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ABSTRACT

This video presents a visualization of a recent algorithm to
compute discrete gradient fields on regular cell complexes [3].
Discrete gradient fields are used in practical methods that
robustly translate smooth Morse theory to combinatorial do-
mains. We describe the stages of the algorithm, highlighting
both its simplicity and generality.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Curve, sur-
face, solid, and object representations

General Terms

Algorithms, Theory

Keywords
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1. BACKGROUND
Practical techniques for Morse theory-based analysis of-

ten utilize a discretization of the domain and function. Such
algorithms have proven to be effective tools for feature ex-
traction from complex scientific data. The only known, scal-
able algorithm for computing volumetric Morse-Smale com-
plexes [3] is based on discrete Morse theory, and the enabling
ingredient is the construction of a discrete gradient vector
field from sampled data.

The following is a brief overview of discrete Morse theory,
due to Forman [2]. A d-cell is a topological space that is
homeomorphic to a d-ball Bd = {x ∈ E

d : |x| ≤ 1}. A cell

α with dimension d is denoted α(d). For cells α and β, we
write α < β to mean that α is a face of β and β is a co-face
of α. When dim(α) = dim(β) − 1, we say α is a facet of β,
and β is a co-facet of α. The boundary operator ∂ maps a
cell to its facets.

A d-cell is regular if (a) its closure is homeomorphic to a
d-ball and its boundary to a d-sphere, and (b) its boundary
is a union of regular cells. We say K is a regular cell complex
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Figure 1: Discrete vector arrows around a (a) min-
ima, or critical 0-cell shown as a red sphere and (b)
maxima or critical 2-cell shown as a red triangle.

if all its cells are regular. When the underlying space |K|
of K is a topological space M, we say that K is a mesh
representation of M. A function f : K → R that assigns
scalar values to every cell of K is a discrete Morse function
if for every α(d) ∈ K, the sets:

L = {β(d+1)
> α

(d) : f(β) ≤ f(α)}

U = {γ(d−1)
< α

(d) : f(γ) ≥ f(α)}

satisfy |L| ≤ 1 and |U | ≤ 1. A cell α(d) is critical if |L| = 0
and |U | = 0.

A vector in the discrete sense is a pair of cells (α, β) such

that α(d) < β(d+1) and f(β) ≤ f(α). We say that an arrow

points from α(d) to β(d+1). Intuitively, this vector simulates
a direction of flow from α to β. A discrete vector field V on
K is a collection of vectors {α(d) < β(d+1)} such that each
cell of K is in at most one vector of V (discrete vectors are
visualized in Figure 1). Given a discrete vector field V on
K, a V -path is a sequence of cells
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such that for each i = 0,..., r, the vector {α(d) < β(d+1)} ∈ V ,

and β
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. A V -path is the discrete equiva-
lent of a streamline in a smooth vector field. A discrete vec-
tor field in which all V -paths are monotonic with respect to
the discrete Morse function, and does not contain any loops
is a discrete gradient field. This pairing of cells is equivalent
to defining the sets L and U for each cell. Consequentially,
critical cells of the discrete Morse function are equivalent to
unpaired cells in the discrete gradient field.

A discrete gradient field unambiguously defines flow-based
structures; the descending manifold of a critical cell α is the
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Figure 2: Assigning gradient arrows on a terrain (a). Scalar values (height) are encoded from cyan (low
values) to magenta (high values). (b) Boundary cells are paired first. (c) Pairing interior cells finds a saddle
(red edge). (d) As pairing continues, a maxima is identified (red triangle). (e) Gradient construction is
complete. Ascending 1-manifolds shown as blue cells.

sum of V-paths starting at α, and the ascending manifold
is the sum of V-paths ending at α. These structures can be
queried to extract user-defined features. This video presents
some of the specific details regarding the construction of
the discrete gradient field using a variant of the algorithm
presented in [3, 4].

2. ALGORITHM OVERVIEW
The algorithm presented in [3] creates gradient arrows by

assigning cells to pairs, ordered first based on dimension,
then on function value. This enables certain optimizations
for gridded data, however, it makes the construction more
difficult to understand intuitively in the case of regular cell
complexes. Here we present a variant on the algorithm (see
Algorithm 1) that assigns gradient arrows in a single loop
acting on a priority queue P , ordered both on function value
(low-to-high) and dimension (high-to-low). Any ties in this
ordering are resolved using simulation of simplicity [1, 4].

Algorithm 1 Construct Discrete Gradient.

1: Assign function values to all cells in K

2: Initialize P with potential minima.
3: while P is not empty do
4: σ = P .pop()
5: if unassigned(σ) then
6: if unassignedFacets(σ) is empty then
7: setCritical(σ)
8: else
9: σ′ = pair(σ)

10: end if
11: for each cofacet τ of σ, σ′ do
12: if |unassignedFacets(τ)| = 1 then
13: P .push(τ)
14: end if
15: end for
16: end if
17: end while

The pseudocode for creating a discrete gradient vector
field uses the following functions:

1. unassigned(σ) returns true iff a cell is not yet marked
critical or paired;

2. unassignedFacets(σ) returns the set {ρ0, . . . , ρk} of unas-
signed facets of σ;

3. setCritical(σ) marks σ as a critical cell; and

4. pair(σ) assigned σ as paired along with its sole un-
paired facet σ′, which it returns.

Algorithm 1 is first run on boundary cells, then on the in-
terior, to simulate mirrored boundary conditions. As in [3],
each cell is first given a function value that is the maximum
of its vertices. Next, 0-cells with function value lower than
any neighbor, the potential minima, are inserted into P . We
iteratively remove the head of the queue and either pair it in
a gradient vector, or assign it critical, in either case adding
to P the co-facets of the newly assigned cells that have ex-
actly one unassigned facet. A visual overview of the stages
of the algorithm is shown in Figure 2.

3. CREATING THE VIDEO
Our software was implemented in C++, producing still

frame visualizations of the gradient field in OpenGL for each
stage of the construction.

Our video is intended to be a self-contained introduction
to many of these concepts. It first discusses some additional
background on discrete Morse theory and scalar field anal-
ysis, gives an overview of the steps of the algorithm, and
finally shows some additional examples of gradient field con-
struction. The same algorithm is an integral step towards
computing discrete Morse-Smale complexes.
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