik and Rheingans [18] presented procedurally-generated annotation by distortion that indicates uncertainty.
The authors proposed how procedural variation of width, sharpness, noise, and amplitude modulation can indicate
uncertainty. The method presented here is to use annotations that are generated procedurally and are slightly distorted
in areas of high uncertainty. The distortion techniques should procedurally create the annotation reasonably fast that
are perceptually normalized and inherently meaningful. They stated that their method preserves perceptibility across
various levels of uncertainty.

Olston and Mackinlay [19] proposed the bounded visualization method that should be different from statistical
uncertainty, since statistical uncertainty representations potentially incorporate an infinite ranges of values. They
proposed “ambiguation” (i.e. purposeful ambiguity) to visually conveyed ambiguous regions in two dimensional
graphs and charts. Aigner et al. [20] proposed a new glyph, called PlanningLines to show temporal uncertainty.
Love et al. [21] developed a system to visualize multivalued field including uncertainty. Kniss et al. [22] developed
a volume visualization method that incorporates the fuzzy classification into the visualization cycle to allow users to
interactively explore the uncertainty, risk, and probabilistic decision of surface boundaries.

There is also considerable research on uncertainty visualization being accomplished within the various applica-
tion domains. Schmidt et al. [23] developed visual representations for real multidimensional sea bottom uncertainty
data, multi-variate information and multi-dimensional target state data by using of coloring methods, surface repre-
sentations, glyphs, haptics, iconographic imagery, animation and text. Lundstrom et al. [24] proposed a probabilistic
animation method to visualize uncertainty in medical volume renderings. First they have a probabilistic Transfer Func-
tion model which allows for direct user interaction with the classification. It is animated by sampling the probability
domain over time, which results in varying appearance for uncertain regions. Zuk and Carpendale [25] presented a
theoretical analysis of uncertainty visualization in which they evaluated eight uncertainty visualizations from various
sources on widely accepted visualization principles and showed a set of heuristics and how pertinent each heuristic
was with respect to the sampled visualizations. Janoos et al. [26] proposed a surface representation of neurons method
to reconstruct dendrites and their spins from 3-D microscopy imaging. They identify the valid spin and the classifica-
tion the spins based upon their morphology in a Bayesian fashion. They employed the pseudo-color to visualize the
uncertainty of the data. A user study was conducted to evaluate the visualization. They concluded that visualization
techniques that distort the shape of the object were not suitable in a clinical setting. They added too much visual
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clutter while not conveying any additional information. Correa et al. [27] presented a framework using statistics
methods such as uncertainty modeling, propagation and aggregation in the visual analytics process. They adapted
data transformations such as regression, principal component analysis (PCA) and K-means clustering to account for
uncertainty. They followed common data analysis tools such as model fitting, principal component analysis and clus-
tering to show uncertainty is both propagated and aggregated in these stages on data from the Boston neighborhood
housing price data set. They then presented the visual representations that combines summarized and detailed views
of the uncertainty of a multi-dimensional data.

Visualization of correlation and covariance matrices has been also explored in literature. Braak [28] extended
the biplot technique which visualize correlations between pairs of variables and regression coefficients to canonical
correlation analysis and redundancy analysis. Friendly [29] proposed a method called “Corrgram” based on two main
schemes: (1) rendering the value of a correlation to depict its sign and magnitude and (2) reordering the variables in a
correlation matrix so that “similar” variables are positioned adjacently, facilitating perception. M. Pauline Baker [30]
put visualization techniques into practice to explore covariance in the Inverse Ocean Modeling framework. The
paper introduced a glyph-based method called “Covariance Neighborhoods” to show local covariance. The glyphs
produced, however, differ from those presented in this work. Gunawardane et al. [31] introduced an integration of
statistical analysis which computes correlation and linear regression between indicators using time-series data with
visualization techniques to gain deeper socio-economic understanding. The technique we present here supplements
this list of methods and represents a new (cross)-covariance visualization and glyph-based icon generation strategy.

1.3 Outline

The paper is organized as follows. In Section 2, we lay out the mathematical details of the work. In Section 3, we
present the implementation details necessary to replicate this work. In Section 4, we present our new methodology
applied to two different stochastic datasets, one involving multiple random variables over a rectangular, structured
spatial mesh and one involving the original motivating problem, simulation results of electric potential over a two-
dimensional torso slice. We summarize our results in Section 5.

2. MATHEMATICAL DESCRIPTION

2.1 Preliminaries

Here we consider a physical domain D in two dimensions, that is, x = (x1, x2) ∈ D ⊂ R2, and a stochastic solution
field u(x,ω), where ω ∈ Ω in a properly defined probability event space Ω. The statistical moments of the solution
field that will be considered in this paper include the mean and variance fields,

µu(x) = E[u(x,ω)], σ2
u(x) = E[(u− µu)2], (1)

respectively. The covariance field is a function of two spatial locations x and y,

Cuu(x, y) = E[(u(x)− µu(x))(u(y)− µu(y))]. (2)

Note Cuu(x, x) = σ2
u(x). The cross-covariance field between two solution fields u and v is

Cuv(x, y) = E[(u(x)− µu(x))(v(y)− µv(y))]. (3)

A useful quantity to reflect the relation between the two fields is the cross-correlation coefficient

covuv(x, y) =
Cuv(x, y)
σu(x)σv(y)

. (4)

From its definition, −1 ≤ covuv(x, y) ≤ 1.
Our goal is to construct a technique to visual the (cross-)covariance field effectively.
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2.2 Local Cross-Covariance Field

Both the covariance (COV) field and the cross-covariance (xCOV) field are functions of two spatial locations. Conse-
quently it is non-trivial to visualize them in a standard coordinate system. To circumvent this difficulty, we define a
localized version of these fields.

Definition 2.1: Local cross-covariance field: For a given location x̂ and a real parameter ε ≥ 0, the local cross-
covariance of two stochastic fields u(x,ω) and v(x,ω) with respect to a given location x̂ is defined as

Cε
uv(x̂, y) = E[(u(x̂)− µu(x̂))(v(y)− µv(y))], (5)

where y resides on the ε-ball surrounding x̂, i.e.,

‖y − x̂‖ = ε, (6)

where ‖ · ‖ is the standard Cartesian norm. For a single stochastic field u(x,ω), the definition of the local covariance
field naturally becomes

Cε
uu(x̂, y) = E[(u(x̂)− µu(x̂))(u(y)− µu(y))]. (7)

It is easy to see that as the radius of the ε-ball decreases, the local covariance field becomes the variance at x̂, i.e.,

lim
ε→0

Cε
uu(x̂, y) = σ2

u(x̂). (8)

These local fields are more amenable to standard visualization technique because they are functions of single
variable y that surrounds a fixed location x̂.

2.3 Local Cross-Covariance Shape

Based on the definition of local cross-covariance, we can now define a geometric shape to reflect its structure.

Definition 2.2: Local cross-covariance shape: For the local cross-covariance field Cε
uv with respect to a fixed

location x̂, as defined in (5), the local cross-covariance shape Suv is defined as a closed curve z(s) ∈ R2 surrounding
x̂, where s is a parameterization, such that for all s satisfying ‖y(s)− x̂‖ = ε,

‖z(s)− x̂‖ = |Cε
uv(x̂, y(s))| . (9)

For a single stochastic field u(x,ω), this leads to the local covariance shape Suu,

Suu = {z | ‖z(s)− x̂‖ = |Cε
uu(x̂, y(s))|, ∀s : ‖y(s)− x̂‖ = ε} , (10)

where Cε
uu(x̂, y) is the local covariance field in (7).

It is easy to see that as ε→ 0, the local covariance shape Suu becomes a circle with radius σ2
u(x̂). For ε > 0, the

shape can be considered as a deformed circle, where the radius at any angle is determined by the (absolute) value of
(cross-)covariance field at the same angle.

3. IMPLEMENTATION DETAILS

We now discuss the implementation details of visualizing the local cross-covariance. This is based on the definition
of the local cross-covariance shape in Definition 2.2. For clarity of exposition, we discuss the covariance and cross-
covariance separately, even though by our definitions the covariance can be considered a special case of the cross-
covariance.
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3.1 Stochastic Solution Fields

The solution field of (cross-)covariance is obviously required in order to perform visualization. In practice, however,
rarely does one compute the (cross-)covariance field directly, for the dimensionality of the field is excessively large.
Instead, what one usually has is the solution field itself. Here we will assume that the solution fields u(x,ω) and
v(x,ω) are known approximately via numerical simulation. (For the covariance field, the second solution field v is
not required.)

For a stochastic solution field, one of the widely adopted approximations is via the generalized polynomial chaos
framework ([1, 2]). In this approach, the solution dependence in the random space is approximated by a set of
orthogonal polynomial bases. A typical gPC approximation takes the following form,

u(x,ω) ≈
N∑
|i|=0

ũi(x)Φi(Z(ω)), (11)

where i = (i1, . . . , id) is multi-index of length d ≥ 1 with |i = i1 + · · ·+ id| and Z(ω) ∈ Rd is a random vector of
dimension d representing the random inputs. The dimensionality d is determined by the nature of the random inputs
of the stochastic simulation. {Φi(Z)} is a set of orthogonal polynomials satisfying

E[ΦiΦj] = δi,j, (12)

where δi,j = δi1,j1 · · · δid,jd
is the d-variate Kronecker delta function, whose value is 1 if i = j and 0 otherwise.

When the solution field is approximated in this form, the solution statistics can be readily evaluated in a post-
processing step. For example, the mean of the solution is

µu(x) ≈ ũ0(x), (13)

and the covariance is

Cuu(x, y) ≈
N∑
|i|>0

ũi(x)ũi(y). (14)

When another field v(x,ω) is approximated in a similar way, the cross-covariance can be approximated as

Cuv(x, y) ≈
N∑
|i|>0

ũi(x)ṽi(y). (15)

Similar expression for the covariance Cuu(x, y) can be obtained by replacing the second field v by u. We remark that
there exists a variety of gPC-type expansions, using basis functions other than the orthogonal polynomials in (12).
A detailed discussion on this is beyond the scope of this paper. We only emphasize here that, regardless of the type
of the basis, such expansions always allow one the evaluate the solution statistics in the post-processing step without
incurring any simulation effort.

The expansion coefficients in (11) are usually solved by a set of deterministic equations deriving from the gov-
erning stochastic system, via either the stochastic Galerkin or the stochastic collocation approach. (Details of these
approaches can be found in [32].) We assume that a proper spatial discretization, e.g., finite elements, finite difference,
etc., is employed for these deterministic equations so that the expansion coefficients are now approximated by a set
of spatial basis functions – usually piecewise polynomials. By doing so, the expression (11) can be determined in any
spatial location by mere numerical evaluation. Consequently, the solution statistics of the underlying stochastic field
can be approximated by evaluating its gPC expression at any spatial location, without resorting to simulations.
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3.2 Local Covariance Shape

Again let us consider a fixed location x̂ and the local covariance field defined in (7). Let us also fix the constant ε at a
positive value. We now discretize the ε-ball along its angular direction. For n > 1, let

θj = (j − 1) · 2π/n, j = 1, . . . , n, (16)

and
yj
1 = x̂1 + ε cos(θj), yj

2 = x̂2 + ε sin(θj). (17)

Consequently, {yj}nj=1 is a set of discrete points on the ε-ball surrounding x̂. We remark that it is not mandatory to
use equal-distanced points in the angular direction.

The local covariance can now be computed on these points, that is,

Cj
uu(x̂) , Cuu(x̂, yj) = E[(u(x̂)− µu(x̂))(u(yj)− µu(yj))], j = 1, . . . , n. (18)

We now normalize these values by setting

Cj
uu(x̂)← Cj

uu(x̂)/‖cuu(x̂)‖p, (19)

where cuu = (C1
uu, . . . , Cn

uu) is a vector and ‖ · ‖p is the standard vector p-norm. (Other vector norms can be readily
employed.)

The covariance shape is now represented discretely by the following points, zj , for j = 1, . . . , n, where

zj
1 = x̂1 + α · |Cj

uu(x̂)| cos(θj), zj
2 = x̂2 + α · |Cj

uu(x̂)| sin(θj). (20)

Here the constant factor
α = γσ2

u(x̂), (21)

for a real constant γ > 0.
Note that in the setup of the ε-ball, if ε → 0, then Cuu(x̂) → σ2

u(x̂). Subsequently, Cj
uu becomes constant 1 for

all j, and the points {zj} now lie on a circle of radius γσ2
u(x̂). The presence of the constant factor γ > 0 is for scaling

purpose. One should experiment with the value of γ so that the size of the circle results in an effective visualization
(e.g. avoiding overlapping icons, etc.).

To make a distinction between positive and negative covariance values, we propose to use different line patterns
when rendering the shape. For example, one can use a solid line on the part of the shape where Cuu > 0 and dotted
line where Cuu < 0. Other choices are certainly possible. For example, one may choose to use different coloring
to distinguish the positive and the negative parts. We remark that it is necessary to identify the location x̂ in the
rendering so that the distortion of the base circle is more visible. In Figure 2 we present a diagram demonstrating
various constituents of the local covariance field icon.

We also remark that when rendering the covariance shape, one is not required to use the same set of discretization
points for computing the ε-ball. Another type of discretization can be employed for smooth rendering of the shape.
In such a case, some type of interpolation is required to evaluate the local covariance field at the location of z. Owing
to the nature of visualization, it is not necessary to use an extremely high-order interpolation. A relatively low-order
local interpolation scheme would be sufficient for efficient implementation.

3.3 Local Cross-Covariance Shape

For the local cross-covariance field between two stochastic field u and v, the above procedure for local covariance
field is essentially repeated, with the difference that the quantities corresponding to Cuu are now replaced by those
corresponding to Cuv . In short, we first compute

Cj
uv(x̂) , Cuv(x̂, yj) = E[(u(x̂)− µu(x̂))(v(yj)− µv(yj))], j = 1, . . . , n, (22)
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Figure 2: Diagram presenting the constituents of the local covariance field icon. The various symbols used in the
diagram are explained in the text.

and then normalize the result by setting

Cj
uv(x̂)← Cj

uv(x̂)/‖cuv(x̂)‖p, (23)

where cuv = (C1
uv, . . . , Cn

uv).
The local cross-covariance shape is now represented by a set of discrete points, similar to the case of local covari-

ance shape in (20), as follows.

zj
1 = x̂1 + α · |Cj

uv(x̂)| cos(θj), zj
2 = x̂2 + α · |Cj

uv(x̂)| sin(θj), (24)

where
α = γ · Cuv(x̂, x̂), (25)

for a scaling constant γ > 0. It is obvious that when the two fields u and v become the same field u, then the above
rendering of the local cross-covariance shape will become the same as the local covariance shape described in the
previous section. Once again, we propose to use different line patterns, or coloring, on the shape in the positive and
negative portion of Cuv(x̂).

A slight variation exists, when one is more interested in understanding the cross-correlation coefficients (4), for
these are normalized quantities and may be more revealing than the actual cross-covariance field. In this case, we can
define the factor α as, instead of (25),

α = γ · |covuv(x̂, x̂)|. (26)

Again, one can use different line patterns or coloring to distinguish the positive and negative portions of the shape. By
doing so, the base area of the shapes will correspond to the covuv value, which is scaled by the standard deviations
σu and σv . Consequently, the influence of the standard deviations is eliminated. In the limiting case of ε → 0, the
cov = ±1, where the sign depends on the correlation. The local shape thus becomes circles with a constant radius γ in
the entire domain. And each circle is either completely positive or completely negative. Though not quite interesting,
if this limiting case is what one desires to visualize, then it is not necessary to plot the circles (for they are the same
radius). One can simply allow α = 0 and use different symbols at x̂ to denote the positive and negative signs of the
cov.

3.4 A Short Remark on ε

In all of the discussions, the role of ε is important. From the definition of the local cross-covariance (5) and covariance
(7), the parameter ε signifies how “local” the quantity is, with the limiting case of ε → 0 giving the local point-wise
(cross-)covariance at the chosen point x̂. In practice, to understand how the (cross-)covariance function varies away
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from x̂, one can choose to produce a set of visualizations, each using different values of ε. Note that the (cross-
)covariance function often settles to a constant value when two physical locations are “far” away, where “far” here is
relative to the (cross-)correlation length. So it is the intermediate values of ε that are more revealing to examine. Such
intermediate values are relative to the (cross-)correlation length and are problem dependent.

4. RESULTS

In this section we present two simulation examples of our proposed (cross)-covariance icon visualization methodology.
The first example involves an elliptic computation on a rectangular domain using a Chebyshev collocation method in
space and gPC stochastic collocation to represent the stochastic variation. The second example involves the solution
of the elliptic bioelectric forward problem on an unstructured triangular finite element mesh in which traditional
linear finite elements are used for the discretization in space and gPC stochastic collocation is used to represent the
stochastic variation. Note the underlying stochastic problem and solution technique is not very important in our
demonstration. The visualization requires only the solution fields expressed by finite element approximation and the
gPC approximation.

Because the mathematical methodology presented previously extends trivially to vectors of independently-distributed
random variables and to cross-correlation of multiple fields, we limit our results to only demonstrating icons for the
correlation structure.

4.1 2D Elliptic Solution on a Rectangular Domain

This example is based on the simulation results of [33], Section 4.2. It is a simulation of an elliptic problem in a
random domain, where the random domain was transformed into a fixed domain and the governing elliptic problem
becomes a stochastic elliptic equation. The transformed (and fixed domain) is a rectangle of 5× 1 units, with 25 and
7 Chebyshev collocation points per direction respectively. The random space has 10 random dimensions, which are
required to model the uncertainty of the bottom boundary. The gPC Galerkin method was employed with third-order
expansion. Details of the simulation are in [33].

In Figure 3 we present flood contours of the mean of the solution (top) and the variance in the solution (bottom)
due to randomness in the bottom boundary. These plots represent what would traditionally be presented: two separate
images for mean and variance, and were what were presented in [33].

Figure 3: Flood contours showing the mean of the solution (top) and the variance in the solution (bottom) of the 2D
rectangular domain elliptical system due to uniform variation of the lower boundary height plotted in the traditional
way, as two separate images.

In Figure 4 we present flood contours of the mean of the solution with variance icons generated based upon a
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collection of samples within the data (denoted by circular dots). The variance icons have been scaled so that they are
non-overlapping. Note again that because we are dealing with a field expressed in both finite basis in physical space
and gPC in random space, we can sample the mean and variance anywhere and are not explicitly constrained to only
sample the solution at the original collocation points. This allows us a flexibility in terms of the locations at which we
place the icons. In this example, a uniform lattice sampling is used.

Figure 4: Flood contour of the mean of the solution with variance icons due to uniform variation of the lower boundary
height.

In Figure 5 we represent flood contour plots of the mean of the solution with covariance icons generated using
ε = 0.01 (top) and ε = 0.1 (bottom). Icons are drawn based upon 20 local points around each location and spline
interpolation is used to form the icon shape centered around the sample points. Icons are omitted if the ε-ball needed
for their generation does not lie completely within the computational domain. For the very small ε value (ε = 0.01),
the icons are almost all circles, for this is close to the limiting case of ε→ 0. For larger value of ε = 0.1, the distortion
is obvious near the bottom of the domain, indicating interesting covariance structure that is worth investigating by the
simulation scientists. Such indications of regions of further enquiry are what visualization should deliver.

Figure 5: Flood contour of the mean of the solution with covariance icons due to uniform variation of the lower
boundary height. Top: icons generated using ε = 0.01; Bottom: icons generated using ε = 0.1. Note that icons are
omitted if the ε-ball needed for their generation does not lie completely within the computational domain.

4.2 2D Bioelectric Problem Solved on a Unstructured Domain

This example is based upon the dataset used in our motivating example taken from [4] in which we were interested in
solving the bioelectric forward problem. The dataset consists of a triangular finite element method obtained through
the segmentation of MRI data. There are 618 vertices and 1071 triangles in the computational mesh. To replicate the
results in [4] (which employed the gPC Galerkin approach) the gPC collocation approach was used with 9 quadrature
points in the stochastic direction. Only perturbations with respect to a single uniformly-distributed random variable
are considered. In Figure 6, we present the mean of the electric potential (top) and the variance (bottom) in potential
due to a ±50% variation in the lung conductivities. These plots represent what would traditionally be presented: two
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separate images for mean and variance. We repeat the images here for consistency of the color-map in all images we
will compare.

Figure 6: Mean of the potential field (left) and variance in the potential field due to ±50% uniform variation in the
lung conductivity (right) plotted in the traditional way, as two separate images.

In Figure 7 we present flood contours of the mean of the electric potential with variance icons (left) and with
covariance icons (right). In the case of the variance icons, the variance is computed at a variety of points (denoted
with circular dots within the image) and the corresponding variance at those points is used as the radius of the circle
having the sample point as its center. The variance icons have been scaled so that they are non-overlapping. For the
covariance plot, the covariance of the field with itself is computed (i.e. Cuu) at a collection of sample points (again
denoted with circular dots) with an ε-ball of 0.1. Icons are drawn based upon 60 samples around each point and spline
interpolation is used to form the icon shape centered around the sample points. Regions of positive covariance are
denoted with solid lines, while regions of negative covariance are denoted by dashed lines. Icons are omitted if the
ε-ball needed for their generation does not lie completely within the computational domain.

A quick examination of the visualization plots indicates that there are interesting correlation patterns near the
corners. If Figure 8 we present two zoom-images of the covariance plot. The flood contours denote the mean of the
electric potential. Note in the the right plot one can clearly see icons which are non-circular, denoting a covariance
structure that has biased directions. This kind of visualization information cannot be obtained from the standard
variance contour plot presented in Figure 6. Also note that in the right image of Figure 8, one can clearly see dashed-
icons denoting covariance regions that are negative.

5. SUMMARY

With the continued growth of the areas of validation and verification (V&V) and uncertainty quantification (UQ)
within the simulation community, there will be an ever increasing need for effective visualization methods for repre-
senting data and simulation result uncertainty. For relevant visualization techniques to be generated which serve the
needs of the simulation and application domain communities, there must exist an interaction between the mathemat-
ical UQ community and the visualization community – an interaction which provides fruitful research opportunities
for both.

In this paper we present a numerical technique to visualize covariance and cross-covariance fields of two-dimensional
stochastic simulation. The method was originally motivated by a bio-engineering application in which the concur-
rent visualization of uncertainty information was desired. The method we have proposed is local in the sense that it
demonstrates the covariance structure of the solution at a point with its neighboring locations. When coupled with a
stochastic solution strategy such as the generalized polynomial chaos, our framework allows one to effectively concur-
rently visualize both the mean and covariance information for two-dimensional (spatial) simulation results in an easy
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Figure 7: Flood contour of the mean of electric potential with variance icons (left); Flood contour of the mean of the
electric potential with covariance icons for ε = 0.1 (right). Variance and covariance are in the electric potential field
due to ±50% uniform variation in the lung conductivity. Note that icons are omitted if the ε-ball needed for their
generation does not lie completely within the computational domain.

Figure 8: Flood contour of the mean in electric potential with covariance icons for ε = 0.1. Left: Zoom of right
bottom of the image; Right: Zoom of the left-top of the image. Covariance is in the electric potential field due to
±50% uniform variation in the lung conductivity. Note that icons are omitted if the ε-ball needed for their generation
does not lie completely within the computational domain.
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to understand, succinct representation. Most importantly, the visualization provides the scientist a means to identify
interesting correlation structure of the solution field. The mathematical extension of this work to three-dimensional
fields is straightforward; however, the many visualization issues such as glyph occlusion will need to be addressed in
future work. This work provides an example of effective interaction between the UQ and visualization communities
in attempting to solve a specific mathematical abstraction and visualization need.
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