
LEDA: Log-Euclidean Diffeomorphic
Autoencoder for Efficient Statistical Analysis of

Diffeomorphisms

Krithika Iyer1,2, Shireen Elhabian1,2, and Sarang Joshi1,3

1 Scientific Computing and Imaging Institute, University of Utah, UT, USA
2 Kahlert School of Computing, University of Utah, UT, USA

3 Biomedical Engineering Department, University of Utah, UT, USA
{krithika.iyer@ ,shireen@sci, sarang.joshi@}.utah.edu

Abstract. Image registration is a core task in computational anatomy
that establishes correspondences between images. Invertible deformable
registration, which computes a deformation field and handles complex,
non-linear transformation, is essential for tracking anatomical variations,
especially in neuroimaging applications where inter-subject differences
and longitudinal changes are key. Analyzing the deformation fields is
challenging due to their non-linearity, limiting statistical analysis. How-
ever, traditional approaches for analyzing deformation fields are com-
putationally expensive, sensitive to initialization, and prone to numeri-
cal errors, especially when the deformation is far from the identity. To
address these limitations, we propose the Log-Euclidean Diffeomorphic
Autoencoder (LEDA), an innovative framework designed to compute the
principal logarithm of deformation fields by efficiently predicting consec-
utive square roots. LEDA operates within a linearized latent space that
adheres to the diffeomorphisms group action laws, enhancing our model’s
robustness and applicability. We also introduce a loss function to enforce
inverse consistency, ensuring accurate latent representations of deforma-
tion fields. Extensive experiments with the OASIS-1 dataset demonstrate
the effectiveness of LEDA in accurately modeling and analyzing complex
non-linear deformations while maintaining inverse consistency. Addition-
ally, we evaluate its ability to capture and incorporate clinical variables,
enhancing its relevance for clinical applications.

Keywords: deformable image registration · manifold statistics · non-
rigid registration · diffeomorphisms · shape population statistics · log-
euclidean statistics

1 Introduction

The link between the form and function of anatomies is critical in understand-
ing morphological variations to effectively diagnose diseases, plan procedures,
and establish treatment methods [7]. Historically, observational studies were
used to analyze anatomical variations [1]. However, increasing accessibility of
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medical imaging technologies led to the availability of high-resolution in-vivo
functional and structural imaging, providing a deeper understanding of organs.
Consequently, computational anatomy has emerged as a critical tool to model,
analyze, and quantify the variability of anatomical structures across individuals
or populations [2]. Image registration is a fundamental component of computa-
tional anatomy that introduces voxel-level/spatial correspondences. The voxel-
level spatial correspondences transform a large dataset of images onto a standard
coordinate frame to facilitate detailed morphological analysis. Image registration
is widely used in applications such as neuroimaging studies, adaptive radiother-
apy planning, and the development of population-specific atlases [40,44,12].

There are two types of image transformation: rigid and non-rigid (or de-
formable) registration [20,43]. Images are aligned using simple translations and
rotations in rigid image registration, which does not account for interior defor-
mations. This method benefits solid structures like bones, where the relative
spatial connections between image components stay constant. It is also effective
in scenarios where no significant deformation is expected, such as intra-subject
alignment of brain scans taken close in time, dental imaging, or preoperative
and postoperative comparisons in orthopedics. In contrast, non-rigid registration
accommodates complex, non-linear changes, which are essential for accurately
aligning pre- and post-treatment images (e.g., in oncology), tracking progres-
sive changes over time due to patient movement or disease progression, and
constructing detailed anatomical atlases that reflect individual variability [18].
Non-rigid methods can be broadly classified into parametric and non-parametric
approaches [29]. Parametric methods use models such as B-splines or radial basis
functions to represent the transformation in a structured and computationally ef-
ficient manner. Non-parametric methods estimate the deformation field directly
from the data without assuming a specific functional form. This flexibility al-
lows non-parametric methods to accommodate complex, non-linear anatomical
variations, making them beneficial for highly deformable structures.

A smooth and invertible mapping that preserves the continuity and topology
of anatomical structures is called a diffeomorphic transform. These transfor-
mations ensure that no regions overlap or fold, making them ideal for capturing
biologically plausible deformations. Methods for estimating deformation fields in
computational anatomy span traditional mathematical approaches and modern
deep learning techniques. Traditional methods, such as Large Deformation Dif-
feomorphic Metric Mapping (LDDMM) [11,25,30] and optical flow [45], focus on
producing biologically plausible, smooth transformations. Techniques like Direct
Deformation Estimation (DDE) [14] improve precision by directly computing
deformation gradients. Deep learning models [10,17,41] leverage neural networks
to efficiently learn complex deformation fields, enabling scalable and near real-
time registration of large datasets. These advancements make deep learning ap-
proaches indispensable in clinical and research applications. However, ensuring
inverse consistency—the symmetry and reversibility of transformations—is crit-
ical for reliable results, particularly in bidirectional or longitudinal studies. Loss
functions intended to improve the consistency and robustness of learned trans-
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formations were incorporated into models such as GradICON [41] and ICON
[24].

Analyzing deformation fields is critical for detecting anatomical differences.
While spatial correspondence is necessary, it cannot account for the complexi-
ties of these variations, necessitating the use of statistical tools to interpret the
transformations [8,16]. However, conventional tools face significant challenges
due to the complex, non-linear nature of diffeomorphic transforms [38]. The
set of smooth, invertible transformations collectively forms the diffeomorphisms
group of a manifold M, denoted as Diff(M). This group is infinite-dimensional
when M is not zero-dimensional dim(M) > 0 and simultaneously exhibits the
structure of a Fréchet manifold and a Fréchet Lie group [39]. This duality arises
because group operations—composition and inversion—are smooth, and the tan-
gent space at the identity of this group corresponds to vector fields on M. The
manifold structure of deformation fields introduces significant challenges. Unlike
Euclidean spaces, where linear statistics such as means or Principal Component
Analysis (PCA) are well-defined, these operations lack meaningful interpretation
on curved manifolds like Diff(M). Adding two deformation fields or directly av-
eraging them in Euclidean terms fails to preserve the smoothness, invertibility, or
geometric significance of the transformations. Such operations have no anatom-
ical or mathematical relevance within the diffeomorphic framework.

Several methods such as Principal Geodesic Analysis (PGA) its variants
[21,47,46], Fréchet means [33], and geodesic regression [22] have been devel-
oped to address the challenges of statistical estimation on manifolds. However,
applying these methods to Fréchet Lie groups of diffeomorphisms requires sig-
nificant adaptation due to the unique complexities of their structure. Adding a
Riemannian metric to a Lie group to convert it into a Riemannian manifold is
non-trivial, as not all Lie groups naturally possess such metrics. For example, a
bi-invariant metric is a type of Riemannian metric that remains unchanged un-
der left and right multiplication by group elements. They simplify computations,
provide consistent geometric interpretations, and are particularly useful for ana-
lyzing symmetry. Compact Lie groups (e.g., SO(n), the group of rotations) have
bi-invariant metrics; however, they are generally absent for non-compact Fréchet
Lie groups such as Diff(M). This necessitates alternative meaningful metrics for
non-compact groups to capture complex relationships between deformation fields
in Diff(M) and ensure anatomically meaningful models.

The Log-Euclidean framework [6] leverages the group structure of Diff(M)
instead of working directly on the non-linear manifold. The corresponding Lie
algebra, represented by smooth vector fields, provides a linearized space for ana-
lyzing transformations. This approach simplifies computations like geodesic dis-
tances and statistical averaging, which are challenging in the Riemannian setting
due to non-linearity and curvature. The principal logarithm maps group elements
to their counterparts in the Lie algebra, enabling the representation of smooth,
invertible transformations in a linear vector field space. This representation fa-
cilitates efficient computation of distances between transformations, offering an
alternative to Riemannian approaches. However, optimization-based methods for
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estimating logarithms, such as the non-linear inverse scaling and square rooting
algorithm [6,31,26], face challenges, including high computational cost, sensitiv-
ity to initialization, and susceptibility to noise. Moreover, these methods typi-
cally operate independently on each deformation field and do not consider the
inverse consistency of transformations- a property crucial for ensuring reliable
analyses in the Log-Euclidean framework [36].

These drawbacks underscore the need for more robust and efficient approaches
to estimating principal logarithms. To address these limitations, we propose
Log-Euclidean Diffeomorphic Autoencoder (LEDA), an innovative framework de-
signed to compute the principal logarithm of deformation fields by efficiently pre-
dicting the consecutive square roots of deformation fields. The framework facili-
tates statistical analysis within a linearized latent space that respects the group
action laws of the diffeomorphism group. By appropriately mapping composi-
tion in the data space to scaling in the latent space, the framework enables the
application of vector-space-based statistical methods, enhancing the robustness
and applicability of statistical analysis for non-linear deformations. Furthermore,
we introduce a loss function to enforce inverse consistency constraints, ensuring
the latent representations accurately capture the properties of the deformation
fields.

2 Related Work

The study of anatomical variability has led to the development of several com-
putational methodologies for capturing complex, nonlinear changes inherent
in biological structures. Diffeomorphism-based image registration is a method
that helps capture nonlinear geometrical deformation in a population of images.
Quantitatively comparing nonlinear registration algorithms necessitates comput-
ing global statistics about the deformation fields and is closely related to how
diffeomorphisms are parameterized [5].

Marsland and Twining proposed using geodesic interpolating splines (GIS)
[15] and polyharmonic clamped plate splines for low-dimensional representation
of warps to enable statistical analysis. However, these methods are computation-
ally expensive and unsuitable for complex invertible transformations frequently
used in medical imaging [35]. Pennec and Fillard developed a Riemannian ge-
ometry framework for statistical analysis on nonlinear spaces, particularly for
anatomical structures [38]. Similarly, Principal Geodesic Analysis (PGA) [21]
proposed by Fletcher et al. is designed explicitly for Riemannian manifolds and
effectively utilizes geodesics to define principal components of underlying nonlin-
ear manifolds. However, these approaches rely heavily on the choice of Rieman-
nian metric, which may lack clear anatomical interpretation and entail significant
computational overhead. Several studies have modeled diffeomorphisms as flows
using time-varying velocity fields. Vaillant et al. proposed using the space of ini-
tial momentum as a linear representation of the nonlinear diffeomorphic shape
space [42]. While advantageous, it faces challenges such as high computational
costs, limited interpretability of momentum representations, sensitivity to ini-



LEDA 5

tialization, and difficulty handling large deformations beyond finite dimensional
landmark matching.

More recently, Hinkle et al. proposed diffeomorphic autoencoders for Large
Deformation Diffeomorphic Metric Mapping (LDDMM) specifically for atlas
building [27], integrating momentum fields into diffeomorphisms through vec-
tor field flows governed by the Euler-Poincaré equation. Similarly, Bône et al.
introduce diffeomorphic autoencoder [13] to simplify the shape analysis by us-
ing the vector momentum formulation of LDDMM. The approach leverages the
EPDiff equation to ensure the transformations follow optimal paths between
shapes. Although LDDMM supports statistical analysis of transformations by
uniquely encoding shape by vectors normal to the outline of the template, they
remain computationally expensive, limiting scalability to large datasets.

In summary, while existing methods, including deep learning approaches,
have advanced the modeling of anatomical variability using coordinate transfor-
mations, challenges remain in balancing scalability, computational efficiency, and
interpretability. There is a continued need for robust frameworks that accurately
capture complex transformations while ensuring efficiency and consistency.

3 Background

Here, we provide a brief overview of the theory and notations required for the
Log-Euclidean framework. For a more detailed discussion, please refer to Vincent
Arsigny [5] (Chapters 2 and 8).

Log-Euclidean Framework: A diffeomorphism ϕ : RD → RD (D = 2 for 2D
images and D = 3 for volumetric images) is a smooth, invertible mapping with
a smooth inverse ϕ−1. The diffeomorphism ϕ maps every point x in the original
D-dimensional grid to a new location defined as ϕ(x) = x+u(x), where u(x) is
the displacement field, while preserving topology and ensuring that no overlaps
or folds occur.

Diffeomorphic transformations can be constructed by composing multiple
small transformations. Specifically, ϕ can be expressed as ϕ(x) = (x+ ϵv1(x)) ◦
(x+ ϵv2(x))◦ · · · ◦ (x+ ϵvn(x)), where each term (x+ ϵvi(x)) represents a small
deformation controlled by the magnitude ϵ ∈ R+ and vi(x) : RD → RD is a
smooth, bounded vector field. Each small deformation (x + ϵvi(x)) is close to
the identity when ϵ is sufficiently small, ensuring smoothness and invertibility.
The resulting full transformation ϕ, remains diffeomorphic and smooth, though
it may deviate from the identity depending on the cumulative effect of the vector
fields vi(x).

The space of diffeomorphisms, Diff(M), forms a Lie group under composi-
tion, with the identity map, serving as the group’s identity element; i.e., ϕ◦ id =
id ◦ϕ = ϕ,∀ϕ ∈ Diff(M). The associated Lie algebra consists of smooth vector
fields v(x) : RD → RD, which generate diffeomorphisms through their flows.
These flows are described by one-parameter subgroups, {ϕt}t∈R, a continuous
family of diffeomorphisms satisfying the group property: ϕs◦ϕt = ϕs+t∀s, t ∈ R,
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with ϕ0 = id as the identity map. The flows generated by these vector fields are
governed by the ordinary differential equation (ODE) that describes how a point
x is transported by the vector field v over time t starting from the identity map
at t = 0:

dϕt(x)

dt
= v(ϕt(x)), ϕ0(x) = x. (1)

The exponential map, denoted as exp(v), establishes a connection between the
Lie algebra and the Lie group by generating a one-parameter subgroup {ϕt}t∈R
from a vector field v. The logarithm map log(ϕ) serves as the local inverse of
the exponential map, allowing us to represent a diffeomorphism ϕ in terms of
its generating vector field. Specifically, log(ϕ) = v satisfies exp(v) = ϕ.

Logarithm Estimation: To compute the logarithm map log(ϕ), a non-linear
inverse scaling and square rooting algorithm has been proposed [6]. This ap-
proach begins by selecting a scaling factor 2N , which defines the number of
successive square root operations needed to computed. These operations itera-
tively transform ϕ into a version that is closer to the identity map id, where the
logarithm map is more accurately approximated. Once N th square root ϕ−2N is
obtained, the logarithm of ϕ is estimated as:

log(ϕ) = 2N log(ϕ−2N ) where log(ϕ−2N ) = ϕ−2N − id (2)

However, this algorithm has several drawbacks. The repeated square root op-
erations are computationally expensive, especially for high-dimensional data or
when ϕ is far from the identity. Furthermore, the algorithm is sensitive to ini-
tialization and the iterative process can accumulate numerical errors, reducing
accuracy for non-identity diffeomorphisms.

4 Methods

4.1 LEDA: Log-Euclidean Diffeomorphic Autoencoder

We introduce the Log-Euclidean Diffeomorphic Autoencoder (LEDA), a novel
approach to efficiently estimate N successive square roots of the input deforma-
tion field. Such an iterative decomposition progressively reduces the deformation
field closer to the identity, offering a computationally efficient and accurate ap-
proximation of the logarithm map, even for complex, high-dimensional deforma-
tions. The LEDA architecture (Figure 1.b) includes an encoder fγ(ϕ) that maps
the input ϕ to a low-dimensional latent representation z ∈ RL. The decoder
function gθ reconstructs the square roots of the deformation field, ensuring a
consistent mapping between scaling in the latent space and composition in the
deformation space. It predicts the nth root of the deformation field using scaled
versions of the latent representation z. Mathematically, this can be expressed as:

fγ(ϕ) = z gθ(z/m) = ϕ1/m where m = 2n ∀n ∈ {0, 1, . . . N} (3)
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Fig. 1. (a) Mathematical framework for diffeomorphic transformations: Shows
the relationship between the Euclidean vector space (tangent space TϕM), the dif-
feomorphic group (Lie group/manifold), and the latent space (RL). Transformations
(ϕAB ,ϕBA) and the logarithmic map (log(ϕAB)), alongside their projections into
LEDA’s latent space (zAB , zBA), demonstrating inverse consistency and the mapping
of composition in the data space to scaling in the latent space. (b) LEDA architec-
ture

The successive square roots estimation framework allows us to approximate the
logarithm map using Equation 2. The remaining N − 1 estimated roots con-
tribute to establishing a direct relationship between latent space operations and
deformation field compositions, enabling intuitive manipulation of complex spa-
tial transformations. The LEDA framework achieves its objectives through three
core criteria incorporated into its design and loss function:
1. Faithful reconstruction: The estimated roots must accurately reconstruct
the original deformation field when composed a specified number of times i.e.,
if ϕ−m is the predicted root at stage n where m = 2n, then ϕ−m composed m
times should yield the original deformation field ϕ.
2. Inverse consistency: The estimated roots should maintain inverse consis-
tency, i.e., ϕAB(ϕBA(x)) = x for all x. Here, A and B represent two coordinate
spaces or imaging domains) between which the deformations occur. To facilitate
this, we model LEDAas a Siamese [32] autoencoder, that processes the forward
ϕAB and inverse ϕBA fields simultaneously.
3. Inverse consistency in latent space: Representing the forward deforma-
tion ϕAB by zAB and the inverse field ϕBA by zBA, inverse consistency in the
latent space requires that zAB = −zBA, ensuring the latent representations of a
deformation field and its inverse are equal in magnitude but opposite in direction.

These contributions establish a computationally efficient framework for an-
alyzing and manipulating diffeomorphic transformations while preserving their
key structural properties.

4.2 LEDA: Architecture and Loss

The LEDA processes pairs of deformation fields (ϕAB,k,ϕBA,k) from the dataset
D = {(ϕAB,k,ϕBA,k) : k = 1, 2, . . . ,K}, where ϕAB,k represents a forward de-
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formation field and ϕBA,k is its corresponding inverse deformation field. The
Siamese nature of the LEDA is illustrated in Figure 1.b. It simultaneously pro-
cesses one pair of deformation fields (ϕAB,k,ϕBA,k), using networks that share
weights, as indicated by identical coloring in the figure. Although the decoder
architecture in Figure 1.b is unrolled to show the scaling of the latent space
and corresponding root estimation, the implementation uses a single shared de-
coder network to perform these tasks. LEDA framework is implemented using
2D convolutional layers and fully connected layers for the encoder and decoder.
However, it can be straightforwardly extended to 3D.

To define the loss functions used by the model, we introduce the notation
Cm(ϕ) to indicate the composition of ϕ with itself m times:

Cm(ϕ) = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
m times

(4)

To ensure the model satisfies the criteria described in Section 4.1, the training
objective incorporates three loss terms:
Reconstruction loss: Ensures accurate reconstruction of the original deforma-
tion field ϕ from its predicted roots.

Lrec =

K∑
k=1

N∑
n=0,m=2n

{∥∥∥Cm(ϕ̂
−m

AB,k)− ϕAB,k

∥∥∥2 + ∥∥∥Cm(ϕ̂
−m

BA,k)− ϕBA,k

∥∥∥2}
(5)

where ϕ is the ground truth deformation field and ϕ̂
−m

is the output of the
decoder at the n−th stage, i.e., after scaling the latent representation by 1/2n.
Inverse consistency loss: We use the approximate inverse consistency loss [24]
proposed for image registration models to enforce inverse consistency for each
estimated root.

Linv =

K∑
k=1

N∑
n=0,m=2n

{∥∥∥ϕ̂−m

AB,k ◦ ϕ̂
−m

BA,k − id
∥∥∥2
2
+

∥∥∥ϕ̂−m

BA,k ◦ ϕ̂
−m

AB,k − id
∥∥∥2
2

}
(6)

Latent inverse consistency loss: Enforces latent inverse consistency using
cosine similarity Θk and magnitude constraints:

Llinv =

K∑
k=1

{
1 + cos(Θk)

2
+ ∥zAB,k + zBA,k∥2

}
(7)

where Θk representing the cosine similarity between zAB,k and zBA,k.
The total loss function is given as: L = αrecLrec + αinvLinv + αlinvLlinv

where α’s represent the weight of each term. By explicitly linking latent space
operations to deformation field compositions, LEDA offers a robust and intu-
itive framework for manipulating complex spatial transformations. Its emphasis
on inverse consistency ensures reliability, making it well-suited for applications
requiring efficient diffeomorphic transformations.
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Fig. 2. (a) Validation of Small Deformation Field Assumption (b) Validation of Latent
Inverse Consistency (c) Comparison of Square Root Estimation: LEDA (left) and ISS
(right)

5 Experiments

Dataset: In this paper, we use the OASIS-1 dataset [34], a widely-used neu-
roimaging resource containing 3D brain MRI scans. It includes multiple T1-
weighted scans per subject, with 100 subjects over 60 diagnosed with very mild
to moderate Alzheimer’s disease (AD). We use 2D coronal slices of the scans [28]
and resize them to 160× 160. Deformation fields are generated by training a 2D
GradICON model [41] on the 2D coronal slices dataset, producing 85,078 pairs
of deformation fields from 413 2D images.

Baseline: We compare the logarithm maps and square root estimated from
LEDA with the non-linear inverse scaling and squaring (ISS) proposed by Ar-
signy [6] to assess their ability to recover the original deformation. The authors
use the closed from gradient updates, but we use PyTorch to estimate the gra-
dients for square root estimation updates to simplify the process.

Results: Figure 2.c shows a qualitative comparison of both methods. Notably,
ISS is highly sensitive to initialization values, requiring a specific initializa-
tion of ϕ

2 . We tested multiple initializations and present results from the best-
performing one. Both methods produce similar square root estimates, with higher
roots approaching the identity transformation progressively (top to bottom). The
log-determinant of the Jacobian reveals local deformations, where red indicates
contraction and blue indicates expansion, and both methods show consistent
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Fig. 3. PCA Modes of Logarithm Maps LEDA (left) and ISS (right): Variations can
be associated with structural changes seen in AD, including ventricular expansion and
hippocampal atrophy.

patterns. However, ISS struggles with inverse consistency, as evidenced by the
grid plots in the first row. While LEDA fully recovers the identity grid, ISS leaves
residual deformations, highlighting model’s superior robustness in maintaining
inverse consistency. Moreover, estimating the square roots using ISS for a sin-
gle deformation field takes 2.3 seconds (given the PyTorch implementation),
whereas performing inference via the trained LEDA to estimate all the roots
for a pair of deformation fields takes only 0.02 seconds. This substantial dif-
ference in computation time becomes even more pronounced when dealing with
high-resolution deformation fields, underscoring the scalability and efficiency of
the proposed framework.

We further verify the estimated logarithm maps to test their consistency with
the small deformation field assumption, which states that forward displacement
fields uAB(x) should approximate the negation of inverse displacement fields
uBA(x). Using the 26th root, we negate the forward displacement field ϕ−26(x),
compose it appropriately, and recover the inverse field. Similarly, negating the
inverse transform and composing it recovers the forward field. Figure 2.a demon-
strates that roots estimated by both methods satisfy this assumption, validating
the accuracy of the logarithm maps and ensuring expected small deformation
model behavior.

To assess inverse consistency within the latent space of LEDA, we negate the
latent representation of forward and inverse displacement fields and decode them
using LEDA. Figure 2.b shows that the LEDA accurately decodes the negated
latent representation into the corresponding inverse field, confirming inverse con-
sistency. This validation is crucial as it demonstrates the LEDA’s ability to rep-
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Fig. 4. (a) PCA Modes of Latent Representations: Variations show structural changes
associated with AD, including ventricular expansion and hippocampal atrophy. (b) La-
tent Space Walk: Random walk demonstrates smooth, continuous transitions through
anatomical variations.

Fig. 5. Latent Walk Along Latent Dimensions Predictive of Age and nWBV

resent and preserve relationships between forward and inverse transformations
accurately.

We performed PCA on the logarithm maps of deformation fields predicted
by both methods to analyze dominant modes of anatomical variation. Figure 3
displays the identified modes aligning with known neuroanatomical changes in
AD. The first mode (∼ 23% variance) captures large-scale atrophy patterns,
including ventricular expansion and surrounding tissue reduction, particularly
in the medial temporal lobe, consistent with AD pathology [4,37]. The second
mode (∼ 18%) highlights hippocampal atrophy and adjacent gray matter loss,
reflecting early-to-moderate AD stages [4]. This mode exhibits slight asymmetry,
suggesting individual disease progression differences. The third mode (∼ 9%)
reveals bilateral ventricular expansion with cortical thinning, while subsequent
modes (∼ 6 − 5%) capture localized cortical and subcortical changes, such as
finer tissue loss.
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PCA was also conducted on the latent space of the LEDA, with the modes
of variation shown in Figure 4.a. The latent space modes closely align with
the logarithm map PCA results, capturing clinically consistent changes such as
ventricular expansion, hippocampus atrophy in early modes, and localized cor-
tical thinning [9]. Figure 4.b illustrates progressive interpolations in the latent
space, visualized over five steps. These smooth and structured transitions effec-
tively preserve anatomical coherence while capturing key variations, confirming
the model’s ability to generate realistic deformations and interpolate between
anatomical states.

Moreover, low-dimensional latent space representation is crucial for captur-
ing essential features while reducing computational complexity, enabling more
efficient analysis of high-dimensional neuroimaging data. We employed a linear
regression framework to analyze deformation fields based on their latent presen-
tations. The process involves (1) selecting a reference image B of a healthy young
adult, (2) computing deformation fields ϕAB for all samples A excluding B, and
(3) fitting linear regression models using the latent representations as indepen-
dent variables and clinical variables from the OASIS dataset as dependent vari-
ables. This approach aims to uncover relationships between structural changes
and clinical characteristics. The clinical variables included are age, Normalized
Whole Brain Volume (nWBV), Mini-Mental State Examination (MMSE), Clin-
ical Dementia Rating (CDR), estimated Total Intracranial Volume (eTIV), and
Atlas Scaling Factor (ASF). Our analysis indicated that the latent dimensions
were most predictive of age and nWBV, with r-scores of 0.71 and 0.78, respec-
tively. Figure 5 illustrates the latent walk along the top three directions predic-
tive of age and nWBV based on linear regression coefficients. Changes associated
with age reflect overall brain shape and size, with minimal lateral ventricular ex-
pansion, consistent with the literature on age-related brain changes [23,19]. In
contrast, dimensions indicative of nWBV show significant alterations in ventri-
cle shape and size, aligning with findings that decreased brain volume correlates
with ventricular expansion in neurodegenerative conditions [3].

6 Conclusion

In this work, we address the challenges of analyzing non-linear deformation fields
in image registration by introducing a novel framework called Log-Euclidean
Diffeomorphic Autoencoder (LEDA), designed to compute the principal loga-
rithm of deformation fields by efficiently predicting the consecutive square roots
of deformation fields. Extensive evaluations show LEDA’s effectiveness in esti-
mating logarithm maps that capture clinically relevant anatomical variations.
LEDA’s latent space can robustly link deformation fields to clinical variables,
offering valuable insights into disease progression. With its efficiency and accu-
racy, LEDA opens avenues for efficient analysis of deformation fields, enabling
more precise neuroimaging and medical applications.
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