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Fig. 1. View of the pressure field of a rotating canister moving through an incompressible fluid. A color map of the field, along with
contours of constant pressure, have been applied to the cylinder and the cut-plane.

Abstract—We present a GPU-based ray-tracing system for the accurate and interactive visualization of cut-surfaces through 3D
simulations of physical processes created from spectral/hp high-order finite element methods. When used by the numerical analyst
to debug the solver, the ability for the imagery to precisely reflect the data is critical. In practice, the investigator interactively selects
from a palette of visualization tools to construct a scene that can answer a query of the data. This is effective as long as the implicit
contract of image quality between the individual and the visualization system is upheld. OpenGL rendering of scientific visualizations
has worked remarkably well for exploratory visualization for most solver results. This is due to the consistency between the use
of first-order representations in the simulation and the linear assumptions inherent in OpenGL (planar fragments and color-space
interpolation). Unfortunately, the contract is broken when the solver discretization is of higher-order. There have been attempts to
mitigate this through the use of spatial adaptation and/or texture mapping. These methods do a better job of approximating what
the imagery should be but are not exact and tend to be view-dependent. This paper introduces new rendering mechanisms that
specifically deal with the kinds of native data generated by high-order finite element solvers. The exploratory visualization tools are
reassessed and cast in this system with the focus on image accuracy. This is accomplished in a GPU setting to ensure interactivity.

Index Terms—High-order finite elements, spectral/hp elements, cut-plane extraction, GPU-based root-finding, GPU ray-tracing, cut-
surface extraction.

1 INTRODUCTION

Finite element methods are widely used for solving scientific and engi-
neering problems. They are characterized by the discretization of the
problem domain into a collection of elements, followed by the con-
struction of an approximate global solution that is specified in terms
of a series of local approximations. Many versions of the finite element
method use linear interpolation to represent solution values; other ver-
sions, such as those considered in this work, represent solutions using
higher-order approximating polynomials.

High-order finite element simulations are often visualized using
low-order (typically linear) primitives. Performing visualizations in
this way is compelling for several reasons: first, there exists an exten-
sive collection of visualization techniques that expect linear primitives
as input, and second, modern graphical processing units (GPUs) can
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render highly complex scenes composed of linear primitives at interac-
tive speeds. While linear approximations can be rendered efficiently,
they do not, in general, faithfully represent the high-order data. Meth-
ods designed to use the high-order data directly, without the need for
an intermediate linear approximation, faithfully represent the data, but
are often not interactive.

Linear approximations of high-order data are created by sampling
the data at a specified set of points. If the sampling is performed too
coarsely, then the approximation will be unable to resolve details in
the underlying data, resulting in visualization errors. Conversely, if
the sampling is too fine, while the details will be preserved and the
visualization may not contain error, it will have used more processing
time and other resources than necessary. While there are techniques
for addressing the sampling problem [15, 7, 14], it is often desirable
to skip the intermediate step and visualize the high-order data directly
(i.e., in its native form) in order to avoid the associated approximation
errors. By using the high-order data directly, we can know that any
features present in the visualization are also present in the data and are
not artifacts of the approximation.

The behavior of a high-order scalar field along an arbitrary cut-
surface can often be one of the primary questions that must be an-
swered by a simulation. For example, a simulation of a proposed air-
craft body may be performed to determine if it will survive the stresses
of flying in a variety of scenarios. In such a simulation, users are inter-
ested in the behavior of the simulation at specific boundaries, such as



the stress field along the aircraft’s wing. An effective way to visualize
these types of surfaces is through the application of color maps and/or
contour lines.

In this work, we describe a new set of methods for rendering color-
maps and contour lines on arbitrary cut-surfaces (of which curved-
element boundaries are of particular interest), extending the existing
methods for applying color-maps to cut-planes [2, 4]. Our system’s
goal is to generate accurate and interactive images, allowing users
to debug the simulation’s code, accurately interpret the image, and
perform general exploratory visualization. The system uses the high-
order data in its native state, without the need for low-order approxi-
mation, and uses the the knowledge of the structure and mathematical
properties of the underlying fields to provide accurate images.

The remainder of this paper proceeds as follows. In Section 2, we
give a brief overview of the state-of-the-art in high-order visualization,
paying particular attention to the existing methods for visualizing cut-
planes. In Section 3, we give a brief overview of the relevant features
of the finite element method, focusing on those features of the high-
order field that we use in our algorithm. In Section 4, we discuss
the accuracy issues that arise when dealing with high-order data. In
Section 5, we show how the system was implemented on a GPU ray-
tracing system. In Section 6, we show results of our system, along with
timings and other relevant measurements. We conclude in Section 7
with a summary of our findings.

2 RELATED WORK

While there are no algorithms that apply color maps to arbitrary cut-
surfaces directly, there are several schemes that apply color maps to
planar data. In one approach, the color map is generated by what is
called a polynomial basis texture [4]. Each basis function used in the
high-order field is sampled onto a triangular texture map. The colors
in the triangle are not generated by linear interpolation, but instead by
the linear combination of the appropriate textures, based on the trian-
gle’s order. In this way, a set of basis textures can be generated in
a pre-processing step, and then, assuming there is sufficient resolu-
tion in the texture, accurate images can be generated for all high-order
triangles. Another method uses an OpenGL fragment shader to cal-
culate the field’s value at each fragment’s location, resulting in more
accurate lookup into the color map [2]. Finally, another method ana-
lytically calculates the intersection of a plane and quadratic tetrahedra,
then uses a ray tracer to apply the color map to the new primitive [21].

Most of the work dealing with the generation of contour lines deals
only with 2D high-order elements. A common theme is to generate the
contours in an element’s reference space (which we will define in Sec-
tion 3) and then transform them into global (world) space for display.
One approach [8] creates contour lines in an element’s reference space
by subdividing the domain and using linear interpolation within these
sub-domains to create a piecewise linear contour. Another approach
steps along a direction orthogonal to the field’s gradient [1], where
each step is controlled by a user-defined step size. A method for gen-
erating contour lines over quadrilateral elements by determining the
shape of the contour in reference space and then generating a linear
polyline to approximate it was developed in [17] and later extended to
linear and quadratic triangles in [18].

The only 3D contouring algorithm [6] generates contour lines on
cut-planes through finite element volumes. The procedure first locates
a seed point for the contour line along the element’s boundary. It then
steps in a direction orthogonal to the field’s gradient, using a user-
controlled step size, to generate a polyline representing the contour.
It differs from the previously described methods in that the plane is
a three-dimensional entity. At each step, the contour can, and often
does, move off of the cut-surface. The method introduces a correction
term to fix this problem and keep the contour on the cut-plane. As
with the other object-space contour methods described, the step size is
useful to determine how accurately the polyline represents the contour
in world space, but is not as useful in expressing how accurate the final
image is, as it can be accurate from one view but have large error in
another.

Approaches that use interval methods for generating contours [19]

assume that, once a suitable region has been isolated, that the inter-
section between the implicit and a line segment can be computed effi-
ciently.

Several approaches have been developed for volume rendering
high-order fields. An analytic solution to the volume rendering integral
was developed in [23] for linear and quadratic tetrahedra. Numerical,
point-based solutions for high-order tetrahedra were presented in [24],
and solutions for arbitrary elements and order have been developed as
well [20]. Approaches for isosurface rendering have been developed
for quadratic tetrahedra using analytical calculation of the isosurface in
reference space [22] and through ray-tracing approaches [21]. Other
approaches include using a ray tracer for arbitrary elements of arbi-
trary order [11] and a point-based approach that uses particles that
actively seek and distribute themselves on the isosurface [9].

In [3] a method for calculating accurate streamlines through high-
order fields was developed, and it not only follows the high-order flow
more accurately, it also correctly handles the transitions between ele-
mental faces.

3 HIGH-ORDER FINITE ELEMENTS

A finite element volume is represented by the decomposition of a do-
main Ω into a mesh of n smaller, non-overlapping elements Ωi such
that Ω =

⋃
i≤n Ωi. The four basic element types that are used in this

work are the hexahedron, prism, tetrahedron, and pyramid. Each el-
ement is associated with three different spaces: world, reference, and
tensor. The world space represents the element in its physical posi-
tion and orientation. In reference space, each element is transformed
to a common, element-specific representation. The mapping from the
reference space to the world space element is given by the bijection
χ : R3 → R3. The tensor space element is the cube [−1,1]3 for all
elements, and has a mapping to the reference element T : R3 → R3.
The mapping between tensor space and world space, which is a bi-
jection a.e., is given by Φ = χ(T (η)). Given that the composition of
the mappings is a bijection a.e. allows us to convert points between
spaces as needed during visualization. An diagrammatic example of
these mappings for a tetrahedron is shown in Figure 2.

η = T (ξ ) x = χ(η)

Fig. 2. Illustration of the mapping between tensor (left), reference (mid-
dle), and world space (right) for a tetrahedron. Tensor points are de-
noted by η , reference points by ξ , and world space points by x.

For the remainder of this paper, we will use the following nota-
tion to help distinguish between points in tensor space and points in
world space: points in the world Cartesian space will be indicated by
x, with individual directions will be specified by x1,x2,x3. Similarly,
in the local Cartesian space associated with the element’s tensor ele-
ment, points will be specified with ξ , and individual components as
ξ1,ξ2,ξ3.

The solution to a high-order finite element simulation is a polyno-
mial function F(ξ ) ∈PN1,N2,N3 with respect to the tensor element,
where N1,N2,N3 denote (possibly) different polynomial orders in the
three principle directions. Since Φ is a bijection a.e. (with special care
being needed only at a collapsed vertex), we can invert it to calculate
the tensor point for a given world point, and then use the tensor point
to calculate the field value. While Φ−1 exists for each element, it is,
in general, not known analytically and must be calculated numerically
when needed. It is also, in general, a non-linear transformation that,
when applied to the polynomial field in tensor space, produces a func-
tion in world space that, while smooth, is not necessarily a polynomial.
The implications for our implementation are that any algorithm that
operates in world space cannot assume the field will be a polynomial.

This work deals with Continuous Galerkin (CG) formulations of
the finite element method, which require that the fields are continuous
across element boundaries, but impose no restrictions on the continu-
ity of any derivatives. Therefore, while the field is Cp on the interior



of each element (with p ≥ 1 indicating higher levels of smoothness
depending on the element’s approximating polynomial order and its
mapping to world space), the field over the domain Ω is C0. This
assumption of continuity allows us to develop a contouring algorithm,
described further in Section 5.3, that is accurate across element bound-
aries.

4 IMAGE ERROR CHARACTERIZATION

Generating accurate visualizations of high-order finite element vol-
umes is contingent upon identifying and controlling the sources of
error in the visualization pipeline. This pipeline takes as input the
high-order field as well as a description of the cut-surfaces on which
to render the field. The output is a rasterization of the field and cut-
surface. A typical implementation, using linear approximations, can
contain several different types of error.

The first error is that of approximating the cut-surface. Triangular
mesh approximations of cut-surfaces are generally constructed by first
sampling the surface at a specified collection of points, then creating
a mesh that joins each of these points. When rendering the mesh,
the only points that do not contain approximation error are the initial
mesh points; all other points in the mesh will be located, at most, some
non-zero distance ε from the true surface. As the number of triangles
approximating the surface increases, ε gets smaller, but it will not, in
general, become 0.

If the surface is linear, as in the case of a cut-plane, there will be
no error between the approximation and the surface. The error only
occurs when the surface is of a higher-order than the approximation.

The second type of error is interpolation error. High-order fields
are represented by a polynomial F(ξ ) = ∑i aiφi(ξ ), where φi is the
ith basis function. Approaches that approximate the field with linear
interpolation introduce error whenever the field is not sampled at nodal
points.

Finally, error can be introduced by the process of sampling onto a
regular grid of pixels. If the scene contains features that are too fine
to be resolved by the pixel spacing, then an error called aliasing can
occur.

The focus of this work is on how to minimize triangulation and in-
terpolation errors while producing interactive visualizations. We refer
to the combination of these errors as the sampling error. Since raster-
ization error occurs for all types of visualizations, not just high-order
visualizations, we do not address it directly in our analysis. If aliasing
error is noticeable in a high-order visualization, it can be addressed
through one of the available anti-aliasing techniques.

We define an accurate image of a cut-surface through a high-order
data set as one in which each pixel’s color is generated based on accu-
rate sampling of the high-order field (i.e., the sampling error is reduced
to machine precision). We call this type of image a pixel-exact image.
Visualizations based on linear methods are not, in general, pixel-exact,
since the triangulation of the cut-surface is not exact and the field be-
tween vertices is represented with linear interpolation.

It is possible for linear methods to generate nearly pixel-exact im-
ages for particular viewpoints. Assuming that each triangle’s vertex is
generated by sampling the high-order field, if every pixel in the result-
ing image contains at least one vertex, then the image will be nearly
pixel-exact. The difficulty associated with this approach is that a par-
ticular mesh will only generate these images for a subset of all possi-
ble viewing parameters and, as we will show in Section 6, it can incur
significant costs in terms of computation time required and resource
consumption.

5 RENDERING HIGH-ORDER CUT-SURFACES

In this section we describe the implementation of our high-order ren-
dering system. While the system supports only cut-surface rendering
at the present time, it has been designed to be extensible, which will
allow for additional visualization techniques to be added in the future.

The accuracy issues discussed in Section 4 can best be handled by
a rendering system that operates on each pixel directly. A ray-tracer is
the natural choice in this scenario. Assuming appropriately accurate
intersection routines are available, the error associated with locating

a point on the cut-surface and calculating the field value is reduced
to machine precision. We have implemented high-order ray-tracing
systems in the past, and have found them to be too slow to be useful
for the types of exploratory visualization we want to perform [11].
Therefore, we have implemented this system on the GPU, leveraging
the highly parallel nature of the GPU to process rays simultaneously.
Rather than implement our own ray-tracer, we have decided to use
the OptiX framework from NVIDIA [13], enabling us to provide an
implementation that can run interactively on a typical workstation. It
is interesting to note that recent work with volume rendering has been
able to reach interactive speeds with a GPU implementation [20].

OptiX provides a number of extension points that allow users to
write custom intersection and shading programs. Details can be found
in the OptiX programmer’s guide [12]. The initial customization point
is a ray generation program, which is generally responsible for gener-
ating one or more rays per pixel. In our system, the modules described
in the following sections are ray generation programs.

Because OptiX is implemented using CUDA, we were able to opti-
mize performance by using strategies common to all CUDA programs,
such as avoiding branching where possible and reducing the number of
registers required during computation. However, we found it difficult
to optimize memory access since access to OptiX memory is provided
through an opaque pointer with no guarantees about its location.

An OptiX scene is represented by a graph that controls which geo-
metric objects are visible to a ray, as well as how the ray will traverse
the scene. There are two ray-casting scenarios in our system: the ini-
tial ray that intersects cut-surfaces, and the secondary rays which are
used to find the elements that contain the intersection point. This sug-
gests a scene division where all geometric objects are placed in one
graph and the high-order elements in a second. We found that, for per-
formance reasons, the graphs should be shallow. Complicated graphs,
such as a graph with a single geometry node for each element in the
volume, takes significantly longer when the OptiX engine is initial-
ized, and also adds overhead when launching an OptiX kernel. Since
our system is composed of a sequence of OptiX kernels, we found that
a poor graph structure can lead to overhead that dominates execution
time.

Each node in the graph can be customized by user-defined intersec-
tion programs, which are executed to determine if a ray intersects an
object, and closest-hit programs, which are executed when the closest
intersection point has been determined. The cut-surface intersections
described in Section 5.1.1 are implemented as intersection programs
associated with the cut-surface nodes. If a ray intersects a cut-surface,
the surface’s closest-hit program is executed to find the enclosing el-
ement and evaluate the field, as described in Sections 5.1.2 and 5.1.3.
In the following sections we discuss the OptiX modules that comprise
our system.

5.1 Primary Ray Module
Rays are represented in parametric form:

r = O+ tD (1)

where O is the ray’s origin, D is the ray’s direction, and t is the distance
along the ray from the origin along the specified direction.

The Primary Ray Module is a ray generation program that first
queries the downstream modules to determine the directions of the
rays that are needed. It is assumed that a ray through the center of
each pixel will be required, but any of the downstream modules can
request additional rays. The module then casts rays through each of
the requested locations.

The behavior of the ray once it finds an intersection depends on
the surface type. This surface-dependent behavior is implemented us-
ing an OptiX closest-hit program. If the surface is a cut-surface then
a secondary ray is cast to determine which element encloses the in-
tersection point, and the scalar value at the point is then calculated.
Otherwise, the surface normal and color are determined. In this way,
the scalar values of the field along the cut-surface are calculated and
made available to downstream modules, while at the same time, any
surface geometry in the simulation can also be rendered.



5.1.1 Ray/Cut-Surface Intersection
Cut-surfaces are generally specified as either implicit 3D surfaces or
two-parameter parametric surfaces. Implicit 3D surfaces are defined
as the set of all points that satisfy the equation

f (x1,x2,x3) = 0 (2)

where f : R3→R. The intersection between an implicit surface and a
ray can be found by substituting Equation 1 into Equation 2, yielding:

g(t) = f (r1(t),r2(t),r3(t))
= f (O1 + tD1,O2 + tD2,O3 + tD3) = 0. (3)

Viewed in this way, the intersection test becomes a univariate root-
finding problem. For simple implicit functions, this equation can be
solved analytically. For example, a cut-plane is a simple implicit func-
tion of the form f (x1,x2,x3) = Ax1 +Bx2 +Cx3 +D = 0 which, after
substitution, becomes a linear equation in t with a trivially obtained
solution.

When the implicit surface is more complicated, such as when it is a
high-order polynomial, it cannot be solved analytically. In these cases,
numeric root-finding techniques are required [5]. In some cases, such
as functions representing isosurfaces of high-order fields, the implicit
function itself does not have an analytic form, and numeric techniques
are required to both evaluate f and find the intersection [11].

The other type of surface of interest in a high-order setting is that
of parametric surfaces, defined as x = p(u,v). If p is analytic, it may
be possible to convert it into an implicit form, allowing for the direct
use of methods already available for implicit forms.

A class of interesting parametric surfaces is that of the faces of the
elements themselves. Faces that border simulation geometry are of
particular interest because of their relationship to what happens at or
near these locations (e.g., pressure at specific locations on an aircraft’s
wing). Faces are defined as parametric functions:

x = Φ(ξi,ξ j) = ∑
a

∑
b

ûabφa(ξi)φb(ξ j),−1≤ ξ1,ξ2 ≤ 1 (4)

with the ray-face intersection specified as the values for ξ1,ξ2, and t
for which the following holds:

Φ(ξi,ξ j) = r(t). (5)

The function Φ is the mapping function described in Section 3 and
does not, in general, have a conversion to a general implicit function.

5.1.2 Point Location
Once the cut-surface intersection point has been found, the next task
is to determine the element in which it lies. To find the element, a
new, secondary ray is cast from the intersection point in a random di-
rection. This finds the closest element to the intersection point, which
is the enclosing element. We constrain our cut-surfaces to lie entirely
within the finite element volume; if this were not true, additional test-
ing would be required to determine if the ray/cut-surface intersection
point is inside the volume or not.

5.1.3 Field Evaluation
After finding the intersection point x and the element E that contains
the point, the field can be evaluated. The field is defined in terms of the
local Cartesian coordinate system associated with E’s tensor element.
As we discussed in Section 3, the mapping between the local tensor
space and the global Cartesian coordinate system (in which x exists)
is specified by the function Φe(ξ ). Because Φe is a bijection a.e.,
we can obtain the tensor space point for a given world space point by
inversion. To calculate the field’s value at a world point x inside the
element:

F̂(x) = F(Φ−1
e (x)). (6)

Unfortunately, Φe does not, in general, have an analytic inverse.
We therefore perform the inverse mapping numerically. We use the
Newton-Raphson algorithm, which generates the convergent sequence

ξ i+1 = ξ i + J−1 (Φ(ξ i)− x) (7)

where J is the Jacobian of the mapping function given by

Ji j =
∂Φi

∂ξ j
(8)

with Φi as the mapping in the i direction. This method has well-known
stability issues and can fail to converge, even when roots do exist. In
our case, since the mapping function Φ is a bijection a.e., we know
that there is a unique real root inside the element, and we are able
to position our initial guess close to the root, which greatly increases
the probability of finding the root. Our routines do detect and report
convergence errors and, in practice, they have not been encountered.

Fields are represented as the tensor product of one-dimensional
polynomials:

F(ξ1,ξ2,ξ3) = ∑
i

∑
j
∑
k

ûi jkφi(ξ1)φ j(ξ2)φk(ξ3). (9)

Implemented as written, evaluating the field is an O(N4) operation,
but if we use the sum factorization technique

F(ξ1,ξ2,ξ3) = ∑
i

φi(ξ1)∑
j

φ j(ξ2)∑
k

ûi jkφk(ξ3) (10)

this is reduced to O(N2). Due to the number of samples that must be
taken to provide an accurate visualization, using the sum factorization
technique can provide significant performance gains, especially as the
field’s polynomial order becomes large.

5.2 Color Mapping Module
To apply a color map to a cut-surface, we sample the scalar field at
the center of each pixel, using the procedures just described, and then
use the resulting scalar value as a look-up into the color map. As
previously mentioned, this can result in aliasing, for which standard
anti-aliasing techniques can be applied.

5.3 Contouring Module
A pixel (i, j) belongs to the contour curve for isovalue ρ if it satisfies

∃u,v : Pi j(u,v) = ρ (11)

where P is the scalar field of the cut-surface projected onto the im-
age plane. As described in Section 3, the field is continuous over the
pixel, even if the pixel spans elements. Therefore, we can determine
if the isovalue exists in the pixel by finding two points that bracket the
isovalue:

∃ua,va,ub,vb : Pi, j(ua,va)≤ ρ ≤ Pi, j(ub,vb). (12)

Determining if the isovalue exists somewhere in the pixel can be a
complicated and time consuming process that requires the determina-
tion of the global maximum and minimum scalar value over the pixel.
To reduce the complexity of this test, instead of checking the pixel’s
interior, our algorithm looks for the isovalue along a pixel’s edge. This
approach is attractive because it detects the same contours as searching
the interior detects except for the case where the contour exists entirely
in the pixel’s interior (see the lower right corner of Figure 3). These
types of contours will show up as isolated points in the image and will
not help the user interpret the visualization, so the extra processing
time to find them need not be taken.

A simple algorithm to determine if a pixel may be part of the con-
tour is to perform point sampling at the four pixel corners. If the val-
ues at the corners bracket ρ , then the pixel can be marked as part
of the contour with no further testing. This method is appealing for
several reasons. First, it is fast. Sampling the pixel corners requires
(w+1)(h+1) samples, where w is the image width and h the height.



Fig. 3. Contour lines that are not detected by simply checking if the pixel
corners bracket the isovalue.

This is only slightly more samples than are required for color map-
ping, which requires wh samples. Second, if the field is monotonic
over the pixel, then this test is also accurate, i.e., it only marks pix-
els that are part of the contour and doesn’t mark pixels that are not
part of the contour. Sampling the endpoints of a monotonic function
produces the function’s range (see Figure 4(a)). While this algorithm
cannot guarantee that it will find all contour pixels (because the high-
order field is not guaranteed to be monotonic over a pixel’s edge), it
does find a large percentage of them.

Because the field is not guaranteed to be monotonic, contours can
take a variety of forms that will not be detected by the simple corner
testing algorithm. As shown in Figure 3, contours can cross edges
multiple times and span many pixels and still miss detection by the
corner testing algorithm. What we need is a way to obtain an estimate
of the range of f using as few samples as possible (since they are
expensive and will slow down rendering). An efficient way to do this
is through interval arithmetic [10].

Using interval arithmetic, we replace operations on real numbers
with operations on intervals. An interval X is defined as

X = [X ,X ] = {x ∈ R : X ≤ x≤ X} (13)

and, for an arbitrary function ⊕ and intervals X and Y :

X⊕Y = {x⊕ y : x ∈ X ∧ y ∈ Y}. (14)

The set image of a function g is defined as:

g(I) = {g(x) : x ∈ X} (15)

and represents the true range of g. The interval extension G of g
is formed by evaluating the steps to calculate g on interval numbers
rather than floating point numbers. The interval extension has the fol-
lowing useful property:

G(X)⊇ g(X) = {g(x,y,z) : (x,y,z) ∈ X}. (16)

In other words, if g is evaluated using interval arithmetic on an input
interval X , the result is a range that is guaranteed to contain the true
range of g on that interval.

The interval extension G of g can be very wide, and in some cases
can be too wide to be useful. To reduce the width of the interval, we
first subdivide the interval into n segments of width h, such that the
subdivision of X is:

Xi = [X + ih,X +(i+1)h]. (17)

We define the interval hull of two intervals as:

X∪Y = [min{X ,Y},max{X ,Y}]. (18)

The interval hull of a subdivided interval is

Gn =
⋃

i≤n
Xi. (19)

Subdividing an interval is useful because of the following property:

G(X)⊇ Gn(X)⊇ g(X) = {g(x,y,z) : (x,y,z) ∈ X}. (20)

In other words, we can decrease the width of an interval computation
by subdividing the interval into smaller regions, evaluating each of
the sub-intervals separately, then calculating the interval hull of the
smaller intervals (see Figure 4).
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Fig. 4. (a) - If a function f is monotonic on an interval I = [a,b], then
the range of f is bounded by f (I) = [ f (a), f (b)]. (b) - If f is not mono-
tonic, then f (I) 6= [ f (a), f (b)]. (c) - An interval extension F of f provides
bounds that include f (I), i.e., f (I) ⊆ F(I). (d) - Uniform subdivision of
the domain produces tighter bounds.

To illustrate how this works, consider the the polynomial 3x2+2x−
4 which has a range of [−4.33,1] over [−1,1]. Using the following
properties of interval arithmetic:

X +Y = [X +Y ,X +Y ]
X−Y = [X−Y ,X−Y ]

Xn =


[Xn,Xn

] if X > 0 or n is odd,
[Xn

,Xn] if X < 0 or n is even,
[0, |X |n] if 0 ∈ X and n is even,

the range can be evaluated as 3[−1,1]2 + 2[−1,1]− 4 = 3[0,1] +
[−2,2]− [4,4] = [−6,1]. Note the true range, [−4.33,1] ⊆ [−6,1].
Dividing [−1,1] into 10 evenly-spaced intervals and evaluating pro-
duces a range of [−4.72,1] and 100 evenly-spaced intervals produces
[−4.37,1].

For high-order fields, calculating the field’s range over a pixel’s
side produces fairly good bounds, as can be seen in Figure 5, where
we show that, even without performing any subdivisions, the num-
ber of pixels that may contain the isovalue is small. One factor that
can contribute to wide interval extensions is the number of operations
performed when evaluating an expression. An example of this can
be seen in Figure 6, where the number of ambiguous pixels are com-
pared between a 2nd-order and 6th-order data set. The 6th-order data
set has more ambiguous pixels than the 2nd-order data set. Interval
arithmetic provides conservative bounds that are obtained without us-
ing any derivatives, and are not negatively affected by the presence of
extremal features.

The cut-surface contouring algorithm proceeds as follows. First,
sample the cut-surface at each pixel’s corner. If any two pixel corners
bracket an isovalue, mark the pixel. For each unmarked pixel, calcu-
late the approximate bounds of the function along each side. If none
of the contours fall within the approximate bound, reject the pixel.
Otherwise, mark it as possible. Finally, for each possible pixel, subdi-
vide the edge, taking additional samples as needed, to provide better
bounds until a user defined tolerance is met. If contours fall outside
the range, reject the pixel, otherwise accept.

Note that, when the algorithm completes, it is possible for some
pixels to be marked ambiguously. This cannot be avoided unless the
global minimum and maximum over the pixel is calculated. Our sys-
tem allows for these ambiguous pixels to be colored a different color.



(a) 0.044 seconds. (b) 0.07 seconds.

(c) 0.11 seconds. (d) 0.18 seconds.

Fig. 5. Contours generated on a cut-plane of the block/plates data set
(see Section 6). Pixels that contain the isovalue are marked in black.
Pixels that cannot contain the isovalue are white, and pixels that may
contain the isovalue are teal. In 5(a), only corner testing has been per-
formed. In 5(b), one level of subdivision has been performed. Two levels
were performed in 5(c), and three in 5(d). We can see that additional
testing reduces the number of ambiguous pixels. Rendering times for
a 1000×1000 image are given underneath each image. While subdivi-
sions take extra time, the rendering times are still interactive.

The user can then increase the amount of subdivision as needed to re-
duce the number of ambiguous pixels. In practice, we have found that
dividing a pixel’s side into eight sub-intervals is enough to handle most
ambiguities.

5.4 Lighting and Display Modules
The lighting module can be arbitrarily complex. In our version, we
implement simple OpenGL style lighting with no shadows.

For display, we update the OpenGL color and depth buffers with the
values obtained during ray-tracing. Additional OpenGL calls can now
be made to render OpenGL data that can co-exist with the ray-traced
data.

6 RESULTS

The effectiveness of the methods described in this paper are illustrated
by applying them to two high-order fluid flow data sets. Note that we
will frequently refer to nth-order volumes or elements as a shorthand
for saying that the field is represented by nth-order polynomials, in
tensor space, in each direction.

The first example consists of incompressible flow past a block with
an array of splitter plates placed downstream of the block. A schematic
of this regime is presented in Figure 7(a). As the fluid impinges upon
the block, it is diverted around the structure, generating vorticity along
the surface. For the purposes of this paper, we will focus our at-
tention on a configuration consisting of a plate spacing of one unit
(non-dimensionalized with respect to the block height). The 3D com-
putational mesh consists of 3,360 hexahedra and 7,644 prisms. All
simulations were performed at a Reynolds Number (Re) of 200.

The second data set consists of a rotating canister traveling through
an incompressible fluid. A schematic of the flow regime under consid-

(a) 2nd -Order (b) 6th-Order

Fig. 6. Comparison of ambiguous pixels (teal) between a 2nd -order (left)
and 6th-order (right) data set.

Flow Direction
s1

s2

Flow


Direction

(a) Block/Plate Configuration (b) Canister Configuration

Fig. 7. Schematic showing the basic block/splitter plate (left) and rotat-
ing canister (right) configurations under consideration.

eration is presented in Figure 7(b). The 3D mesh consists of 5,040
hexahedra and 696 prisms, with the computational problem being
solved using third-order polynomials within each element. The so-
lutions presented herein were computed at Re = 1000 and with an an-
gular velocity of Ω = 0.2.

All tests described in this section were performed on a desktop
workstation equipped with an NVIDIA Tesla C2050 GPU and Intel
Xeon W3520 quad-core processor running at 2.6 GHz. All code run
on the GPU was implemented in OptiX. Code executed on the CPU
was written as single-threaded C++ code. The GPU algorithms were
run using 32 bit floating point precision, while the CPU code was run
using 64 bit floating point precision. In our tests, there is a negligi-
ble performance impact between 32 and 64 bit precision on the CPU,
while 64 bit precision on the GPU generally doubles overall execution
time. As we will show when we discuss performance, our methods ex-
ecute at 10-20 frames per second even for large image sizes, so 64 bit
precision can be used when necessary without significantly impacting
performance.

6.1 Linear Comparison Models

Visualizations of high-order data are traditionally performed using lin-
ear primitives. Because of this, we will contrast the performance,
accuracy, and resource consumption of our methods to those com-
monly used linear algorithms. We will show that while linear methods
can produce acceptable images under the right circumstances, a more
effective way to reliably achieve accurate visualizations (under rea-
sonable resource constraints and without intervention) is through the
methods described here. The linear test cases were implemented us-
ing the Visualization Toolkit (VTK) [16] because it is a well-known
system, in current use, and therefore provides a good foundation on
which to base our tests.

Two approaches were used for representing the high-order data with
the linear structures found in VTK. In the first approach we sampled
the entire high-order volume onto a 3D regular grid of points, where
the spacing between points is constant. Values between grid points
are calculated using linear interpolation. For the second approach a
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Fig. 8. Time to sample a grid of evenly spaced points that span the
high-order volume (left), and a triangular mesh representing a cut-plane
through the middle of the volume (right).

triangular mesh is created and sampled with the high-order data at the
triangle vertices. As with the first volume, data values between ver-
tices are obtained via linear interpolation. Sampling was performed
using a CPU-based implementation. We used an octree data struc-
ture to accelerate the location of the element enclosing a given sample
point. Timings for sampling several high-order volumes onto a grid
are found in Figure 8(a), and the timings to sample a cut-plane run-
ning through the center of the data set in Figure 8(b).

While sampling onto a 3D grid is the most flexible approach (since
so many visualization algorithms can be applied), it is also the most
time consuming and quickly becomes prohibitive, especially as the
volume order increases. Sampling directly onto the cut-plane, while
not as flexible, is fast enough to be practical. The problem with sam-
pling onto a triangular mesh is that the memory required to store the
mesh and samples grow roughly in a squared manner (by the spacing).
We can produce a cut-plane with 8,388,608 samples using the 2nd-
order block/plate data set in about 30 seconds, but it consumes 180
MB of memory, compared to 4 MB to represent the entire high-order
volume. And, as shown in the examples below, there are not enough
samples to produce highly-accurate visualizations.

In the remainder of this section, our comparison tests are performed
with the triangular mesh-based technique instead of the 3D grid-based
approximation. We found that the quality of the grid-based approach
is worse (sometimes significantly) than the mesh approach because the
cut-surface may span between the grid samples, meaning that the con-
tours and colors produced are interpolated from samples that do not
actually lie on the surface. Using the triangular mesh, however, guar-
antees that all samples are on the cut-surface, providing more accurate
images and better comparisons.

6.2 Contouring

While there are contouring algorithms available for high-order meth-
ods (as discussed in Section 2), we are unable to provide direct com-
parisons with those methods because they either are restricted by the
type of element or the maximum order. Contours for the linear data
were produced by the vtkContourFilter. The results are shown in Fig-
ure 9.

The linear approximation in Figure 9(b) is a significant improve-
ment when compared to the more coarsely sampled volume, and it
is difficult to see much difference between this image and our high-
order method. However, this is only true at the current resolution, and
if we zoom into the image, we can see that there are still significant
errors present. While further sampling can improve the generated con-
tour, there are limits to the sampling resolution (due to the amount of
resources consumed). And importantly, the method described in this
paper performs at about the same speed as the coarsely sampled image.

In the coarsely sampled contour image (Figure 9(a)), there are many
errors which have been noted with a red circle: incorrect topology,
missed contours, and incorrect shapes. What is interesting is that it is
not possible to determine if these contours are accurate from the image
alone. We need either a cut-plane with greater resolution or an image
from our system to notice the inaccuracy.

(a) 524,288 Triangles. VTK Contour Generation Time = 0.265 seconds.

(b) 8,388,608 Triangles. VTK Contour Generation Time = 3.5 seconds.

(c) High-Order Rendering. Rendering time for 2000×2000 image = 0.3 sec-
onds.

(d) Detail View of 9(b) (e) Detail View of 9(c)

Fig. 9. Comparison between pressure contours of the block/plane data
set generated using linear methods (9(a) and 9(b)) and our high-order
method (9(c)). The approximation in 9(a) has several significant errors,
marked in red, which disappear when using a smaller sampling. The
highlighted area in 9(c) is shown in more detail in 9(d) for linear interpo-
lation and 9(e) for our system. The contours generated by VTK, which
use the same amount of time as our system, have considerably more
error.

6.3 ColorMaps

Figure 11 contrasts a comparison between linear approximations of a
cut-plane through the canister data set with the renderer described in
Section 5. Since the cut-plane is an inherently linear cut-surface, there
is no surface approximation error, so differences between our method
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Fig. 10. Performance results and memory usage for rendering high-order data using our system. For typical usage scenarios, the parameter that
impacts performance the most is image size.

and the linear methods are due solely to the differences between linear
and high-order interpolation.

As expected, the images get progressively closer to the image gen-
erated by the techniques described in Section 5 as the number of sam-
ples increase. However, even at the very fine sampling (shown here),
there are still subtle errors. Additionally, the memory required to store
the mesh is large which requires a lengthy pre-preprocessing step. It
is interesting to note that, unlike the contour images, it can be visually
obvious when a color map needs to be further refined by the presence
of sharp and “boxy” gradients.

6.4 Performance

For the methods described in this paper to be useful, they must not only
be accurate but interactive as well. For each test, we rendered a view
of a cut-plane and cut-cylinder where the entire image was covered.
Since the rendering pipeline is restarted from scratch with every view
change, there was no need to run the timing tests with a variety of
viewing changes. We executed the tests 100 times and reported the
average time to render the entire scene.

Since we did not have fluid flow simulation data higher than 6th

order, synthetic data sets were generated to obtain the timings. We
were interested in how timing was related to the simulation’s order,
number of elements, and the overall image size. Timing results are
shown in Figure 10 and, unless specifically noted otherwise, are valid
for both the contouring and color mapping module (as they generally
take the same amount of time). In Figure 10(a), it can be seen how
increasing the field’s order impacts performance. If the order is in-
creased significantly, then it will impact performance negatively, but
for typically-used orders, around 2-14, rendering times are not signif-
icantly impacted. In Figure 10(b), we tested our system on large data
sets with up to 200,000 elements and it can be seen that our system’s
speed is not strongly related to the number of elements. In Figure
10(c), we can see that the most important factor governing the perfor-
mance of our system is the image size. This figure also illustrates the
impact of using more complicated cut-surfaces, specifically bicubic
patches. While overall rendering time is increased with more compli-

cated surfaces, it is still interactive. This has several positive impli-
cations. First, if the system is not as interactive as desired, additional
speed can be gained by using a smaller viewport. Second, the sys-
tem is capable of handling large high-order data sets interactively, and
there is no indication of an upper limit to the number of elements that
can be supported (except for the size of the native solution that must
fit in the GPUs memory).

In Figures 10(d), 10(f), and 10(e), we show the GPU memory re-
quired by our system. We start with a 5,000 element, 8th order volume
rendered in a 1000× 1000 image, then vary the number of elements,
polynomial order, and image size. These graphs show that our system
is capable of storing large volumes of high order on a single GPU. In-
creasing the image size results in a linear growth in memory usage due
to the constant amount of per-pixel memory required for calculation
and rendering. Increasing the number of elements also scales linearly,
as the number of coefficients per element is constant for a given poly-
nomial order. When increasing the polynomial order, the number of
coefficients required to support the solution grows as O(n3), where n is
the polynomial order, leading to the memory growth shown in Figure
10(d).

7 CONCLUSION

Our system was motivated by the lack of existing visualization tech-
niques capable of interactively and accurately rendering color-maps
and contour lines on arbitrary cut-surfaces. In this paper, we have
described a new system that is capable of rendering these surfaces in-
teractively and accurately while using the high-order data in its native
form (i.e., we do not need to resample onto lower-order constructs).
We have also shown that the most important factor for determining
rendering speed is the size of the final image, indicating that our sys-
tem can efficiently handle high-order data sets with a large number
of elements with a large number of modes. An additional benefit is
that these interactive frame rates are achievable on commodity GPUs,
meaning simulation scientists can easily perform even the most de-
manding visualizations at their workstations.

While our system is useful in its current form, additional function-



(a) Cut-plane with 902,289 triangles, VTK Rendering Time = 0.08 seconds.

(b) Cut-plane with 8,388,608 triangles, VTK Rendering Time = 2.0 seconds.

(c) Pixel-exact cut-plane color map. Rendering time is 0.015 seconds for a
1800×800 image.

Fig. 11. Color maps for a cut-plane through the canister data set with a
coarse sampling (11(a)), a fine sampling (11(b)), and pixel-exact using
our method (11(c)).

ality, such as isosurface generation and volume rendering, is required
before it can become a general-purpose high-order visualization sys-
tem. We have an algorithm for isosurface generation in arbitrary high-
order volumes [11], but it is currently implemented as a CPU-based
algorithm and, while accurate, is far from interactive. Our current
system already implements several features that are required by this
algorithm, namely, sampling the field at arbitrary points and perform-
ing ray-element intersections. The additional work we anticipate is
the creation of function projection and root finding modules. Moving
the CPU specific code to a GPU setting is not sufficient to guaran-
tee interactivity, as the isosurface module requires significantly more
samples than cut-surface rendering, and iterative root finding can be
challenging on a GPU.

ACKNOWLEDGMENTS

This work is supported under ARO W911NF-08-1-0517 (Program
Manager Dr. Mike Coyle) and Department of Energy (DOE NET
DE-EE0004449). Infrastructure support provided through NSF-IIS-
0751152.

REFERENCES

[1] J. Akin, W. Gray, and Q. Zhang. Colouring isoparametric contours. En-
gineering Computations, 1:36–41, 1984.

[2] M. Brasher and R. Haimes. Rendering planar cuts through quadratic and
cubic finite elements. In Proceedings of the conference on Visualization
’04, VIS ’04, pages 409–416, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[3] G. Coppola, S. J. Sherwin, and J. Peiró. Nonlinear particle tracking for
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