
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Direct Isosurface Visualization of Hex-Based
High-Order Geometry and Attribute

Representations
Tobias Martin, Elaine Cohen, and Robert M. Kirby, Member, IEEE

Abstract—In this paper, we present a novel isosurface visualization technique that guarantees the accuarate visualization of
isosurfaces with complex attribute data defined on (un-)structured (curvi-)linear hexahedral grids. Isosurfaces of high-order hexahedral-
based finite element solutions on both uniform grids (including MRI and CT scans) and more complex geometry represent a domain of
interest that can be rendered using our algorithm. Additionally, our technique can be used to directly visualize solutions and attributes
in isogeometric analysis, an area based on trivariate high-order NURBS (Non-Uniform Rational B-splines) geometry and attribute
representations for the analysis. Furthermore, our technique can be used to visualize isosurfaces of algebraic functions. Our approach
combines subdivision and numerical root-finding to form a robust and efficient isosurface visualization algorithm that does not miss
surface features, while finding all intersections between a view frustum and desired isosurfaces. This allows the use of view-independent
transparency in the rendering process. We demonstrate our technique through a straightforward CPU implementation on both complex-
structured and complex-unstructured geometry with high-order simulation solutions, isosurfaces of medical data sets, and isosurfaces
of algebraic functions.

Index Terms—Isosurface Visualization of Hex-Based High-Order Geometry and Attribute Representations, Numerical Analysis, Roots
of Nonlinear Equations, Spline and Piecewise Polynomial Interpolation

✦

1 INTRODUCTION
The demand for isosurface visualization techniques arises in
many fields within science and engineering. For example, it
may be necessary to visualize isosurfaces of data from CT or
MRI scans on structured grids or numerical simulation solu-
tions generated over approximated geometric representations,
such as deformed curvilinear high-order (un-)structured grids
representing an object of interest. In this context, high-order
means that polynomials with degree > 1 are used as the basis
to represent either the geometry or the solution of a Partial
Differential Equation (PDE). High-order data is the set of
coefficients for these solutions.

Given one of these representations, a visualization technique
such as the Marching Cube technique [28], direct isosur-
face visualization [37], or surface reconstruction applied to
a sampling of the isosurface, is frequently used to extract
the isosurface. However, given high-order data representations,
we seek visualization algorithms that act natively on different
representations of the data with quantifiable error.

In this paper, we present a novel and robust ray frustum-
based direct isosurface visualization algorithm. The method is
exact to pixel accuracy, a guarantee which is formally shown,
and it can be applied to complex attribute data embedded in
complex geometry. In particular, the method can be applied to
the following representations:

1) Structured hexahedral (hex) geometry grids with discrete
data (e.g. CT or MRI scans). The proposed method filters

• The authors are with the School of Computing, University of Utah, Salt
Lake City, UT, 84112. E-mail: {cohen, kirby, martin}@cs.utah.edu.

the discrete data with a interpolating or approximating
high-order B-spline filter [29] to create a high-order
representation of the function that was sampled by the
grid.

2) Structured hex-based representations with high-order
attribute data, where the geometry can be represented
using trilinear or higher order basis.

3) Structured and unstructured hex meshes, each of which
element’s shape may be deformed by a mapping (curvi-
linear shape elements) and with simulation data (higher
polynomial order).

4) Algebraic functions. The representation is exact.
We demonstrate that our method is up to three times faster

and requires fewer subdivisions and therefore less memory
than related techniques on related problems.

An added motivation to this work is the fact that trivariate
NURBS [7] have been proposed for use in Isogeometric
Analysis (IA) [18] to represent both geometry and simulation
solutions ([18], [8], [46]). Simulation parameters are specified
through attribute data, and the analysis result is represented
in a trivariate NURBS representation linked to the shape
representation. This is the first algorithm that can produce
accurate visualizations of isogeometric analysis results.

With degree > 1 in each parametric direction and varying
Jacobians (i.e. nonlinear mappings), trivariate NURBS that
represent an object of interest (see Figure 1) have no closed-
form inverse. Existing visualization methods designed to work
efficiently on regular spatial grids have not been extended to
work robustly and efficiently and preserve smoothness on these
complex and high-order geometries. Furthermore, standard
approaches for direct visualization are ray-based and assume

Digital Object Indentifier 10.1109/TVCG.2011.103 1077-2626/11/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

Fig. 1. Our method applied to four representative isosurface visualizations. (a) Vibration Modes of a solid structure;
(b) Solution to Poisson Equation; (c) Teardrop under Nonlinear Deformation; (d) Two Isosurfaces of the Visible Human
Data set

single entry and exit points of a ray with an element. That
hypothesis is no longer true for curvilinear elements. Hence,
those approaches are difficult to extend to arbitrary complex
geometry with curvilinear elements. Note that finding the
complete collection of entry and exit points into curvilinear
elements is a non-trivial task.

In practice, representations of more complex geometry
on which numerical simulation techniques are applied often
contain geometric degeneracies resulting from either mesh
generation or the data-fitting process. For instance, poorly-
shaped elements can lead to a Jacobian with a determinant
close to zero, which presents challenges during simulations.
In addition, and more importantly for this paper, it presents a
challenge in visualizing isosurfaces of the high-order simula-
tion solution. Thus, there is a need for isosurface visualization
techniques that deal robustly with both degenerate and near-
degenerate geometry.

After discussing relevant work and the mathematical frame-
work in Section 2, we define our mathematical formulation by
stating the visualization problem in Section 3, which is solved
in Section 4. Implementation details are given in Section 5,
and sections 6) and 7) analyse the results of our technique,
followed by a conclusion.

2 BACKGROUND
Visualization techniques are used in numerous engineering
fields–including medical imaging, geosciences, and mechan-
ical engineering–to generate a two-dimensional view of a
three-dimensional scalar or vector data set. Additionally, they
can visualize simulation results (e.g. generated with the finite
element method). Consequently, the development of such
visualization algorithms has received much attention in the
research community. Techniques usually fall into three groups:
(1) direct volume rendering, (2) isosurface mesh extraction fol-
lowed by isosurface mesh rendering, and (3) direct rendering
of isosurfaces.

Techniques in category (1) typically involve significant
computation, especially when dealing with arbitrary geometric
topologies represented by high-order basis functions such
as NURBS. In ray-based direct volume rendering methods
(see [26], [31]), it is necessary to integrate each ray through
the volume using sufficiently many integration steps. Each
integration step requires an expensive root-solving due to the
nonlinear mapping. Hua et al. [17] presented an algorithm to
directly render attribute fields of tetrahedral-based trivariate
simplex splines by integrating densities along the path of each
ray corresponding to a pixel. In the case of uniform grid data
sets, accumulating slices aligned along the viewing direction
(see [45]) is efficient and commonly used in practice, even
though ray-based techniques offer a range of optimizations
(e.g. empty space skipping).

Methods in category (2) assume a regular grid of data and
extract isosurfaces using Marching Cubes (MC) [28], resulting
in a piecewise planar approximation of the isosurface. After
isosurface mesh extraction, the faces of the isosurface mesh
are rendered. Marching Tetrahedra (MT) [6] is applied to
both structured and unstructured tetrahedra-based grids. In
both MC and MT, the corners of a hexahedral or tetrahedral
element, respectively, are used to determine if the isosurface
passes through the respective element. Then, the intersections
between the element’s edges and the isosurface are determined
to create piecewise linear facets approximating the isosurface.
Although these approaches are efficient and therefore widely
used in practice, they approximate the isosurface by piecewise
linear facets within an element with some ambiguity, and
therefore do not guarantee topological correctness. As an
example, Figure 2 shows the domain from Figure 1c, rep-
resented with a single triquintic NURBS element, discretized
with 300000 tetrahedra. As seen in Figure 2a, the respective
isosurface extracted with MT has ambiguities in the topology,
resulting from data that is known only at the corners of the
elements and hence can miss isosurface features. Furthermore,
the time to construct the respective mesh representation can

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

be computationally laborious. Schreiner et al. [40] propose an
advancing-front method for constructing manifold isosurfaces
with well-shaped triangles (Figure 3), although it has some
difficulties when the front meets itself (the stitching problem).
Meyer et al. [32] propose a particle system on high-order
finite element mesh (arbitrary geometric topology), which
applies surface reconstruction on the particles to construct the
isosurface mesh; however, the visualization produced is not a
water-tight surface. When the data is known only at the corners
of a hexahedral mesh, our method constructs an approximation
by filtering the data with a high-order approximating or
interpolating trivariate B-spline filter (see [29]). The filter can
be trilinear (only C(0)), tricubic (C(2)) or higher degree, as
required by the user. Then, an isosurface of the high-order
approximation is directly rendered with pixel accuracy.

In category (3), the isosurface is rendered directly, i.e. for
every pixel on the image plane, its corresponding point on
the isosurface is determined (Figure 3, left). Once the point
on the isosurface for a given pixel is known, the pixel can
be shaded using the gradient as the normal for the given
point. Another motivation to visualize specific isosurfaces is
to color-code information, such as material density, to get a
better understanding through which materials the isosurface
passes. Knoll et al. [24] use a trilinear reconstruction filter on
a structured grid and a ray-based octree approach to render
isosurfaces and achieve interactive frame rates. Nelson et al.
[34] propose a ray-based isosurface-rendering algorithm for
high-order finite elements using classic root-finding methods,
but it did not consider element curvature (i.e. the multiple entry
and exit problem). Kloetzli et al. [22] construct a set of struc-
tured Bézier tetrahedra from a uniform grid to approximate
any reconstruction filter with arbitrary footprint. Given this
reconstruction, generated from gridded input data (e.g. medical
or simulation data), they directly visualize isosurfaces using
the ray/isosurface intersection method presented by Loop [27].

The method proposed in this paper is most closely related
to class (3) approaches, i.e. our proposed method directly
visualizes an isosurface from a trivariate NURBS of arbitrary
geometric complexity as shown in Figure 1. However, instead
of following only a ray-based scheme, our approach computes

Fig. 3. Isosurface from silicium data set (volvis.org),
isovalue of 130 using Marching Cubes (using ParaView),
Afront (ρ = 0.3) and Direct visualization with our proposed
method.

t0.0
0.2
0.4
0.6
0.8
1.0

Bi�t�

Fig. 4. Cubic NURBS curve with non-uniform knot vector
and open end conditions.

the intersection between a ray frustum and the isosurface.
Furthermore, it is often desired to visualize the geometry
represented by the NURBS. While approaches similar to the
work in [1] can be used to render the object-surface geometry,
our approach can be used to simultaneously visualize both the
geometry represented by the NURBS and the visualization
of isosurfaces of the attribute representation (see Figure 1b)
in a robust way. Intersecting a ray frustum with an object
in the scene is related to the approaches that propose cone-
tracing given in the work [2] and beam-tracing (see [16])
for more efficient anti-aliasing, soft shadows, and reflections.
However, both of those techniques deal only with polygonal
objects. For isosurfaces of algebraic functions, the thesis [10]
presents interval approaches to create intersection tests in the
ray-tracing of implicit surfaces. In particular, it shows a ray
sampling-based method to exploit the coherence of rays to
accelerate the process of ray-tracing implicit surfaces, which
can also be used for anti-aliasing isosurface silhouettes.

2.1 Trivariate NURBS
A trivariate tensor product NURBS mapping is a parametric
map V : [a1,a2]× [b1,b2]× [c1,c2] → Ω ⊂ R3 of degree d =
(d1,d2,d3) with knot vectors τ = (τ1,τ2,τ3), defined as

V (u) := ∑n
i=1 wi ci Bi,d,τ (u)

∑n
i=1 wi Bi,d,τ (u)

(1)

=

(
x(u)

w(u)
,

y(u)

w(u)
,

z(u)

w(u)

)
, (2)

where ci ∈ R3 are the control points with associated weights
wi of the n1 × n2 × n3 control grid, i = (i1, i2, i3) is a multi-
index, and u = (u1,u2,u3) is a trivariate parameter value.
Every coefficient ci has an associated trivariate B-spline basis
function Bi,d,τ(u) = ∏3

j=1 Bij ,d j ,τ j (u j).
Bij ,d j ,τ j (u j) are linearly independent piecewise polynomials

of degree d j with knot vector τ j = {t j
k}

n j+d j
k=1 . They have

local support and are C(di−1). Furthermore, ∑n
i=1 Bi,d,τ (u) = 1

(see [7]). Figure 4 illustrates these definitions for the 1D case.
ci ∈ R

3, V (u) describes the physical geometry and is re-
ferred to as the geometric mapping. Suppose an attribute A (u)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

(a) (b) (c)

Fig. 2. Discretization of domain from Figure 1c with 300k tetrahedra and application of Marching Tetrahedra (using
ParaView). (a) isosurface; (b) scalar field on tetrahedra; (c) our approach on single triquintic NURBS patch

is related to V (u) where the attribute function A : [a1,a2]×
[b1,b2]× [c1,c2] → R(k) can be formulated as

A (u) := ∑n
i=1 wi ai Bi,d,τ (u)

∑n
i=1 wi Bi,d,τ (u)

(3)

=
a(u)

w(u)
. (4)

where Bi,d,τ (u) is defined as above.
Let Vi(u) and Ai(u) refer to the geometry and attribute

mapping of the ith knot span, i = (i1, i2, i3), called a “patch,”
i.e. its parametric domain is [t1

i1
,t1

i1+1)× [t2
i2
,t2

i2+1)× [t3
i3
,t3

i3+1),
where

Vi(u) :=
(

xi(u)

wi(u)
,

yi(u)

wi(u)
,

zi(u)

wi(u)

)
, Ai(u) :=

ai(u)

wi(u)
. (5)

For the purpose of clarity, we consider only scalar attributes,
although this approach works equally well for vector attributes.
Vi(u) and Ai(u) are each a single trivariate tensor product
polynomial (or rational), and G := {(Vi(u),Ai(u))}n−d

i is the
set of geometry and attribute patches, respectively. Note that
each geometry patch Vi(u) has a corresponding attribute patch
Ai(u). Furthermore, in case Ω cannot be represented using a
single mapping V (u), then Ω is represented as a collection of
the mappings V (u) and A (u).

Figure 5 illustrates these definitions with a single NURBS
surface representing Ω ∈ R2.

2.2 Classical Problem Statement
Let Ω ∈ R3 be the domain of interest and g(x,y,z) where
g : Ω → R is an attribute function. In isosurface visualization,
the user specifies an isovalue â at which to inspect the implicit
isosurface of g(x,y,z)− â = 0. By referring to Figure 5 (show-
ing the 2D scenario), in ray-based visualization techniques,
the ray, passing through the center of a pixel, is represented
as r(t) = o + t d, where o is the origin of the ray (location of
the eye) in R

3, d the direction of the ray, and t ∈ R the ray
parameter. One wants to find the set of t-values that satisfy
f (t) = 0, where f (t) = g(r(t))− â.

When Ω represents a uniform scalar grid, efficient and inter-
active methods exist to directly visualize isosurfaces, including
a GPU approach to visualize trivariate splines with respect to

pixel line

pixel center

Fig. 5. 2D analogy: Ray passing through a bivariate
NURBS surface with color-coded attribute field A (u) in-
tersecting isocontour at roots of f (t), where the red points
refer to entry and exit points with the surface.

tetrahedral partitions that transform each patch to its Bernstein-
Bézier form [20]. Earlier, a direct rendering paradigm of
trivariate B-spline functions for large data sets with interactive
rates was presented in the work by [38], where the rendering
is conducted from a fixed viewpoint in two phases suitable
for sculpting operations. Entezari et al. [14] derive piecewise
linear and piecewise cubic box spline reconstruction filters for
data sampled on the body-centered cubic lattice. Given such
a representation, they directly visualize isosurfaces. Similarly,
Kim et al. [21] introduce a box spline approach on the face-
centered cubic (FCC) lattice and propose a reconstruction
algorithm that can interpolate or approximate the underlying
function based on the FCC and directly visualize isosurfaces.

In the case where g(x,y,z) describes an algebraic function in
R

3, Blinn [4] uses a hybrid combination of univariate Newton-
Raphson iteration and regular falsi. More recently, Reimers et
al. [39] developed an algorithm to visualize algebraic surfaces
of high degree, using a polynomial form that yields interactive
frame rates on the GPU. Toledo et al. [9] present GPU
approaches to visualize algebraic surfaces on the GPU. Interval
analysis ([33]) has been adopted by Hart [15] and recently by

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

Knoll et al. [23] to visualize isosurfaces of algebraic functions
as well.

In the following discussion, let V (u) represent a general
domain of interest Ω together with an attribute field A (u).
In this case, Ω is not a cube which has undergone none
or at most an affine transformation. Therefore, g(x,y,z) :=
A (V −1(x,y,z)). V −1(x,y,z) is the inverse of a non-identity
and non-affine mapping, i.e. it cannot be represented in closed-
form and in order to evaluate the corresponding f (t), the
inverse of V −1(x,y,z) has to be computed using a root-solving
method. Because of this, it is not clear how these methods
can be extended to work with the nonlinear, nonpolynomial
mapping V −1(x,y,z). Computing all the roots along r(t) with
those methods would involve re-application of the respective
visualization algorithm, making extensions of such approaches
computationally intractable.

Before any root-solving takes place, the set I ⊂ G is
computed where the geometric sub patches Vi(u) ∈ I might
get intersected by r(t) and contain the respective isosurface.
Finding the roots of f (t) is equivalent to finding the roots of
fi(t) of the geometry patches Vi(u) ∈ I, where

fi(t) := Ai(V
−1

i (r(t)))− â = 0. (6)

Solving Equation 6 requires finding the range of values of t
where fi(t) is defined, i.e. the t-values which correspond to
the entry and exit points of r(t) into V

−1
i (r(t)). Depending

on the geometric complexity of Ω, this range can consist of
multiple disjoint intervals where each interval is defined by an
entry and exit point of the ray with Vi(u).

One way to compute these intervals is to use the Bézier
clipping method proposed in the work [35] on the six sides
of the elements in I, implying that the elements in I have to
be turned into Bézier patches using knot insertion (see [7]).
While Bézier clipping is an elegant way to visualize Bézier
surfaces, it has problems at silhouette pixels. A discussion of
its problems and proposed solutions can be found in [11]. Once
these pairs of entry and exit points are computed, a numerical
root-solving technique, such as the Newton-Raphson method
or bisection method, is applied to fi(t) for each pair. The
limitations of these classic methods are well-known. That is,
Newton’s method requires an initial starting value close to

Fig. 6. On the left, piecewise trivariate cubic Bézier
patches results in black pixel artifacts, due to degenerate
derivative at the Bézier patch edges.

the root and depends on f ′i (t), so it fails at degeneracies and
where the derivative is close to zero. Krawczyk [25] presents
a Newton-Raphson algorithm that uses interval arithmetic for
the initial guess. Toth [44] applies this method to render
parametric surfaces. However, since Newton’s method needs
the derivative of fi(t), it can fail at the edges of Vi(u) as
discussed in Abert [1], leading to the well-known black pixel
artifacts at the patch boundaries, as shown in Figure 6. The
bisection method is more robust but converges only linearly.
The main problem with the bisection method is that the
signs of fi(t) at the entry and exit points must be different,
a requirement which often cannot be fulfilled. In summary,
an approach which attempts to solve Equation 6 can fail
when finding the entry and exit points, or finding the inverse
V

−1
i (x,y,z), or finding the roots of fi(t) fails. Furthermore,

there is no guarantee of determining all intersections between
the isosurface and the area corresponding to the pixel, i.e. it
may only determine the intersections at the ray itself.

Another standard approach to intersect a ray r(t) with an
isosurface, as defined in the work by [42], is to solve the
system of four equations and four unknowns:⎛

⎜⎜⎝
rx(t)
ry(t)
rz(t)
A (u)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x(u)
y(u)
z(u)

â

⎞
⎟⎟⎠ ,

where rx(t), ry(t) and rz(t) are the x-, y- and z- coordinates
of r(t), respectively. Such a nonlinear system can be solved
using the general geometric constraint-solving approach pro-
posed by Elber et al. [13] that uses subdivision and higher
dimensional Axis-Aligned Bounding Box (AABB) tests to find
a solution where r(t) and V (u) are piecewise polynomial
or piecewise rational. Elber et al. applied their approach to
bisectors, ray-traps, sweep envelopes, and regions accessible
during 5-axis machining, but not to rendering isosurfaces.
However, as we propose here, pixel-exact isosurface visual-
ization requires further augmentation of the algorithm.

In the following approach, we develop a formulation for
a guaranteed determination of all intersections between a ray
frustum and an isosurface. The proposed method computes
the set of roots simultaneously, avoiding any computation of
intervals on which fi(t) is defined.

3 MATHEMATICAL FORMULATION
In this section, we develop the mathematical formulation that
is used to intersect a ray frustum (Figure 7) with the implicit
isosurface A (u)− ã = 0 embedded within V̂ (u), which can
represent arbitrary geometry. ã is the scalar value for which
the isosurface will be visualized.

In the following, we assume the coefficients ci and the
corresponding weights wi, as defined in Section 2.1, are in
eye space, i.e. the camera frustum sits at the origin, pointing
down the negative z-axis. Let P be the 4×4 projection matrix
defining the camera frustum, where

P =

⎛
⎜⎜⎝

near 0 0 0
0 near 0 0
0 0 − f ar+near

f ar−near − 2 f ar∗near
f ar−near

0 0 −1 0

⎞
⎟⎟⎠ . (7)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

Fig. 7. Ray Frustum/Isosurface Intersection for pixel (s,t)
shaded in magenta with adjacent pixels shaded in grey.

In this case, P defines a frustum with a near plane of near
units away from the eye with a size of [−1,1]× [−1,1], and
a far plane of f ar away from the eye, where near < f ar.
Furthermore, P projects along the z-axis.

P transforms the frustum and all geometry from eye space
into perspective space, i.e. the frustum is transformed into
the unit cube [−1,1]3 and every ray frustum in eye space is
transformed into a ray box in perspective space. Coefficients
ci and weights wi are transformed into perspective space by

(ŵi x̂i, ŵi ŷi, ŵi ẑi, ŵi)
T = P◦ (wi xi,wi yi,wi zi,wi)

T , (8)

where ĉi = (x̂i, ŷi, ẑi) and⎛
⎜⎜⎝

x̂i
ŷi
ẑi
ŵi

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(near ∗ xi)/zi
−(near ∗ yi)/zi

(2∗ f ar∗near+(f ar+near)zi)
(f ar−near)∗zi

−wi zi

⎞
⎟⎟⎠ . (9)

From that,

V̂ (u) := ∑n
i=1 ŵi ĉi Bi,d,τ (u)

∑n
i=1 ŵi Bi,d,τ (u)

(10)

=

(
x̂(u)

ŵ(u)
,

ŷ(u)

ŵ(u)
,

ẑ(u)

ŵ(u)

)
(11)

is V (u) in perspective space. Furthermore, let x̂ = (x̂, ŷ, ẑ) be
a point in perspective space. Although the transformed ray
frustum, mapped from eye space to perspective space is a
rectangular parallelepiped, we still call it a ray frustum to
evoke its shape in eye space.

Given a ray frustum constructed from ray r(t) as shown in
Figure 7, there are three types of intersections between a ray
frustum and the isosurface: 1) The isosurface intersects the
four planes of the ray frustum and the isosurface’s normals
point either towards or away from the eye over the whole
frustum and r(t) passes through the isosurface; 2) r(t) passes
through the isosurface but the ray frustum contains an iso-
surface silhouette; 3) Same as case 2) but the r(t) does not
pass through the isosurface. Figure 8 illustrates these three
intersection types.

In types 1) and 2), r(t) intersects the isosurface and can
be detected with ray-isosurface intersection. Type 3 requires
a different approach. Note that there are cases for which
sampling approaches such as pixel subdivision will fail.

Type 1 Type 2 Type 3

Fig. 8. Three ray frustum/isosurface intersection types:
1) Ray frustum and corresponding pixel is fully covered;
2) isosurface silhouette intersects ray frustum with ray
intersecting isosurface; 3) Same as 2) but ray does not
intersect isosurface.

First, we present how to detect type 1 and type 2 cases
and then discuss how to detect type 3. For an image with
resolution h× h pixels where h is the number of pixels per
row and column, we follow the development of Kajiya [19]
to detect type 1 and 2 as:

x−bs = 0 and y−bt = 0 with bk = 2(k/h)−1+k/(2h), (12)

which are two orthogonal planes in perspective space corre-
sponding to pixel at (s,t) whose intersection define a ray r(t)
aligned with the unit cube.

Given pixel (s,t),⎛
⎝ α̂(u)

β̂ (u)
γ̂(u)

⎞
⎠ :=

1
ŵ(u)

⎛
⎝ x̂(u)

ŷ(u)
a(u)

⎞
⎠−

⎛
⎝ bs

bt

ã

⎞
⎠ (13)

rational B-splines. Note, a(u) is defined in Equation 4.
The following constraints must be satisfied for a

ray/isosurface intersection:⎛
⎝ |α̂(u)|

|β̂ (u)|
|γ̂(u)|

⎞
⎠ <

⎛
⎝ ε

ε
ε

⎞
⎠ (14)

i.e. given a solution u, the corresponding V̂ (u) must lie along
the ray and on the isosurface within tolerance of ε = 1/(2h).
This ensures that a solution lies within a pixel. Multiplying
Equation 14 by ŵ(u),⎛

⎝ |α(u)|
|β (u)|
|γ(u)|

⎞
⎠ < ŵ(u)

⎛
⎝ ε

ε
ε

⎞
⎠ (15)

where αi = x̂i − ŵi bs, βi = ŷi − ŵi bt and γi = ai − ŵi ã and
(α(u),β (u),γ(u)) := ∑n

i=1 (αi,βi,γi)Bi,d,τ (u).
Equation 15 is not sufficient to detect every isosurface/ray

frustum intersection. If an isosurface silhouette lies within the
ray frustum but does not get intersected by r(t) (type 3), then
there is no u that satisfies Equation 15, even though some part
of the isosurface (silhouette) lies within the ray frustum. Let

ν(u) := Jx̂(u) ·∇uA (u) = ∇x̂A (u) (16)

be the gradient in normal direction of the isosurface at u
in perspective space, where Jx̂(u) is the Jacobian at u in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

perspective space, then

δ̂ (u) := ν(u)ẑ (17)

η̂(u) :=
((x̂(u)

ŵ(u)
,

ŷ(u)

ŵ(u)
,0

)
× (ν(u)x,ν(u)y,0)

)
ẑ
, (18)

are rational B-splines, where ν(u)ẑ is the B-spline representing
the ẑ-component of ν(u).

With ε defined as above, a point V̂ (u) on the isosurface
silhouette must satisfy⎛

⎝ |δ̂ (u)|
|η̂(u)|
|γ̂(u)|

⎞
⎠ <

⎛
⎝ ε

ε
ε

⎞
⎠ , (19)

i.e. it must lie on the isosurface (γ̂(u) < ε), the z-component of
the gradient is 0 (δ̂ (u) < ε), and the isosurface is orthogonal
to the ray r(t) from the center of the pixel (η̂(u) < ε),
i.e. the z-component of the cross-product between the point
and the normal of the isosurface must be zero. Similarly by
multiplying Equation 19 by ŵ(u),⎛

⎝ |δ (u)|
|η(u)|
|γ(u)|

⎞
⎠ < w(u)

⎛
⎝ ε

ε
ε

⎞
⎠ , (20)

where δ (u) and η(u) are defined in terms of the B-
spline basis Bi,d,τ (u) and where coefficients δi and ηi can
be computed using Bézier [12] or B-spline [5] multiplication.

Define

SI := {u : (α(u),β (u),γ(u)) = (0,0,0)}. (21)

Then, SI is the set of u satisfying Equation 15. SI is the set
of values where r(t) intersects the isosurface and is computed
such that the set of points V (SI) on the isosurface lie inside
the ray frustum corresponding to r(t) (type 1 and 2). Define
SS to be the set of u where V (SS) does not get intersected by
r(t) but a part of an isosurface lies within the ray frustum at
r(t) and that corresponds to a silhouette satisfying the second
constraint in Equation 20 (type 3). In the following sections,
we present a method to compute the set S = SI ∪SS.

With this formulation, it is also possible to visualize an
isoparametric surface of the geometry mapping V (u), e.g.
V (û1,u2,u3), where û1 is fixed and u2, u3 varies over the
parametric domain. This can be achieved by using the NURBS
representation to represent fixed parameter values. As an
example, in Figure 2c, û1 = 0.5 where u2 and u3 vary cutting
the respective Ω along u1 in half. Furthermore, in Figure 1b,
û3 = 0 where u1 and u2 vary to show only the boundary of Ω
representing the Bimba statue.

In the following, we present an efficient subdivision-based
solver to compute S .

4 RAY FRUSTUM/ISOSURFACE INTERSECTION
As discussed in Section 3, finding the roots of f (t) is equiv-
alent to determining the set SI as defined in Equation 21.
To compute all intersections between a ray frustum and the
isosurface, the set SI must be computed. Here, this is achieved
through a subdivision approach combined with the Newton-
Raphson method.

Before our proposed isosurface intersection is applied,
we find the set I ∈ G of candidate geometry sub patches
(V̂i(u), ˆAi(u)) that potentially may be intersected by the ray
frustum constructed from r(t) and may contain the isosurface
at the isovalue ã. While the technique itself does not require
this step, since the relevant parts can be found through
subdivision, we perform it to make the algorithm faster and
more efficient. We address the different data-dependent ways
that I can be computed in Section 5. In this section, we assume
that r(t) and I are given. Section 4.1 details our intersection
algorithm.

4.1 Algorithm
By following the framework discussed in Section 3, given
patch (V̂i(u), ˆAi(u)) ∈ I in perspective space, a specified
isovalue ã and a pixel through whose center the ray r(t)
is passing, the coefficients for the tuple (Pi(u),δi(u)) are
determined, where

Pi(u) :=
d+1

∑
j=1

Qj+i−1 Bi,d,τ (u) = (αi(u),βi(u),γi(u)), (22)

and

δi(u) :=
d+1

∑
j=1

δj+i−1 Bi,d,τ (u), (23)

with Qj+i−1 = (αj+i−1,βj+i−1,γj+i−1). Pi(u) has no direct
geometric meaning. We refer the reader to Figure 9 which
shows, on the left side, the two planes defining r(t), the
isosurface, and the boundaries of the tricubic patch. On the
right side, it shows the α-, β - and γ- coefficients of Pi(u)
derived from the two planes, the geometry and attribute
data. The parametric boundaries transformed by Pi(u) are
depicted as well, and parts of them may lie in the interior
of the parametric domain of Pi(u) while forming part of the
(α,β ,γ)-space boundary.

Given (Pi(u),δi(u)), intersecting the ray frustum for ray
r(t) with the isosurface at ã is a two step algorithm:

1) Determine the superset S S = S S
I ∪S S

S of approximate
parameter values u, where V̂ (u) lies within the ray
frustum and on the isosurface at ã, using a subdivision
procedure with appropriate termination. (Sections 4.1.1),
and

2) Apply a filtering process to remove extra parameter
values in S

S that represent the same root (Section 4.2)
in order to gain S .

The following discussion details these steps.

4.1.1 Intersection Algorithm
This section presents the core of our ray frustum/isosurface
intersection algorithm. Given (Pi(u),δi(u)), degeneracies and
self-intersections in Pi(u) at the origin are related to the
number of intersections between r(t) and the isosurface at
ã: Assuming there are n intersections, Pi(u) crosses n times
within itself where Pi(u) evaluates to (0,0,0). Each u corre-
sponding to an intersection is an element in S

S
I . These cases

refer to type 1 and 2 intersections as illustrated in Figure 8.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

Fig. 9. Left: A ray r(t), represented as the intersection of two planes, intersects the isosurface A (u)− â = 0 of Vi(u).
Right: Given Vi(u), Ai(u) and the two planes, a new set of coefficients Qk = (αk,βk,γk) are determined to construct
Pi(u). The ray intersects the isosurface at u j where |Pi(u j)|∞ < ε.Pi(u) contains self-intersections and degeneracies
depending on the number of intersections. The interior of Pi(u) is illustrated in wireframe. Parts of the (α,β ,γ)-space
boundary are formed by the interior of the parametric domain.

Intersections of type 3 (see Figure 8) are detected by
examining the signs of the coefficients of δi(u). The u’s
corresponding to these intersections are elements in S S

S .
The set S S = S S

I ∪ S S
S is computed as follows. The

fundamental idea of our subdivision procedure is to subdivide
(Pi(u),δi(u)) in all three directions at the center of its
domain, which results in eight sub patches defined by the tuple
(Pi,�,k(u),δi,�,k(u)) = ((αi,�,k(u),βi,�,k(u),γi,�,k(u)),δi,�,k(u)),
where k = 1 . . .8 identifies the kth sub patch and � refers to
the current subdivision level; and

1) add sub-patches (Pi,�,k(u),δi,�,k(u)) whose enclosing
bounding volume contains the origin 0 = (0,0,0) to a
list L and

2) examine sub-patches Pi,�,k(u) whose corresponding iso-
surface does not get intersected by r(t), but for which the
corresponding isosurface potentially intersects the ray
frustum (Section 4.1.2).

Depending on the geometric representation, the algorithm uses
either Bézier subdivision or knot insertion [7].

The patches added to L in Case 1 potentially contain
solutions which lie in S S

I . Patches examined for Case 2
potentially also contain solutions which lie in S S

S , i.e. Case 3
solutions. Due to properties of B-splines, note that the patch
is always contained in the convex hull of its control points,
and as the mesh of parametric intervals is split in half, the
subdivided control mesh converges quadratically to P(u).

This procedure is recursively applied to the elements in L

by adding new subdivision patches and removing the corre-
sponding parent patch (Pi,�−1,k(u),δi,�−1,k(u)). The recursion
terminates when all intersections identified with the remaining
patches in L can be determined using the Newton-Raphson
method, by using the node location (see [7]) corresponding to
the coefficient in Pi,�,k(u) closest to 0 as initial starting value.
Note that initially (Pi,1,1(u),δi,1,1(u)) := (Pi(u),δi(u)) and
L = {(Pi,1,1(u),δi,1,1(u))}; This strategy is related to the
general constraint-solving technique proposed by Elber et al.
in [13].

Given a sub patch Pi,�,k(u), a crucial issue is whether
it contains the origin 0 or not. Since Pi,�,k(u) can contain
self-intersections and geometric complexity in the (α,β ,γ)-
space, this test is difficult to perform efficiently. The general
constraint-solving technique in Elber et al. [13] looks at the
signs of the coefficients in αi,�,k(u), βi,�,k(u) and γi,�,k(u)
independently; that is, it investigates the properties of its
Axis-Aligned Bounding Box (AABB) in the (α,β ,γ)-space.
Instead, we examine the geometry of Pi,�,k(u) in the (α,β ,γ)-
space more closely. An approximate answer to the 0-inclusion
test can be given by analysing the convex hull property of
NURBS [7]: If 0 does not lie within a convex set, com-
puted from the coefficients (αk,βk,γk) defining Pi,�,k(u), then
0 /∈ Pi,�,k(u). However, this implies that while 0 lies within
the convex boundary volume, it may not lie within its corre-
sponding Pi,�,k(u). Thus, during the subdivision process, the
number of elements in L, |L|, which contain 0, is growing or
shrinking. Therefore, L represents a list of potential candidate
patches which may contain 0. |L| at a given subdivision level
� is strongly dependent on how tightly the convex boundaries
enclose its corresponding patches Pi,�,k(u)∈L. The properties
of subdivision guarantee that all potential roots are kept in L.

Generally, it can be said that given Pi,�,k(u)’s coefficients
(αk,βk,γk), a tighter convex boundary volume (e.g. convex
hull) is more expensive to compute than a loose convex
boundary volume (e.g. AABB), with the cost of our Oriented
Bounding Box (OBB) somewhere in the middle. Given a
tighter boundary volume, it is generally more expensive to
test whether the origin is included in it or not. On the other
hand, a tighter convex boundary will have fewer elements in L,
resulting in fewer subdivisions. Since a single subdivision step
has a running time of O((d +1)3) where d is the largest degree
of the three parametric directions, it is desirable to keep the
number of elements in L as small as possible, especially as d
increases. In such a scenario, a good trade-off respecting these
opposing aspects is desired. Given the coefficients (αk,βk,γk)
of Pi,�,k(u), while the computation of the convex hull is more

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

expensive compared to the much cheaper computation of an
AABB, it encloses the coefficients (αk,βk,γk) much more
tightly.

However, by looking locally at Pi(u) we can adopt a
much tighter bounding volume compared to the AABB, while
still not as tight as the convex hull. An OBB, oriented
along a given coordinate system with axes (v1,v2,v3), is
determined. Let uc be the center of the parametric domain
of Pi,�,k(u). The Jacobian matrix of Pi,�,k(uc) determines
the first-order trivariate Taylor series. We select two of its
three directions with the two largest magnitudes to form the
main plane of the bounding box. Without loss of generality,
suppose they are ∂Pi,�,k(uc)/∂u1 and ∂Pi,�,k(uc)/∂u2, re-
spectively. We now form a local orthogonal coordinate system
at Pi,�,k(uc) by setting v1 to the the unit vector in the direction
∂Pi,�,k(uc)/∂u1, v3 is the unit vector in the direction of
∂Pi,�,k(uc)/∂u1 × ∂Pi,�,k(uc)/∂u2, and v2 = v3 × v1. As in
other applications, the final OBB is constructed by projecting
the coefficients (αk,βk,γk) onto the planes which are located
at the position Pi,�,k(uc) and have normals v1, v2, v3 and −v1,
−v2, −v3, respectively.

Note that the evaluation of the derivative does not require
additional computation, since it is evaluated from the coeffi-
cients computed in the subdivision process. Since Pi,�,k(u)
is a single trivariate polynomial within a patch, expanding
around uc is justified because the first-order Taylor series
becomes a good approximation as the parametric interval
decreases in size. This assumes that the determinants of the
Jacobians of the neighborhood around Pi,�,k(uc) are well-
behaved, i.e. do not change signs. If Pi,�,k(u) contains self-
intersections and Pi,�,k(uc) lies on a place in Pi,�,k(u) where
Pi,�,k(u) folds into itself, then the respective determinant
at Pi,�,k(uc) is equal to zero, even though the magnitudes
of the partials ∂Pi,�,k(uc)/∂uk, k = 1,2,3, are well-behaved
due to the smooth representation of Pi,�,k(u). However, with
increasing subdivision level �, the determinants of Jacobians
of the neighborhood of Pi,�,k(uc) do not change signs.

Fig. 10. Subdivision patches stored in L at subdivision
level � = 8. In this case, the ray glances the isosurface
three times, as shown in Figure 9 involving more exten-
sive subdivision and intersection tests. On the left, AABBs
were used which result in |L| = 67. On the right, our OBB
computation resulting in |L| = 7, significantly reducing
subdivision work.

Since Pi,�,k(uc) undulates through the origin multiple times
depending on the number of intersections between the ray
and the isosurface, this approximation is not initially useful
because the bounding box is computed from the linear approxi-
mation of the Taylor series. But as the interval gets smaller, the
quality of the approximation increases and the OBB encloses
the coefficients of Pi,�,k(uc) more tightly (see Figure 11).

To compare the quality of this OBB, we used PCA on
the coefficients of Pi,�,k(u) to compute the orientation of
a different OBB-bounding box on the datasets discussed in
Section 6. Both PCA and the method discussed above result
in the same order of subdivisions per pixel with PCA having
slightly fewer subdivisions. However, applying PCA was on
average about three times slower than our method. Table 1
shows the concrete timings on the various datasets.

Also, with this strategy, the number of elements in L is
much smaller compared to the number of elements in L if
AABB had been used. The reader is referred to Figure 10,
which shows the glancing ray scenario with three intersections
from Figure 9 for subdivision level � = 6. Using AABBs,
on a non-silhouette pixel of the teardrop data set, L has
67 elements, while by using our OBBs L has only 7 ele-
ments, significantly reducing subdivision effort and memory
consumption. More results are given in Section 6.
Termination: The previous paragraphs discussed the subdi-
vision procedure using our OBB scheme. The termination
criteria of this procedure are outlined below by answering
the question: At which � should the subdivision procedure
terminate? A solution u j ∈S S

I must satisfy two requirements:
1) The patch Pi,�,k(u) which corresponds to u j must

represent only one isosurface piece and must not contain
folds or self-intersections so that a final application of
Newton’s method on Pi,�,k(u) finds u j as a unique
solution;

2) V̂i(u) has to lie within the frustum defined by the ray
r(t) and the pixel through which r(t) passes.

As the number � of subdivision levels increases, the geometric
complexity of the patches, in L in terms of tangling and self-
intersections, is reduced. Here, we focus on a specific OBB of
one (Pi,�,k(u),δi,�,k(u)) ∈ L, given a subdivision level �, and

Fig. 11. OBB hierarchy of patches, referring to a
ray/isosurface intersection. With growing subdivision level
�, the orientation of the OBBs get closer and closer to its
parent’s orientation.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

examine the signs of the coefficients defining δi,�,k(u). A sign
change means that the isosurface of the patch in perspective
space corresponding to Pi,�,k(u) potentially faces towards or
facing away from the ray r(t). This implies that r(t) intersects
the patch at least twice and therefore (Pi,�,k(u),δi,�,k(u))
should be further subdivided. If there is no sign change, then
the subdivision process for this patch can be terminated, and
Newton’s method is used to find the unique solution within
the patch, such that

max
(
V̂ (u j)− pro j(V̂ (u j))

)
< ε, (24)

where pro j(V̂ (u j)) is the projection of the point V̂ (u j)
onto r(t) and ε = 1/(2h) with h as the image resolution
(see Section 3). More specifically, given a close enough initial
solution u0, Newton’s method tries to iteratively improve the
solution and terminates when it is close enough to the exact
solution. Close enough in this context means that Newton’s
method can terminate when the inequality equations, as de-
fined in Equation 15 for a current iterative solution ui, are
satisfied.

In the cases where the initial solution is not good enough
for Newton’s method, the patch (Pi,�,k(u),δi,�,k(u)) is further
subdivided. This also guarantees that a solution associated with
a ray will be within the ray’s frustum and does not overlap
with adjacent ray frustums. In the rare case that the solution is
exactly on the pixel boundary, we use the half-open frustum
to guarantee that it is included in only one of the possible
adjacent pixels.

4.1.2 Ray frustum/Isosurface Silhouette Intersection
Before a sub patch (Pi,�,k(u),δi,�,k(u)) whose OBB does not
contain 0 is discarded, it must be examined to determine
whether the sub domain it covers in V̂ (u) contains any isosur-
face silhouette intersecting the ray frustum r(t) in perspective
space. If there is no sign change in the coefficients defining
either γi,�,k(u) or δi,�,k(u), then the patch can be discarded,
because a potential intersection will be caught using the origin-
inclusion-test (Section 4.1) since in this case the respective
isosurface piece completely faces towards or faces away from
r(t).

A sign change in both sets of the coefficients implies that a
potential part of the isosurface passes through the ray frustum,
facing towards and away from r(t). If there is such a piece of
the isosurface silhouette, then a u is computed so that V̂ (u)
lies on the isosurface silhouette and u is added to S

S
S .

As discussed in Section 3, an isosurface that intersects
the frustum (type 3) must have an isosurface silhouette
in the frustum, i.e. it must satisfy Equation 20. Given
(Pi,�,k(u),δi,�,k(u)) with sign changes both in the coefficients
defining γi,�,k(u) and defining δi,�,k(u), a patch Qi,�,k(u) is
constructed, where

Qi,�,k(u) = (γi,�,k(u),δi,�,k(u),ηi,�,k(u)) (25)

and the number of self-intersections corresponds to the number
of solutions u.
Termination: Subdivision is used to solve Qi,�,k(u) = 0, where
the 3D version of the normal cone (NC) test proposed in the

work [41] is used to make a faithful decision to stop the
subdivision process of patch Qi,�,k(u). This test computes the
NCs for the mappings γi,�,k(u), δi,�,k(u) and ηi,�,k(u). Elber
et al. show that when the NCs of these three mappings do
not intersect, then the patch can contain at most one zero. If
the NC test fails, i.e. Qi,�,k(u) contains self-intersections, then
Qi,�,k(u) is further subdivided. If the NC succeeds, this implies
that a subdivided patch does not contain self-intersections.
Newton’s method is used as above to find a solution u which
is added to S S

S when Equation 20 is satisfied.
Note that this additional solution step to find points on

an isosurface silhouette within a ray frustum is executed
only at isosurface silhouettes, when there are sign changes in
the coefficients defining γi,�,k(u) and δi,�,k(u). In most cases,
as observed in our experiments, the ray r(t) intersects the
isosurface.

Fig. 13. S can contain duplicate solutions which can
arise due to the scenarios I, II and III. The derivative of the
scalar function f (t) is used to filter S to identify unique
solutions and solutions representing the same root.

4.2 Filtering Intersection Result

The subdivision procedure discussed in the previous section,
applied to the patch (Vi(u),Ai(u)) ∈ I, outputs the superset
S S of approximate parameter values u j, i.e. where |A (ui)−
â| < ε . By following the framework from Section 3, our
method is guaranteed to compute all roots. However, due to the
approximate 0-inclusion test and the fact that it is a numerical
method, it can be the case that S

S contains multiple solutions
that represent the same root. This is because of the use of OBB
to determine whether 0 is contained in its respective patch. As
discussed above, a Pi,�,k(u) may not contain 0 while its OBB
contains it. A final post-process on S S, yielding the set S ,
is therefore required for the removal of duplicate solutions.

In the scenario of direct isosurface visualization, multiple
cases can appear (shown in Figure 13, computed solutions in
green). In Case (I), it can happen that parts of the isosurface lie
very close together. Therefore, the corresponding solutions are
numerically very similar, even though they represent different
solutions. In Case (II), the ray might glance or touch the
isosurface tangentially, which corresponds to two solutions. In
Case (III), the usual case, two solutions can represent the same
true solution even though they are numerically different. We

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

(a) (b)

Fig. 12. (a) Unstructured hexahedral mesh (≈ 2.3 million elements) of a segmented torso. Isosurfaces representing
voltages of the potential field (using a trilinear basis) are used to specify locations of electrodes to determine efficacy
of defibrillation to find a good location to implant a defibrillator into a child. (b) Wake of a rotating canister traveling
through a fluid (isosurface of pressure from spectral/hp element CFD simulation data as used in the work [34], [32]).
The C(0) nature of the boundaries of the spectral/hp elements can be seen on the isosurface and is not an artifact of
our proposed method.

remove duplicates by examining the derivative of the function
f (t) given by:

f ′(t) = 〈
∂r(t)

∂ t
,J−1 ◦∇A (V −1(r(t)))〉, (26)

where J−1 is the Jacobian of V −1(r(t)), and ◦ is the ma-
trix/vector product. As the ray r(t) travels through the vol-
ume, it enters and eventually exits the isosurface. Entering
means that r(t) intersects the isosurface at the positive side;
this corresponds to a positive derivative of Equation 26 at
the corresponding entry location. The exit point refers to a
negative derivative of Equation 26. With this observation, Case
(I) can be identified. Case (II) appears at the silhouette of
the isosurface. If f ′(t) ≈ 0, then one of the corresponding
solutions can be discarded. For Case (III), since the signs
of f ′(t) for the corresponding solutions are both positive or
negative, respectively, one of them can be discarded.

In our implementation, for every ui ∈S S, we determine its
corresponding ti by solving the linear equation ti = r−1(V (ui))
and evaluate f ′(ti). The resulting list of t-values is sorted in
increasing order. Finally, the sorted list which corresponds
to the order in which the ray travels through the volume, is
traversed by removing those elements which violate the rule
of alternation of the signs of f ′(ti) within the list. Note, that
in some rare sub-pixel cases, incorrect ordering can occur
and cause incorrect transparency results. This is a sub-pixel
problem and can be resolved by further subdividing the pixel.
However, we found that no visual artifacts result.

This algorithm detects intersections in the pathological case
that a whole interval of r(t) lies on the isosurface. However,
as with all numerical methods, there are not ways to determine
this analytical condition, but instead, find many discrete values
of t. We set a heuristic threshold on the maximum number of
ray-isosurface intersections per ε-length of t. If the number of
intersections exceeds it, we use only the smallest value and
the largest value.

5 DETERMINING THE SET OF INTERSECTION
PATCHES

As discussed above, I ⊂ G is the set which contains the
geometric sub patches (Vi(u),Ai(u)) that intersect the ray
frustum constructed from r(t) and through which the iso-
surface A (u) − â = 0 passes. There are multiple ways to
determine I, which depend on the number of coefficients
defining V (u) and the geometry it describes in physical
space. In our implementation, we distinguish between three
different types of geometry: (1) general geometry describing
a physical domain with a large number of coefficients; (2)
general geometry describing a physical domain of interest with
few coefficients; and (3) a uniform grid, where Vi(u) describes
the identity mapping, i.e. Vi(u) = u.

For (1) and (2) we employ a kd-tree as an acceleration
structure, where an AABB is computed from the coefficients
of Vi(u) where (Vi(u),Ai(u)) ∈ G. I is determined by kd-tree
traversal using the traversal algorithm proposed by Sung et
al. [43], where the ray r(t) is intersected with the bounding
boxes. Note the resulting I can contain patches that are not
intersected by r(t). If |G| is small, then the AABBs do not
tightly bound Vi(u), and I contains a larger number of patches
that do not intersect r(t). In that case, we apply knot insertion
to the elements in G to turn them into Bézier patches whose
corresponding AABBs are much tighter. When V (u) consists
of a large number of coefficients, the ratio between the AABB
and its corresponding Vi(u) is close to one. In that case, Bézier
conversion is not a significant advantage, but a disadvantage
because of its higher memory consumption and pre-processing
time. In (3), where V (u) represents a uniform grid, i.e. when
V (u) = u, conventional uniform grid traversal is used without
any data pre-processing. Also note that in this case (e.g. Figure
1d), the smooth representation for A (u) is generated using a
B-spline [29] filter to which our method is applied.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

6 ANALYSIS AND RESULTS
This section is concerned with the correctness and efficiency
of our approach. Verifying the correctness of an isosurface
visualization technique on acquired data is difficult, especially
in terms of correctness of the topology and existence of all
features, since given data usually only approximates the true
solution (e.g. the results of Galerkin’s method or data from a
CT scan). In this section, we use the fact that every rational
polynomial can be represented with a NURBS representation,
i.e. there are coefficients ai ∈ R such that

a(x,y,z) ≡ A (x,y,z) =
n

∑
i=1

ai Ri,d,τ(x,y,z), (27)

defined over a rectangular parallelepiped of Ω ∈ R3, where
Ω is rectangular and where a(x,y,z) is an algebraic function.
Given a(x,y,z) and a NURBS basis (as defined in Section
2.1) whose degree matches the highest degree of a(x,y,z),
the coefficients ai can be derived by solving the multivariate
version of Marsden’s identity [30]. If a(x,y,z) is a cubic
algebraic function, the approach of Bajaj et al. [3] can be used
to compute coefficients ai for the NURBS basis. For our tests,
we chose the isosurface at 0.0 of the teardrop function, defined
as a(x,y,z) = x5/2 + x4/2− y2 − z2, a common function to
test correctness of a visualization technique. The thin features
around the origin, as seen in Figure 1c, are challenging to
isosurface meshing techniques where areas around the thin
feature are missing (e.g. see work by [36]). Next to the
coefficients ai, our method requires a choice of coefficients
Pi = (xi,yi,zi) to define V (u). If Pi are node locations as
defined in [7], then a(x,y,z) ≡ A (x,y,z) is achieved. How-
ever, since our technique is independent of the geometric
complexity, a choice can be made on the mapping V (u). A
more general version of Equation 27 is a(V −1(u))≡A (u), in
which a(x,y,z) undergoes a nonlinear transformation defined
by V (u) deforming Ω. By referring to Figure 1c, Ω is
stretched and perturbed, which results in a deformation of
a(x,y,z) = 0. The deformation does not affect the accuracy
of our algorithm in reproducing the thin feature discussed
above, indicating robustness and topological correctness of our
technique at the per-pixel level.

In Figure 14, the number of subdivisions per pixel of the
isosurface intersection technique, using AABBs and OBBs
constructed in the above section is visualized. The images are
generated from the same view as the shaded version in Figure
1. It can be seen that major work is done only for pixels that
actually correspond to a point on the isosurface and pixels on
the silhouette. When employing an AABB, a large number
of silhouette pixels require an average of 270 and up to 380
subdivisions per pixel. With OBBs, only a few pixels require
more than 68 subdivisions, and on average, 35 subdivisions
are needed for the silhouette. This means that the number of
subdivision levels for OBB is much smaller than with AABB,
resulting in a more memory efficient algorithm.

6.1 Timings
Figure 12a shows the result of our algorithm, rendering
geometry of a torso with multiple isosurfaces of the potential

Fig. 14. Number of subdivisions per pixel frustum using
AABB and OBB for teardrop isosurface from Figure 1.

trilinear (cubic) field. Both are represented using unstructured
hex meshes. In Figure 12b, we present the visualization of an
isosurface of pressure (isovalue = 0) generated due to a rotating
canister traveling through an incompressible fluid. The data
set was generated by the spectral/hp high-order finite element
CFD simulation code, Nektar, and was used as test data set
for visualization in the works [34], [32]. The geometry of this
data is trilinear (C(0)), and the attribute data is tricubic.

Table 1 provides concrete numbers of the proposed ap-
proach in comparison to the AABB and PCA as discussed in
Section 4. The table provides average render times (μ time),
additional information such as the average number of pixels
per frame (μ pixel), the average number of subdivisions per
frame (μ subd.), the average list size of L overall (μ list size)
and the standard deviation of the list size L overall (σ list
size). Due to space constraints for PCA, only the render times
are presented, since the remaining values are within ±1%
compared to our method.

The data in the table was generated by rotating the camera
around the respective isosurfaces in 360 frames, using Phong
shading and normals computed from the NURBS representa-
tion. The above information is generated using our method’s
OBBs and AABBs from the same space. Subdivision is the
major work in both cases. However, both cases outperform
the typical problem formulation with the four equations and
four unknowns discussed in Section 2, since subdivision has
to be performed on four parametric directions with each
subdivision being O((d+1)4) versus 3 parametric subdivisions
with O((d +1)3) for each subdivision, where d is the degree.

The timings were taken on interlinked Intel Xeon X7350

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

TABLE 1
Average image generation times using OBB and AABB, respectively. The table also shows the timings (in seconds)
for each data set when PCA is used instead of our method to compute the OBBs. The degree column presents
degrees for the geometry and attribute mapping (tl=trilinear, tc=tricubic, tq=triquintic); μ is the mean; and σ is the

standard deviation. The image resolution is 512×512.

OBB AABB
data set degree # patches μ pixel μ time PCA μ time ours μ subd. μ / σ list size μ time μ subd. μ / σ list size

(per frame) (per frame) (per frame) (per frame) (overall) (per frame) (per frame) (overall)
Cylinder tc/tc 5×2×5 57 408 0.29 0.15 299 790 1.89/1.03 0.31 667 000 2.70/2.56
Bimba tc/tc 27×45×9 273 024 0.58 0.27 463 281 1.17/0.49 0.81 2 090 467 1.58/5.42
Teardrop tq/tq 1 56 078 1.97 0.65 371 304 3.54/1.44 1.87 1 007 734 6.14/3.46
VisHuman tl/tc 253×253×253 51 625 1.06 0.40 278 317 1.04/0.24 0.72 587 194 1.12/4.03
Silicium tl/tc 95×31×31 95 425 0.96 0.43 356 862 1.05/0.24 0.74 738 945 1.16/3.29
Torso tl/tl 2321045 123 084 1.15 0.83 3 502 902 1.09/0.40 1.43 14 913 568 1.36/6.26
CFD tl/tc 5736 631 342 1.61 0.77 2 016 399 1.88/1.16 1.02 4 124 430 2.70/3.26

Processors comprised of 32 cores using gcc version 4.3 and
OpenMP. Evidently, OBB is up to three times faster than
AABB, depending on the isosurface complexity.

7 CONCLUSION
In this paper, we proposed a novel direct isosurface visualiza-
tion technique which computes all the intersections between
a ray and an isosurface embedded in various representations,
such as data-fitted geometry, rational geometry, and uniform
grids. Our framework supports rendering the isosurface with
view-independent transparency. The technique is robust, user
friendly, and easy to implement: All the images in this paper,
which show different isosurface visualization scenarios, did
not require tweaking and had no parameter re-adjustment. We
have shown that even though the high-order geometry mapping
contains parametric distortions (e.g. Figure 1c), important
features in the isosurface are still maintained, something that
is challenging for most isosurface techniques. Currently, we
are working on a GPU implementation where we expect a
significant speed-up of the technique. A direction for future
work is to extend the approach to tessellated isosurfaces.

ACKNOWLEDGMENTS
This work was supported in part by ARO W911NF0810517.
The authors gratefully acknowledge the computational support
and resources provided by the Scientific Computing and Imag-
ing Institute at the University of Utah. Data Courtesy of the
Torso model is Jeroen Stintra from the Scientific Computing
and Imaging Institute at the University of Utah. We would like
to thank Mathias Schott for helpful discussions.

REFERENCES
[1] O. Abert, M. Geimer, and S. Müller. Direct and fast ray tracing

of NURBS surfaces. Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, pages 161–168, 2006.

[2] J. Amanatides. Ray tracing with cones. SIGGRAPH Comput. Graph.,
18(3):129–135, 1984.

[3] C. L. Bajaj, R. L. Holt, and A. N. Netravali. Rational parametrizations
of nonsingular real cubic surfaces. ACM Trans. Graph., 17(1):1–31,
1998.

[4] J. F. Blinn. A generalization of algebraic surface drawing. ACM Trans.
Graph., 1(3):235–256, 1982.

[5] X. Chen, R. F. Riesenfeld, and E. Cohen. Sliding windows algorithm
for b-spline multiplication. In SPM ’07: Proceedings of the 2007 ACM
symposium on Solid and physical modeling, pages 265–276, New York,
NY, USA, 2007. ACM.

[6] P. Cignoni, L. D. Floriani, C. Montani, E. Puppo, and R. Scopigno.
Multiresolution modeling and visualization of volume data based on
simplicial complexes. In VVS ’94: Proceedings of the 1994 symposium
on Volume visualization, pages 19–26, New York, NY, USA, 1994.
ACM.

[7] E. Cohen, R. F. Riesenfeld, and G. Elber. Geometric modeling with
splines: an introduction. A. K. Peters, Ltd., Natick, MA, USA, 2001.

[8] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. R. Hughes. Isogeometric
analysis of structural vibrations. Comput. Methods Appl. Mech. Engrg.,
195(41-43):5257–5296, 2006.

[9] R. de Toledo, B. Levy, and J.-C. Paul. Iterative methods for visualization
of implicit surfaces on GPU. In ISVC, International Symposium on
Visual Computing, Lecture Notes in Computer Science, pages 598–609,
Lake Tahoe, Nevada/California, November 2007. Springer.

[10] J. E. F. Dı́az. Improvements in the Ray Tracing of Implicit Surfaces
based on Interval Arithmetic. PhD thesis, Universitat de Girona, 2008.

[11] A. Efremov, V. Havran, and H.-P. Seidel. Robust and numerically stable
Bézier clipping method for ray tracing NURBS surfaces. In SCCG ’05:
Proceedings of the 21st spring conference on Computer graphics, pages
127–135, New York, NY, USA, 2005. ACM.

[12] G. Elber. Free form surface analysis using a hybrid of symbolic
and numeric computation. Ph.D. thesis, University of Utah, Computer
Science Departmente, 1992.

[13] G. Elber and M.-S. Kim. Geometric constraint solver using multivariate
rational spline functions. In SMA ’01: Proceedings of the sixth ACM
symposium on Solid modeling and applications, pages 1–10, New York,
NY, USA, 2001. ACM.

[14] A. Entezari, R. Dyer, and T. Moller. Linear and cubic box splines for the
body centered cubic lattice. In VIS ’04: Proceedings of the conference
on Visualization ’04, pages 11–18, Washington, DC, USA, 2004. IEEE
Computer Society.

[15] J. C. Hart. Ray tracing implicit surfaces. In Siggraph 93 Course Notes:
Design, Visualization and Animation of Implicit Surfaces, pages 1–16,
1993.

[16] P. S. Heckbert and P. Hanrahan. Beam tracing polygonal objects.
In SIGGRAPH ’84: Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, pages 119–127, New
York, NY, USA, 1984. ACM.

[17] J. Hua, Y. He, and H. Qin. Multiresolution heterogeneous solid
modeling and visualization using trivariate simplex splines. In SM
’04: Proceedings of the ninth ACM symposium on Solid modeling
and applications, pages 47–58, Aire-la-Ville, Switzerland, Switzerland,
2004. EG Association.

[18] B. Y. Hughes T.J., Cottrell J.A. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry, and mesh refinement. Computer
Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005.

[19] J. T. Kajiya. Ray tracing parametric patches. In SIGGRAPH ’82:
Proceedings of the 9th annual conference on Computer graphics and
interactive techniques, pages 245–254, New York, NY, USA, 1982.
ACM.

[20] T. Kalbe and F. Zeilfelder. Hardware-accelerated, high-quality rendering

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

based on trivariate splines approximating volume data. Comput. Graph.
Forum, 27(2):331–340, 2008.

[21] M. Kim, A. Entezari, and J. Peters. Box spline reconstruction on the
face-centered cubic lattice. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1523–1530, 2008.

[22] J. Kloetzli, M. Olano, and P. Rheingans. Interactive volume isosurface
rendering using bt volumes. In I3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games, pages 45–52, New
York, NY, USA, 2008. ACM.

[23] A. Knoll, Y. Hijazi, C. D. Hansen, I. Wald, and H. Hagen. Interactive
ray tracing of arbitrary implicit functions. In Proceedings of the 2007
Eurographics/IEEE Symposium on Interactive Ray Tracing, 2007.

[24] A. Knoll, I. Wald, S. Parker, and C. Hansen. Interactive isosurface ray
tracing of large octree volumes. Interactive Ray Tracing 2006, IEEE
Symposium on, pages 115–124, Sept. 2006.

[25] R. Krawczyk. Newton algorithmen zur bestimmung von nullstellen mit
fehlerschranken. Computing, 4:187–201, 1969.

[26] M. Levoy. Efficient ray tracing of volume data. ACM Trans. Graph.,
9(3):245–261, 1990.

[27] C. Loop and J. Blinn. Real-time GPU rendering of piecewise algebraic
surfaces. ACM Trans. Graph., 25(3):664–670, 2006.

[28] W. E. Lorensen and H. E. Cline. Marching Cubes: A high resolution 3d
surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–
169, 1987.

[29] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters
for volume rendering. In VIS ’94: Proceedings of the conference on
Visualization ’94, pages 100–107, Los Alamitos, CA, USA, 1994. IEEE
Computer Society Press.

[30] M. J. Marsden. An identity for spline functions with applications to
variation diminishing spline approximation. J. Approx. Theory, 3:7–49,
1970.

[31] W. Martin and E. Cohen. Representation and extraction of volumetric
attributes using trivariate splines. In Symposium on Solid and Physical
Modeling, pages 234–240, 2001.

[32] M. Meyer, B. Nelson, R. Kirby, and R. Whitaker. Particle systems for
efficient and accurate high-order finite element visualization. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 13(5):1015–1026,
Sept.-Oct. 2007.

[33] R. E. Moore. Interval analysis. Prentice Hall, 1966.
[34] B. Nelson and R. M. Kirby. Ray-tracing polymorphic multidomain

spectral/hp elements for isosurface rendering. IEEE Transactions on
Visualization and Computer Graphics, 12(1):114–125, 2006.

[35] T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray tracing trimmed
rational surface patches. SIGGRAPH Comput. Graph., 24(4):337–345,
1990.

[36] A. Paiva, H. Lopes, T. Lewiner, and L. H. de Figueiredo. Robust adaptive
meshes for implicit surfaces. Computer Graphics and Image Processing,
Brazilian Symposium on, 0:205–212, 2006.

[37] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive
ray tracing for isosurface rendering. In VIS ’98: Proceedings of the
conference on Visualization ’98, pages 233–238, Los Alamitos, CA,
USA, 1998. IEEE Computer Society Press.

[38] A. Raviv and G. Elber. Interactive direct rendering of trivariate b-spline
scalar functions. IEEE Transactions on Visualization and Computer
Graphics, 7(2):109–119, 2001.

[39] M. Reimers and J. Seland. Ray casting algebraic surfaces using the
frustum form. Comput. Graph. Forum, 27(2):361–370, 2008.

[40] J. Schreiner and C. Scheidegger. High-quality extraction of isosurfaces
from regular and irregular grids. IEEE Transactions on Visualization and
Computer Graphics, 12(5):1205–1212, 2006. Member-Claudio Silva.

[41] T. Sederberg and A. Zundel. Pyramids that bound surface patches.
GMIP, 58(1):75–81, January 1996.

[42] P. Shirley. Fundamentals of Computer Graphics. A. K. Peters, Ltd.,
Natick, MA, USA, 2002.

[43] K. Sung and P. Shirley. Ray tracing with the BSP tree, pages 271–274.
Academic Press Professional, Inc., San Diego, CA, USA, 1992.

[44] D. L. Toth. On ray tracing parametric surfaces. In SIGGRAPH ’85:
Proceedings of the 12th annual conference on Computer graphics and
interactive techniques, pages 171–179, New York, NY, USA, 1985.
ACM.

[45] O. Wilson, A. VanGelder, and J. Wilhelms. Direct volume rendering via
3d textures. Technical report, University of California at Santa Cruz,
Santa Cruz, CA, USA, 1994.

[46] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, and T. J. R. Hughes.
Patient-specific vascular NURBS modeling for isogeometric analysis of
blood flow. Computer Methods in Applied Mechanics and Engineering,
196(29-30):2943–2959, 2007.

Tobias Martin received his undergraduate de-
gree in computer science (Diplom-Informatiker
FH) in 2004 from the University of Applied Sci-
ences in Furtwangen, Germany. He is currently
a Ph.D. student in computer science at the Uni-
versity of Utah, Salt Lake City. His research in-
terests include topics in computer graphics such
as geometric modeling, rendering, and visual-
ization.

Elaine Cohen received her MS (1970) and
Ph.D. in mathematics(1974) from Syracuse Uni-
versity after receiving her BS(cum laude) in
mathematics (1968) from Vassar College. She is
a professor in the School of Computing, Univer-
sity of Utah, and has co-headed the Geometric
Design and Computation Research Group since
1980. Prof. Cohen has focused her research on
geometric computations for computer graphics,
geometric modeling, and manufacturing, with
emphasis on complex sculptured models repre-

sented using NURBS (Non-Uniform Rational B-splines) and NURBS-
features.

Robert M. Kirby (M’04) received the M.S. de-
gree in applied mathematics, the M.S. degree in
computer science, and the Ph.D. degree in ap-
plied mathematics from Brown University, Prov-
idence, RI, in 1999, 2001, and 2002, respec-
tively. He is currently an Associate Professor of
computer science with the School of Computing,
University of Utah, Salt Lake City, where he
is also an Adjunct Associate Professor in the
Departments of Bioengineering and Mathemat-
ics and a member of the Scientific Computing

and Imaging Institute. His current research interests include scientific
computing and visualization.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

