SCIENTIFIC COMPUTING AND IMAGING INSTITUTE
at the University of Utah

An internationally recognized leader in visualization, scientific computing, and image analysis

SCI Publications

2025


M.S.T. Karanam, K. Iyer, S. Joshi, S. Elhabian. “Log-Euclidean Regularization for Population-Aware Image Registration,” Subtitled “arXiv:2502.02029,” 2025.

ABSTRACT

Spatial transformations that capture population-level morphological statistics are critical for medical image analysis. Commonly used smoothness regularizers for image registration fail to integrate population statistics, leading to anatomically inconsistent transformations. Inverse consistency regularizers promote geometric consistency but lack population morphometrics integration. Regularizers that constrain deformation to low-dimensional manifold methods address this. However, they prioritize reconstruction over interpretability and neglect diffeomorphic properties, such as group composition and inverse consistency. We introduce MORPH-LER, a Log-Euclidean regularization framework for population-aware unsupervised image registration. MORPH-LER learns population morphometrics from spatial transformations to guide and regularize registration networks, ensuring anatomically plausible deformations. It features a bottleneck autoencoder that computes the principal logarithm of deformation fields via iterative square-root predictions. It creates a linearized latent space that respects diffeomorphic properties and enforces inverse consistency. By integrating a registration network with a diffeomorphic autoencoder, MORPH-LER produces smooth, meaningful deformation fields. The framework offers two main contributions: (1) a data-driven regularization strategy that incorporates population-level anatomical statistics to enhance transformation validity and (2) a linearized latent space that enables compact and interpretable deformation fields for efficient population morphometrics analysis. We validate MORPH-LER across two families of deep learning-based registration networks, demonstrating its ability to produce anatomically accurate, computationally efficient, and statistically meaningful transformations on the OASIS-1 brain imaging dataset.



S. Saha, S. Joshi, R. Whitaker. “ARD-VAE: A Statistical Formulation to Find the Relevant Latent Dimensions of Variational Autoencoders,” Subtitled “arXiv:2501.10901,” 2025.

ABSTRACT

The variational autoencoder (VAE) is a popular, deep, latent-variable model (DLVM) due to its simple yet effective formulation for modeling the data distribution. Moreover, optimizing the VAE objective function is more manageable than other DLVMs. The bottleneck dimension of the VAE is a crucial design choice, and it has strong ramifications for the model’s performance, such as finding the hidden explanatory factors of a dataset using the representations learned by the VAE. However, the size of the latent dimension of the VAE is often treated as a hyperparameter estimated empirically through trial and error. To this end, we propose a statistical formulation to discover the relevant latent factors required for modeling a dataset. In this work, we use a hierarchical prior in the latent space that estimates the variance of the latent axes using the encoded data, which identifies the relevant latent dimensions. For this, we replace the fixed prior in the VAE objective function with a hierarchical prior, keeping the remainder of the formulation unchanged. We call the proposed method the automatic relevancy detection in the variational autoencoder (ARD-VAE). We demonstrate the efficacy of the ARD-VAE on multiple benchmark datasets in finding the relevant latent dimensions and their effect on different evaluation metrics, such as FID score and disentanglement analysis.



S. Saha, S. Joshi, R. Whitaker. “Disentanglement Analysis in Deep Latent Variable Models Matching Aggregate Posterior Distributions,” Subtitled “arXiv:2501.15705,” 2025.

ABSTRACT

Deep latent variable models (DLVMs) are designed to learn meaningful representations in an unsupervised manner, such that the hidden explanatory factors are interpretable by independent latent variables (aka disentanglement). The variational autoencoder (VAE) is a popular DLVM widely studied in disentanglement analysis due to the modeling of the posterior distribution using a factorized Gaussian distribution that encourages the alignment of the latent factors with the latent axes. Several metrics have been proposed recently, assuming that the latent variables explaining the variation in data are aligned with the latent axes (cardinal directions). However, there are other DLVMs, such as the AAE and WAE-MMD (matching the aggregate posterior to the prior), where the latent variables might not be aligned with the latent axes. In this work, we propose a statistical method to evaluate disentanglement for any DLVMs in general. The proposed technique discovers the latent vectors representing the generative factors of a dataset that can be different from the cardinal latent axes. We empirically demonstrate the advantage of the method on two datasets.



W. Tao, S. Joshi, R. Whitaker. “Integrated Model Selection and Scalability in Functional Data Analysis through Bayesian Learning,” Subtitled “Preprints.org,” 2025.
DOI: 10.20944/preprints202503.0658.v1

ABSTRACT

Functional data, including one-dimensional curves and higher-dimensional surfaces, have become increasingly prominent across scientific disciplines. They offer a continuous perspective that captures subtle dynamics and richer structures compared to discrete representations, thereby preserving essential information and facilitating more natural modeling of real-world phenomena, especially in sparse or irregularly sampled settings. A key challenge lies in identifying low-dimensional representations and estimating covariance structures that capture population statistics effectively. We propose a novel Bayesian framework with a nonparametric kernel expansion and a sparse prior, enabling direct modeling of measured data and avoiding the artificial biases from regridding. Our method, Bayesian scalable functional data analysis (BSFDA), automatically selects both subspace dimensionalities and basis functions, reducing computational overhead through an efficient variational optimization strategy. We further propose a faster approximate variant that maintains comparable accuracy but accelerates computations significantly on large-scale datasets. Extensive simulation studies demonstrate that our framework outperforms conventional techniques in covariance estimation and dimensionality selection, showing resilience to high dimensionality and irregular sampling. The proposed methodology proves effective for multidimensional functional data and showcases practical applicability in biomedical and meteorological datasets. Overall, BSFDA offers an adaptive, continuous, and scalable solution for modern functional data analysis across diverse scientific domains.



C. You, H. Dai, Y. Min, J.S. Sekhon, S. Joshi, J.S. Duncan. “The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations,” Subtitled “arXiv:2501.00961v2,” 2025.

ABSTRACT

Machine learning models often rely on simple spurious features – patterns in training data that correlate with targets but are not causally related to them, like image backgrounds in foreground classification. This reliance typically leads to imbalanced test performance across minority and majority groups. In this work, we take a closer look at the fundamental cause of such imbalanced performance through the lens of memorization, which refers to the ability to predict accurately on atypical examples (minority groups) in the training set but failing in achieving the same accuracy in the testing set. This paper systematically shows the ubiquitous existence of spurious features in a small set of neurons within the network, providing the first-ever evidence that memorization may contribute to imbalanced group performance. Through three experimental sources of converging empirical evidence, we find the property of a small subset of neurons or channels in memorizing minority group information. Inspired by these findings, we articulate the hypothesis: the imbalanced group performance is a byproduct of “noisy” spurious memorization confined to a small set of neurons. To further substantiate this hypothesis, we show that eliminating these unnecessary spurious memorization patterns via a novel framework during training can significantly affect the model performance on minority groups. Our experimental results across various architectures and benchmarks offer new insights on how neural networks encode core and spurious knowledge, laying the groundwork for future research in demystifying robustness to spurious correlation.


2024


S.I. Adams-Tew, H. Odéen, D.L. Parker, C.C. Cheng, B. Madore, A. Payne, S. Joshi. “Physics Informed Neural Networks for Estimation of Tissue Properties from Multi-echo Configuration State MRI,” In Medical Image Computing and Computer Assisted Intervention -- MICCAI 2024, Springer Nature Switzerland, pp. 502--511. 2024.

ABSTRACT

This work investigates the use of configuration state imaging together with deep neural networks to develop quantitative MRI techniques for deployment in an interventional setting. A physics modeling technique for inhomogeneous fields and heterogeneous tissues is presented and used to evaluate the theoretical capability of neural networks to estimate parameter maps from configuration state signal data. All tested normalization strategies achieved similar performance in estimating T2 and T2*. Varying network architecture and data normalization had substantial impacts on estimated flip angle and T1, highlighting their importance in developing neural networks to solve these inverse problems. The developed signal modeling technique provides an environment that will enable the development and evaluation of physics-informed machine learning techniques for MR parameter mapping and facilitate the development of quantitative MRI techniques to inform clinical decisions during MR-guided treatments.



H. Dai, S. Joshi. “Refining Skewed Perceptions in Vision-Language Models through Visual Representations,” Subtitled “arXiv preprint arXiv:2405.14030,” 2024.

ABSTRACT

Large vision-language models (VLMs), such as CLIP, have become foundational, demonstrating remarkable success across a variety of downstream tasks. Despite their advantages, these models, akin to other foundational systems, inherit biases from the disproportionate distribution of real-world data, leading to misconceptions about the actual environment. Prevalent datasets like ImageNet are often riddled with non-causal, spurious correlations that can diminish VLM performance in scenarios where these contextual elements are absent. This study presents an investigation into how a simple linear probe can effectively distill task-specific core features from CLIP’s embedding for downstream applications. Our analysis reveals that the CLIP text representations are often tainted by spurious correlations, inherited in the biased pre-training dataset. Empirical evidence suggests that relying on visual representations from CLIP, as opposed to text embedding, is more practical to refine the skewed perceptions in VLMs, emphasizing the superior utility of visual representations in overcoming embedded biases



Q. Huang, J. Le, S. Joshi, J. Mendes, G. Adluru, E. DiBella. “Arterial Input Function (AIF) Correction Using AIF Plus Tissue Inputs with a Bi-LSTM Network,” In Tomography, Vol. 10, pp. 660-673. 2024.

ABSTRACT

Background: The arterial input function (AIF) is vital for myocardial blood flow quantification in cardiac MRI to indicate the input time–concentration curve of a contrast agent. Inaccurate AIFs can significantly affect perfusion quantification. Purpose: When only saturated and biased AIFs are measured, this work investigates multiple ways of leveraging tissue curve information, including using AIF + tissue curves as inputs and optimizing the loss function for deep neural network training. Methods: Simulated data were generated using a 12-parameter AIF mathematical model for the AIF. Tissue curves were created from true AIFs combined with compartment-model parameters from a random distribution. Using Bloch simulations, a dictionary was constructed for a saturation-recovery 3D radial stack-of-stars sequence, accounting for deviations such as flip angle, T2* effects, and residual longitudinal magnetization after the saturation. A preliminary simulation study established the optimal tissue curve number using a bidirectional long short-term memory (Bi-LSTM) network with just AIF loss. Further optimization of the loss function involves comparing just AIF loss, AIF with compartment-model-based parameter loss, and AIF with compartment-model tissue loss. The optimized network was examined with both simulation and hybrid data, which included in vivo 3D stack-of-star datasets for testing. The AIF peak value accuracy and ?????? results were assessed. Results: Increasing the number of tissue curves can be beneficial when added tissue curves can provide extra information. Using just the AIF loss outperforms the other two proposed losses, including adding either a compartment-model-based tissue loss or a compartment-model parameter loss to the AIF loss. With the simulated data, the Bi-LSTM network reduced the AIF peak error from −23.6 ± 24.4% of the AIF using the dictionary method to 0.2 ± 7.2% (AIF input only) and 0.3 ± 2.5% (AIF + ten tissue curve inputs) of the network AIF. The corresponding ?????? error was reduced from −13.5 ± 8.8% to −0.6 ± 6.6% and 0.3 ± 2.1%. With the hybrid data (simulated data for training; in vivo data for testing), the AIF peak error was 15.0 ± 5.3% and the corresponding ?????? error was 20.7 ± 11.6% for the AIF using the dictionary method. The hybrid data revealed that using the AIF + tissue inputs reduced errors, with peak error (1.3 ± 11.1%) and ?????? error (−2.4 ± 6.7%). Conclusions: Integrating tissue curves with AIF curves into network inputs improves the precision of AI-driven AIF corrections. This result was seen both with simulated data and with applying the network trained only on simulated data to a limited in vivo test dataset.



K. Iyer, S. Elhabian, S. Joshi. “LEDA: Log-Euclidean Diffeomorphic Autoencoder for Efficient Statistical Analysis of Diffeomorphism,” Subtitled “arXiv preprint arXiv:2412.16129,” 2024.

ABSTRACT

Image registration is a core task in computational anatomy that establishes correspondences between images. Invertible deformable registration, which computes a deformation field and handles complex, non-linear transformation, is essential for tracking anatomical variations, especially in neuroimaging applications where inter-subject differences and longitudinal changes are key. Analyzing the deformation fields is challenging due to their non-linearity, limiting statistical analysis. However, traditional approaches for analyzing deformation fields are computationally expensive, sensitive to initialization, and prone to numerical errors, especially when the deformation is far from the identity. To address these limitations, we propose the Log-Euclidean Diffeomorphic Autoencoder (LEDA), an innovative framework designed to compute the principal logarithm of deformation fields by efficiently predicting consecutive square roots. LEDA operates within a linearized latent space that adheres to the diffeomorphisms group action laws, enhancing our model’s robustness and applicability. We also introduce a loss function to enforce inverse consistency, ensuring accurate latent representations of deformation fields. Extensive experiments with the OASIS-1 dataset demonstrate the effectiveness of LEDA in accurately modeling and analyzing complex non-linear deformations while maintaining inverse consistency. Additionally, we evaluate its ability to capture and incorporate clinical variables, enhancing its relevance for clinical applications.



M. Shao, A. Singh, S. Johnson, A. Pessin, R. Merrill, A. Page, H. Odeen, S. Joshi, A. Payne. “Design and Evaluation of an Open-Source Block Face Imaging System for 2D Histology to Magnetic Resonance Image Registration,” In MethodsX, Vol. 13, Elsevier, pp. 103062. 2024.
ISSN: 2215-0161
DOI: https://doi.org/10.1016/j.mex.2024.103062

ABSTRACT

This study introduces a comprehensive hardware-software framework designed to enhance the quality of block face image capture—an essential intermediary step for registering 2D histology images to ex vivo magnetic resonance (MR) images. A customized camera mounting and lighting system is employed to maintain consistent relative positioning and lighting conditions. Departing from traditional transparent paraffin, dyed paraffin is utilized to enhance contrast for subsequent automatic segmentation. Our software facilitates fully automated data collection and organization, complemented by a real-time Quality Assurance (QA) section to assess the captured image's quality during the sectioning process. The setup is evaluated and validated using rabbit muscle and rat brain which underwent MR-guided focused ultrasound ablations. The customized hardware system establishes a robust image capturing environment. The software with a real-time QA section, enables operators to promptly rectify low-quality captures, thereby preventing data loss. The execution of our proposed framework produces robust registration results for H&E images to ex vivo MR images.



A. Singh, S. Adams-Tew, S. Johnson, H. Odeen, J. Shea, A. Johnson, L. Day, A. Pessin, A. Payne, S. Joshi. “Treatment Efficacy Prediction of Focused Ultrasound Therapies Using Multi-parametric Magnetic Resonance Imaging,” In Cancer Prevention, Detection, and Intervention, Springer Nature Switzerland, pp. 190-199. 2024.

ABSTRACT

Magnetic resonance guided focused ultrasound (MRgFUS) is one of the most attractive emerging minimally invasive procedures for breast cancer, which induces localized hyperthermia, resulting in tumor cell death. Accurately assessing the post-ablation viability of all treated tumor tissue and surrounding margins immediately after MRgFUS thermal therapy residual tumor tissue is essential for evaluating treatment efficacy. While both thermal and vascular MRI-derived biomarkers are currently used to assess treatment efficacy, currently, no adequately accurate methods exist for the in vivo determination of tissue viability during treatment. The non-perfused volume (NPV) acquired three or more days following MRgFUS thermal ablation treatment is most correlated with the gold standard of histology. However, its delayed timing impedes real-time guidance for the treating clinician during the procedure. We present a robust deep-learning framework that leverages multiparametric MR imaging acquired during treatment to predict treatment efficacy. The network uses qualtitative T1, T2 weighted images and MR temperature image derived metrics to predict the three day post-ablation NPV. To validate the proposed approach, an ablation study was conducted on a dataset (N=6) of VX2 tumor model rabbits that had undergone MRgFUS ablation. Using a deep learning framework, we evaluated which of the acquired MRI inputs were most predictive of treatment efficacy as compared to the expert radiologist annotated 3 day post-treatment images.


2023


H. Dai, M. Penwarden, R.M. Kirby, S. Joshi. “Neural Operator Learning for Ultrasound Tomography Inversion,” Subtitled “arXiv:2304.03297v1,” 2023.

ABSTRACT

Neural operator learning as a means of mapping between complex function spaces has garnered significant attention in the field of computational science and engineering (CS&E). In this paper, we apply Neural operator learning to the time-of-flight ultrasound computed tomography (USCT) problem. We learn the mapping between time-of-flight (TOF) data and the heterogeneous sound speed field using a full-wave solver to generate the training data. This novel application of operator learning circumnavigates the need to solve the computationally intensive iterative inverse problem. The operator learns the non-linear mapping offline and predicts the heterogeneous sound field with a single forward pass through the model. This is the first time operator learning has been used for ultrasound tomography and is the first step in potential real-time predictions of soft tissue distribution for tumor identification in beast imaging.



H. Dai, M. Bauer, P.T. Fletcher, S. Joshi. “Modeling the Shape of the Brain Connectome via Deep Neural Networks,” In Information Processing in Medical Imaging, Springer Nature Switzerland, pp. 291--302. 2023.
ISBN: 978-3-031-34048-2

ABSTRACT

The goal of diffusion-weighted magnetic resonance imaging (DWI) is to infer the structural connectivity of an individual subject's brain in vivo. To statistically study the variability and differences between normal and abnormal brain connectomes, a mathematical model of the neural connections is required. In this paper, we represent the brain connectome as a Riemannian manifold, which allows us to model neural connections as geodesics. This leads to the challenging problem of estimating a Riemannian metric that is compatible with the DWI data, i.e., a metric such that the geodesic curves represent individual fiber tracts of the connectomics. We reduce this problem to that of solving a highly nonlinear set of partial differential equations (PDEs) and study the applicability of convolutional encoder-decoder neural networks (CEDNNs) for solving this geometrically motivated PDE. Our method achieves excellent performance in the alignment of geodesics with white matter pathways and tackles a long-standing issue in previous geodesic tractography methods: the inability to recover crossing fibers with high fidelity. Code is available at https://github.com/aarentai/Metric-Cnn-3D-IPMI.



H. Dai, V. Sarkar, C. Dial, M.D. Foote, Y. Hitchcock, S. Joshi, B. Salter. “High-Fidelity CT on Rails-Based Characterization of Delivered Dose Variation in Conformal Head and Neck Treatments,” In Applied Radiation Oncology, 2023.
DOI: 10.1101/2023.04.07.23288305

ABSTRACT

Objective: This study aims to characterize dose variations from the original plan for a cohort of patients with head-and-neck cancer (HNC) using high-quality CT on rails (CTOR) datasets and evaluate a predictive model for identifying patients needing replanning.

Materials and Methods: In total, 74 patients with HNC treated on our CTOR-equipped machine were evaluated in this retrospective study. Patients were treated at our facility using in-room, CTOR image guidance—acquiring CTOR kV fan beam CT images on a weekly to near-daily basis. For each patient, a particular day’s delivered treatment dose was calculated by applying the approved, planned beam set to the post image-guided alignment CT image of the day. Total accumulated delivered dose distributions were calculated and compared with the planned dose distribution, and differences were characterized by comparison of dose and biological response statistics.

Results: The majority of patients in the study saw excellent agreement between planned and delivered dose distribution in targets—the mean deviations of dose received by 95% and 98% of the planning target volumes of the cohort are −0.7% and −1.3%, respectively. In critical organs, we saw a +6.5% mean deviation of mean dose in the parotid glands, −2.3% mean deviation of maximum dose in the brainstem, and +0.7% mean deviation of maximum dose in the spinal cord. Of 74 patients, 10 experienced nontrivial variation of delivered parotid dose, which resulted in a normal tissue complication probability (NTCP) increase compared with the anticipated NTCP in the original plan, ranging from 11% to 44%.

Conclusion: We determined that a midcourse evaluation of dose deviation was not effective in predicting the need for replanning for our patient cohorts. The observed nontrivial dose difference to parotid gland delivered dose suggests that even when rigorous, high-quality image guidance is performed, clinically concerning variations to predicted dose delivery can still occur.



S. Johnson, B. Zimmerman, H. Odéen, J. Shea, N. Winkler, R. Factor, S. Joshi, A. Payne. “A Non-Contrast Multi-Parametric MRI Biomarker for Assessment of MR-Guided Focused Ultrasound Thermal Therapies,” In IEEE Transactions on Biomedical Engineering, IEEE, pp. 1--12. 2023.
DOI: 10.1109/TBME.2023.3303445

ABSTRACT

Objective: We present the development of a non-contrast multi-parametric magnetic resonance (MPMR) imaging biomarker to assess treatment outcomes for magnetic resonance-guided focused ultrasound (MRgFUS) ablations of localized tumors. Images obtained immediately following MRgFUS ablation were inputs for voxel- wise supervised learning classifiers, trained using registered histology as a label for thermal necrosis. Methods: VX2 tumors in New Zealand white rabbits quadriceps were thermally ablated using an MRgFUS system under 3 T MRI guidance. Animals were re-imaged three days post-ablation and euthanized. Histological necrosis labels were created by 3D registration between MR images and digitized H&E segmentations of thermal necrosis to enable voxel- wise classification of necrosis. Supervised MPMR classifier inputs included maximum temperature rise, cumulative thermal dose (CTD), post-FUS differences in T2-weighted images, and apparent diffusion coefficient, or ADC, maps. A logistic regression, support vector machine, and random forest classifier were trained in red a leave-one-out strategy in test data from four subjects. Results: In the validation dataset, the MPMR classifiers achieved higher recall and Dice than than a clinically adopted 240 cumulative equivalent minutes at 43 C (CEM 43 ) threshold (0.43) in all subjects.redThe average Dice scores of overlap with the registered histological label for the logistic regression (0.63) and support vector machine (0.63) MPMR classifiers were within 6% of the acute contrast-enhanced non-perfused volume (0.67). Conclusions: Voxel- wise registration of MPMR data to histological outcomes facilitated supervised learning of an accurate non-contrast MR biomarker for MRgFUS ablations in a rabbit VX2 tumor model.



S. Saha, S. Joshi, R. Whitaker. “Matching aggregate posteriors in the variational autoencoder,” Subtitled “arXiv preprint arXiv:2311.07693,” 2023.

ABSTRACT

The variational autoencoder (VAE) [1] is a well-studied, deep, latent-variable model (DLVM) that efficiently optimizes the variational lower bound of the log marginal data likelihood and has a strong theoretical foundation. However, the VAE’s known failure to match the aggregate posterior often results in pockets/holes in the latent distribution (i.e., a failure to match the prior) and/or posterior collapse, which is associated with a loss of information in the latent space. This paper addresses these shortcomings in VAEs by reformulating the objective function associated with VAEs in order to match the aggregate/marginal posterior distribution to the prior. We use kernel density estimate (KDE) to model the aggregate posterior in high dimensions. The proposed method is named the aggregate variational autoencoder (AVAE) and is built on the theoretical framework of the VAE. Empirical evaluation of the proposed method on multiple benchmark data sets demonstrates the effectiveness of the AVAE relative to state-of-the-art (SOTA) methods.



M. Shao, T. Tasdizen, S. Joshi. “Analyzing the Domain Shift Immunity of Deep Homography Estimation,” Subtitled “arXiv:2304.09976v1,” 2023.

ABSTRACT

Homography estimation is a basic image-alignment method in many applications. Recently, with the development of convolutional neural networks (CNNs), some learning based approaches have shown great success in this task. However, the performance across different domains has never been researched. Unlike other common tasks (e.g., classification, detection, segmentation), CNN based homography estimation models show a domain shift immunity, which means a model can be trained on one dataset and tested on another without any transfer learning. To explain this unusual performance, we need to determine how CNNs estimate homography. In this study, we first show the domain shift immunity of different deep homography estimation models. We then use a shallow network with a specially designed dataset to analyze the features used for estimation. The results show that networks use low-level texture information to estimate homography. We also design some experiments to compare the performance between different texture densities and image features distorted on some common datasets to demonstrate our findings. Based on these findings, we provide an explanation of the domain shift immunity of deep homography estimation.


2022


M.H. Jensen, S. Joshi, S. Sommer. “Discrete-Time Observations of Brownian Motion on Lie Groups and Homogeneous Spaces: Sampling and Metric Estimation,” In Algorithms, Vol. 15, No. 8, 2022.
ISSN: 1999-4893
DOI: 10.3390/a15080290

ABSTRACT

We present schemes for simulating Brownian bridges on complete and connected Lie groups and homogeneous spaces. We use this to construct an estimation scheme for recovering an unknown left- or right-invariant Riemannian metric on the Lie group from samples. We subsequently show how pushing forward the distributions generated by Brownian motions on the group results in distributions on homogeneous spaces that exhibit a non-trivial covariance structure. The pushforward measure gives rise to new non-parametric families of distributions on commonly occurring spaces such as spheres and symmetric positive tensors. We extend the estimation scheme to fit these distributions to homogeneous space-valued data. We demonstrate both the simulation schemes and estimation procedures on Lie groups and homogenous spaces, including SPD(3)=GL+(3)/SO(3) and S2=SO(3)/SO(2).


2021


M. D. Foote, P. E. Dennison, P. R. Sullivan, K. B. O'Neill, A. K. Thorpe, D. R. Thompson, D. H. Cusworth, R. Duren, S. Joshi. “Impact of scene-specific enhancement spectra on matched filter greenhouse gas retrievals from imaging spectroscopy,” In Remote Sensing of Environment, Vol. 264, Elsevier, pp. 112574. 2021.

ABSTRACT

Matched filter techniques have been widely used for retrieval of greenhouse gas enhancements from imaging spectroscopy datasets. While multiple algorithmic techniques and refinements have been proposed, the greenhouse gas target spectrum used for concentration enhancement estimation has remained largely unaltered since the introduction of quantitative matched filter retrievals. The magnitude of retrieved methane and carbon dioxide enhancements, and thereby integrated mass enhancements (IME) and estimated flux of point-source emitters, is heavily dependent on this target spectrum. Current standard use of molecular absorption coefficients to create unit enhancement target spectra does not account for absorption by background concentrations of greenhouse gases, solar and sensor geometry, or atmospheric water vapor absorption. We introduce geometric and atmospheric parameters into the generation of scene-specific unit enhancement spectra to provide target spectra that are compatible with all greenhouse gas retrieval matched filter techniques. Specifically, we use radiative transfer modeling to model four parameters that are expected to change between scenes: solar zenith angle, column water vapor, ground elevation, and sensor altitude. These parameter values are well defined, with low variation within a single scene. A benchmark dataset consisting of ten AVIRIS-NG airborne imaging spectrometer scenes was used to compare IME retrieved using a matched filter algorithm. For methane plumes, IME resulting from use of standard, generic enhancement spectra varied from −22 to +28.7% compared to scene-specific enhancement spectra. Due to differences in spectral shape between the generic and scene-specific enhancement spectra, differences in methane plume IME were linked to surface spectral characteristics in addition to geometric and atmospheric parameters. IME differences were much larger for carbon dioxide plumes, with generic enhancement spectra producing integrated mass enhancements −76.1 to −48.1% compared to scene-specific enhancement spectra. Fluxes calculated from these integrated enhancements would vary by the same percentages, assuming equivalent wind conditions. Methane and carbon dioxide IME were most sensitive to changes in solar zenith angle and ground elevation. We introduce an interpolation approach that can efficiently generate scene-specific unit enhancement spectra for given sets of parameters. Scene-specific target spectra can improve confidence in greenhouse gas retrievals and flux estimates across collections of scenes with diverse geometric and atmospheric conditions.



M. H. Jensen, S. Joshi, S. Sommer. “Bridge Simulation and Metric Estimation on Lie Groups,” Subtitled “arXiv preprint arXiv:2106.03431,” 2021.

ABSTRACT

We present a simulation scheme for simulating Brownian bridges on complete and connected Lie groups. We show how this simulation scheme leads to absolute continuity of the Brownian bridge measure with respect to the guided process measure. This result generalizes the Euclidean result of Delyon and Hu to Lie groups. We present numerical results of the guided process in the Lie group $\SO(3)$. In particular, we apply importance sampling to estimate the metric on $\SO(3)$ using an iterative maximum likelihood method.