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Abstract— Objective: We present the development of a
non-contrast multi-parametric magnetic resonance (MPMR)
imaging biomarker to assess treatment outcomes for mag-
netic resonance-guided focused ultrasound (MRgFUS) ab-
lations of localized tumors. Images obtained immediately
following MRgFUS ablation were inputs for voxel-wise su-
pervised learning classifiers, trained using registered his-
tology as a label for thermal necrosis. Methods: VX2 tumors
in New Zealand white rabbits quadriceps were thermally
ablated using an MRgFUS system under 3T MRI guidance.
Animals were re-imaged three days post-ablation and euth-
anized. Histological necrosis labels were created by 3D reg-
istration between MR images and digitized H&E segmenta-
tions of thermal necrosis to enable voxel-wise classification
of necrosis. Supervised MPMR classifier inputs included
maximum temperature rise, cumulative thermal dose (CTD),
post-FUS differences in T2-weighted images, and apparent
diffusion coefficient, or ADC, maps. A logistic regression,
support vector machine, and random forest classifier were
trained in red a leave-one-out strategy in test data from four
subjects. Results: In the validation dataset, the MPMR clas-
sifiers achieved higher recall and Dice than than a clinically
adopted 240 cumulative equivalent minutes at 43◦C (CEM43)
threshold (0.43) in all subjects.redThe average Dice scores
of overlap with the registered histological label for the
logistic regression (0.63) and support vector machine (0.63)
MPMR classifiers were within 6% of the acute contrast-
enhanced non-perfused volume (0.67). Conclusions: Voxel-
wise registration of MPMR data to histological outcomes
facilitated supervised learning of an accurate non-contrast
MR biomarker for MRgFUS ablations in a rabbit VX2 tumor
model.

Index Terms— Focused ultrasound, thermal ablation, Su-
pervised learning, multi-parametric MRI, MR-guided, histol-
ogy registration
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I. INTRODUCTION

MAGNETIC resonance (MR)-guided focused ultrasound
(MRgFUS) ablation therapies are promising noninva-

sive alternatives to surgical tumor resection for many local-
ized cancer indications. A critical challenge for noninvasive
therapies is assessing treatment efficacy immediately after
treatment. The gold-standard method for ensuring complete
and clear margins is histology following surgical resection.
Therefore, MRgFUS treatment biomarkers must accurately
and precisely predict the thermal lesion as measured by his-
tology to eliminate the need for surgical resection. Currently,
there are two MR biomarkers used clinically for assessing
the thermal ablation zone: the non-perfused volume (NPV)
measured on contrast-enhanced T1-weighted imaging (CE-
T1w) [1], [2] and the cumulative thermal dose (CTD) threshold
of 240 cumulative effective minutes at 43◦C (240 CEM43)
[3], calculated from MR temperature imaging (MRTI) [4],
[5]. Despite their clinical adoption, both the NPV and CTD
have demonstrated limitations in predicting the thermal lesion
immediately following MRgFUS ablation.

Acute NPV is demonstrated to be a more accurate predictor
of histological thermal necrosis than using CTD thresholds and
is more widely used to predict the thermal lesion. However,
the NPV immediately after ablation tends to overestimate
the treated region [4], which can lead to mislabeling of
viable tissues and potential tumor progression or recurrence.
Transient effects such as edema and damaged, leaky blood
vessels can conflate the interpretation of the NPV acquired
immediately after thermal ablation [4]. NPV assessment also
requires the administration of gadolinium contrast agent which
introduces susceptibility artifacts that affect future MR tem-
perature imaging and complicates treatment monitoring [6],
[7]. Finally, continuing treatment after administering contrast
agent can trap toxic contrast agents in the tissue [7].

The cumulative thermal dose is a non-contrast treatment
assessment metric, typically computed using the proton reso-
nance frequency method for MR temperature imaging (MRTI)
and an assumed baseline body temperature [8], [9]. Ther-
mometry images acquired throughout sequential sonications
are integrated and thresholded at a predetermined lethal dose
to predict the region of thermal necrosis [10], [11]. The
clinically adopted 240 CEM43 threshold of CTD often un-
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derestimates the true lesion size as assessed by standard
histology techniques and NPV measurements [4], [12]–[14].
Underestimation may be a result of sub-ablative CTD levels
causing delayed apoptosis due to irreversible thermal damage
or temporary loss of perfusion [14], [15]. While CTD mon-
itoring provides a real-time assessment metric, the threshold
requires an a priori assumption of baseline tissue temperature
and can be tissue and tumor-specific [16], [17]. For example, in
clinical applications of MRgFUS in the brain, varying optimal
CTD thresholds of 200 [18], [19] and 17 CEM43 [20] have
been identified by comparing CTD to other MR biomarkers in
patients. Overall, there is a need for alternative non-contrast
MR biomarkers that can robustly predict the final treatment
outcomes immediately following thermal ablation of localized
tumors [10], [11].

There is currently no single non-contrast MR parameter
that accurately predicts the thermally ablated lesion [4], [21].
We hypothesize that integrating thermal information with
additional multi-parametric MR (MPMR) imaging that is
sensitive to acute changes in tissue structure can improve
acute thermal necrosis predictions. For example, T2 relax-
ation time immediately following thermal ablation therapies
correlate with inflammation and edema formation [4], [22].
Additionally, changes in apparent diffusion coefficient (ADC)
maps from diffusion-weighted imaging (DWI) are an indicator
of coagulative necrosis and cytotoxic edema [23]. MPMR
biomarkers have been previously investigated for acute MRg-
FUS treatment assessment. Hectors et al. utilized clustering
algorithms to segment the MPMR feature parameter space
into viable and nonviable groups, and demonstrated that a
combination of T1 maps, T2 maps, and apparent diffusion
coefficient (ADC) maps provides more accurate predictions
than single metrics alone when comparing volume fractions
with histology [6]. Although this type of analysis demonstrates
a correlation between MPMR imaging and histology, it is not
spatially specific; therefore, the precision, recall, and spatial
similarity of the multi-parametric predictions remain unknown.
Furthermore, studies for detecting prostate cancer from MPMR
biomarkers show promising spatially specific results using
manually-derived ground truth labels to train a supervised
machine learning algorithm [24].

This study implements supervised machine learning clas-
sification to investigate a non-contrast MPMR biomarker for
acute MRgFUS thermal treatment assessment in a multi-tissue
VX2 rabbit tumor model. We leverage a previously validated
MR-to-histology registration workflow [25] to generate the
ground-truth labels for training from necrosis-labeled H&E
volumes. Binary classification outcomes and spatial similarity
are quantified on a voxel-wise level and compared to the
NPV and 240 CEM43 clinical metrics. We demonstrate that
combining MRTI and MPMR imaging in a supervised clas-
sifier can provide a more accurate acute non-contrast thermal
lesion prediction than the 240 CEM43 metric. The primary
benefits of an acute, non-contrast MR biomarker are the
ability to continue ablation treatment after the initial treatment
assessment, increased efficiency of MRgFUS ablations, and
the reduction of contrast use.

II. METHODS

The feasibility of supervised classification for developing
MPMR biomarkers of the thermal lesion was tested in a
rabbit tumor model to simulate tumor targeting and enable
classifier learning on multiple tissue types. Figure 1 shows
the anatomical geometry of the subjects during MRgFUS treat-
ment. MPMR biomarkers, including MRTI, T2w imaging, and
ADC maps, were collected before, during, and after MRgFUS
ablation to generate the MPMR features for machine learning.
Three supervised machine learning algorithms were trained
and evaluated in a voxel-wise manner: a Logistic Regression
classifier (LRC) and a Random Forest classifier (RFC), and
a support vectors machine classifier (SVMC) [24], [26]–[28].
The predictive accuracy of the MPMR classifiers and stan-
dard clinical metrics were evaluated against the ground-truth
histology label. Details for each of these steps are provided
below.

A. MRI Acquisition and Clinical Biomarkers

All experiments were carried out in accordance with the
approved Institutional Animal Care and Use Committee regu-
lations at the University of Utah (Protocol 17-08012, approved
09/07/2017). Following intramuscular injection of VX2 tumors
cells (1x106 cells in 50% media/Matrigel solution) into the
quadriceps of four New Zealand white rabbits (2.5-3 kg),
tumors were grown to approximately 2 cm in length, then ab-
lated using an MRgFUS system (Image Guided Therapy, Inc.)
with a 256-element phased-array transducer (Imasonic, Voray-
sur-l’Ognon, France; 10-cm focal length, 14.4×9.8 cm aper-
ture, f=940 kHz). Animals were intubated and anesthetized
with isoflurane (2-3%) and monitored for vitals throughout
the procedure. Ablation procedures were performed inside a
3T MRI scanner (PrismaFIT Siemens, Erlangen, Germany)
for tumor targeting, treatment monitoring, and post-treatment
assessment. The MRgFUS system incorporated a single-loop
MR receive coil around the targeted quadriceps to improve the
MR image signal-to-noise ratio. All MR acquisition parame-
ters are listed in Table I.

The rabbit was positioned on the treatment table as shown
in Figure 1. High-resolution (0.5-mm isotropic) non-contrast
T1w images of the entire treated leg (marked with ** in Table
I) were acquired prior to and immediately after ablation for
MR registration purposes. Coronal MPMR images of the lower
leg were acquired immediately before (T2w, DWI), during (3D
MRTI, PRF method), and 20 minutes after (T2w, DWI) the
ablation procedure. The ablation procedure targeted 50% of
the VX2 tumor and the surrounding muscle tissue. Sonication
details for each subject are outlined in Table II. Approximately
40 minutes following the final sonication, CE-T1w MR images
were acquired immediately following intravenous gadolinium
injection (0.3 mL/kg ProHance) and animals were recovered.
Due to the expected transient effects of ablation such as edema
and latent apoptosis, which occurs for up to 72 hrs [4], [14],
we defined the final treatment effect as the necrotic volume
at 3-5 days after treatment. At this time-point post-ablation,
the animal was re-positioned on the MRgFUS table and T1w
and CE-T1w images were acquired for longitudinal MR and
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Fig. 1. a) Setup for the ablation and imaging procedures on the custom-
built MRgFUS table and imaging coil. b) Subject positioning relative
to the MR coordinate system. c) The coronal imaging plane (T1w)
with the purple ”X” indicating the location of the ultrasound geometric
focus. The green contour is the quadriceps segmentation used for voxel-
wise machine learning in this study. d) The location of the ultrasound
transducer beneath the subject quadriceps in an Axial slice (T1w). The
yellow-dotted line is the center of the multi-slice 2D or 3D coronal
imaging plane.

histological registration purposes. Animals were then immedi-
ately euthanized for tissue excision and histology processing.
A large region of the quadriceps which fully encompassed the
tumor and MRgFUS ablation volume was excised and fixed
in formalin for two weeks before sectioning and staining with
H&E. Further details of gross tissue processing, sectioning,
and staining with H&E are reported in the Appendix.

ADC maps were computed using a mono-exponential fit of
the DWI signal at 2 b-values (b=20,500), averaged in three
directions. Semi-automatic segmentation of the acute NPV
was performed by thresholding the CE-T1w image intensity
to encompass the non-enhancing region, followed by manual
editing. All acute NPV segmentations were evaluated by an
expert radiologist (NW) and scored using a Likert scale of 1-
5. Expert-evaluated acute NPV segmentations were considered
the clinical NPV prediction of tissue necrosis.

B. MRTI Prior Baseline Reconstruction

MRTI data was reconstructed and zero-fill interpolated to
1-mm isotropic resolution. A prior baseline approach similar
to Bitton et al. [29] was implemented to account for localized
temperature accumulation resulting from multiple sonications
in the targeted tissue. This prior baseline approach is an
improvement over the current clinical method for calculat-
ing MR thermal dose, which assumes a constant baseline
temperature throughout the treatment and underestimates the
total dose. In summary, the baseline phase from a prior
sonication was used to calculate phase accrual at the start
of subsequent sonications. A temporal criterion was applied
to ensure valid baseline sonications were chosen to account
for potential large B0-field drift and subsequent phase-wrap
errors. Therefore, the prior baseline sonication,(Sp), whose
pre-heating baseline phase image is used as the baseline phase
image for calculating the temperature change in the subsequent
sonications, was reset to the current sonication when the
time between sonications exceeded 10 minutes.Ten minutes
is the simulated necessary cooling time for the muscle to
return to a 1◦C rise after a sonication reaching the maximum
temperature elevation observed in this study. The details of
the simulation implementation are described in [30], using a
0.5-mm iso-tropic T2w-anatomical segmented model of the
rabbit hindlimb (Seg3D2, SCI Institute [31], University of
Utah) and tissue properties from [32]). Based on the time
between subsequent sonications, Sp was reset 1, 2, 1, and 5
times for animals 1-4, respectively. For each sonication, Sn,
the local phase accumulation was calculated as:

∆ϕacc,n = (ϕ0,n − ϕ0,p)−∆ϕBA,n, (1)

where ϕ0,n is the baseline phase image for Sn, ϕ0,p is the
baseline phase image for Sp, and ∆ϕBA,n is the bulk phase
accrual resulting from B0-field drift and inter-scan resonance
frequency adjustments. ∆ϕBA,n was calculated for each coro-
nal slice of the MRTI volume by taking the mean value of
(ϕ0,n − ϕ0,p) in a 15×15 voxel ROI in non-heated quadriceps
muscle. For each sonication Sn, the phase change due to
FUS heating and ∆ϕacc,n were converted to temperature using
the PRF method (α = −0.01 ppm/◦C) [8]. The absolute
temperature profile for Sn, was calculated as the sum of these

TABLE I
MRI SEQUENCE PARAMETERS

Scan
Type Sequence TR (ms) TE (ms) Flip

Angle
Field of

View (mm)
Pixel Bandwidth

(Hz/Pixel)
Acquisition

Resolution (mm)
Number
Averages

Acquisition Time
(mm:ss.ms)

MRTI GRE-EPI
(ETL=7) 25 11 14◦ 192×150×20 750 1.5×1.5×2.0 1 0:04.50

T1w∗ VIBE 7.19 2.05 15◦ 256×192×52 250 1.0×1.0×1.0 1 1:03.00
T2w SPACE 2000 300 120◦ 256×192×52 700 1.0×1.0×1.0 2 5:12.00
T1w∗∗ VIBE 7.19 2.52 15◦ 256×192×56 250 0.5×0.5×1.0 3 6:19.00

Diffusion
SS-SE-EPI
(ETL=92)
(b=20,500)

7500 117 90◦ 160×116×20 1260 1.25×1.25×2.0 1 1:38.00

∗ T1w sequence with contrast for NPV segmentation.
∗∗ T1w sequence without contrast for image registration.
TR: Repetition Time, TE: Echo Time, EPI: Echo Planar Imaging, SPACE: Sampling Perfection with Application Optimized Contrasts Using Different
Flip Angle Evolution, VIBE: Volumetric Interpolated Breath-Hold, GRE: Gradient Recalled Echo, MRTI: Magnetic Resonance Temperature Imaging,
SS: Single Shot, SE: Spin Echo, and ETL: Echo Train Length.
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TABLE II
MRGFUS TREATMENT PARAMETERS BY SUBJECT

Tumor Number of Acoustic Power Total Maximum Maximum Histology Quadriceps
Subj. Vol.(mm3) Sonications Mean ± 1 Std. (W) Energy (kJ) Temperature (◦C) CTD (CEM43) Vol.(mm3) Vol.(mm3)

1 785.5 11 57 ± 17 23.14 55 4.01e04 663 18,286
2 248.1 12 69 ± 18 26.00 78 3.49e11 1,324 16,833
3 1,929.5 14 44 ± 9 18.59 72 2.29e09 2,486 18,587
4 806.4 10 56 ± 9 18.55 78 1.14e11 3,325 13,539

components and the baseline body temperature as measured by
rectal fiber-optic probe monitoring animal body temperature at
the time of the prior sonication TFO,p:

Tk,n = ∆Tk,n +∆Tϕacc,n
+ TFO,p, (2)

where T is temperature (◦C), for k MRTI measurements
in sonication n. To account for thermal dose accumulation
between sonications, all time points between the previous
and nth sonication, Sn, were padded with the value given by
∆Tϕacc,n

. Finally, the CTD in each voxel was calculated using
the CEM43 model for each sonication and summing across all
sonications [5].

C. Histological Registration
To create a co-registered data set for supervised classifi-

cation training and validation, there were three registration
steps: 1) motion during treatment 2) longitudinal changes
in subject pose and position between ablation imaging and
follow-up imaging [33], and 3) registration between histology
and follow-up imaging. The registration methods used in this
study have been previously developed [33] [25] but are briefly
summarized here. During the MRgFUS procedure, the rabbit
hindlimb may have slowly sunk deeper into the water bath,
introducing minor motion errors over the course of the 3-
hour treatment. To correct for this bulk motion in MRTI data,
the final MRTI sonication magnitude image was registered
to the post-treatment non-contrast T1w image using variance
equalization and highly constrained (to limit deformation to

bulk motion) elastic registration. Each of the prior MRTI
sonication images was then registered to the deformed final
MRTI sonication image using the same elastic registration
method. The motion estimated by this registration process
was also applied to the pre-treatment MR images and visual
inspection was used to ensure the tissue-water boundary was
aligned across the images. The bulk motion estimated during
the registration process was less than 5 mm for all subjects.

Between treatment day imaging and 3-5 day follow-up
imaging, there were unavoidable changes in the animal posi-
tioning in the MR scanner. A volume-conserving longitudinal
registration algorithm was used to register follow-up images
to treatment day images as tissue volume is preserved under
normal physiological loading [33]. High-resolution T1w im-
ages (marked with ** in Table I) without contrast were used
for registration since the features resulting from treatment are
not visible. This registration step provided an invertible 3D
diffeomorphism between the treatment day images and the
follow-up images, which are registered to histology in the
following step.

Finally, direct, voxel-wise comparison between ground truth
histology and treatment day MR images required accurate
histology registration. Histology necrosis annotations were
registered to in vivo MPMR images to generate a volumetric
label of histology necrosis. Briefly, a novel workflow was
used to correct for deformation from every step of the tissue
processing for histology. 3D surface registration was used to
generate an invertible 3D diffeomorphism for each histology

Fig. 2. Examples of multi-parametric images used as inputs to the classification model from a single coronal slice of subject 3, a) log10 of CTD
(CEM43), b) maximum absolute temperature achieved (◦C), and the post- minus pre-ablation difference maps of c) T2w images, d) ADC maps
(×10−6 mm2/s). The ground-truth histology label is represented by the pink contour and the quadriceps segmentation is represented by the green
contour.
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slice in the in vivo MR images. Stacking the individual
histology annotations of treated tissue provided a histology-
derived volumetric label of the treated volume, co-registered
with the follow-up images. See the Appendix for more details
on 3D histology-to-MR registration. The diffeomorphisms
from longitudinal registration and histology registration were
composed, resulting in a voxel-wise alignment between the
treatment day T2w images, ADC maps, MRTI data, and the
histology necrosis ground-truth label.

D. MPMR Classification Models

To develop the supervised MPMR biomarkers, the dataset
comprised all voxels in 3D anatomical segmentations of the
quadriceps muscles (Seg3D2, SCI Institute [31], University
of Utah) from all four subjects. The number of voxels per
subject is given by ”Quadriceps Vol.” in Table II. The inclusion
of the entire quadriceps for supervised learning resulted in
12.3% positive class voxels on average, as assigned by the 3D
registered histology label ({C0: viable, C1: necrotic}). The
number of positive class voxels (1-mm isotropic) per subject
is given by ”Histology Vol.” in Table II. Four non-contrast
MR image volumes were used for classifier inputs: 1) CTD,
2) maximum temperature projection in time (MTP), 3) T2w
images, and 4) ADC maps (Figure 2). Overlapping in-plane
3×3 neighborhoods around each voxel were extracted from
each of the four features, resulting in 36 total input features.
For classifier training, input features were normalized to the
mean and scaled to unit variance (scikit-learn, StandardScalar),
with training and test sets normalized separately. First, optimal
classifier hyper-parameters were identified with 5-fold cross-
validation in the combined dataset from all subjects. Second,
the hyper-parameter tuned classifiers were trained and vali-
dated in a leave-one-out (LOO) approach, where classifiers
were trained on three subjects and validated on the fourth,
for a total of n=4 folds. Details of classifier development are
below.

Three binary classifiers were explored for the development
of the voxel-wise MPMR biomarker: a logistic regression
classifier (LRC; ”liblinear” solver [34]), a support vectors
machine classifier (SVMC; SVC implementation, ”rbf” kernel
[34]), and a random forest classifier (RFC; [34]). The LRC
model was chosen as an option for a model with minimal
complexity, while SVMC with radial basis functions and
RFC were implemented in order to learn possible nonlinear
relationships in the MPMR feature space. Random forests,
with the capacity to create models with high complexity, are
also prone to over-fitting data. The SVMC algorithm is also
capable of higher complexity than logistic regression; however,
is less susceptible to over-fitting in small datasets than RFCs.

For hyper-parameter tuning, the full dataset (N=67,235
voxels) was implemented for a 5-fold cross-validation grid
search of classifier hyper-parameters. Folds were generated
with a 70:30 random split, maintaining the original dataset
imbalance (scikit-learn, StratifiedShuffleSplit [34]). To correct
for class imbalance in the dataset, a balanced scorer was
used for training the LRC and SVMC models, and balanced
sampling was used for each decision tree batch for training

the RFC model. Optimal hyper-parameters were selected to
minimize the classifier complexity to reduce over-fitting while
maximizing the 5-fold average Dice score (f1-score) in each
classifier.For the LRC, an l1-penalty with C-parameter=0.05
was selected.For the RFC, the selected hyper-parameters were
min samples-split = 0.005, n estimators = 50, and max depth
= 10. The selected hyper-parameters for the SVMC were C-
parameter = 0.01 and gamma = 0.0001.

To test the accuracy and generalizability of the MPMR
biomarkers, the classifiers with optimized hyper-parameters
were re-trained in a LOO strategy. For the LOO analysis, the
training data consisted of voxels from of three subjects and the
validation dataset consisted of voxels from the fourth subject.
Optimal thresholds for the output probabilities were selected to
maximize the Dice score in the training data. Trained models
and optimal thresholds were fit to the validation dataset to
obtain probabilities for each voxel. LOO training was repeated
for each validation subject for a total of n=4 folds. Similarly,
the optimized thresholds for the clinical CTD biomarker were
chosen to maximize the Dice score in the LOO training
data sets. The binary NPV segmentation is dependent on a
user-defined threshold between the hypo-intense NPV and the
surrounding hyper-intense rim. For comparison to numerically
continuous biomarkers, the NPV inter-user variability was
simulated by applying a Gaussian blur to the expert-evaluated
NPV segmentations (3-voxel kernel, σ = 1 voxel), generating
a continuous 3-mm boundary varying from 0 to 1. For the
clinical NPV and 240 CEM43 metrics, thresholds of 0.5 and
240 CEM43 were used respectively.

E. Biomarker Evaluation
Precision, recall, and Dice scores were compared for all

MPMR and clinical biomarkers for each LOO fold. The Dice
metric was chosen to score overall biomarker performance
given the severe imbalance of the dataset (11% positive class).
This metric provides a harmonic mean of the recall and preci-
sion scores. To assess prediction accuracy with more clinically
relevant metrics, in each subject the percent difference in
volume and the mean-distance-to-agreement (MDA) between
the predicted thermal necrosis lesion and the histological
necrosis label was calculated for each trained biomarker. See
Appendix for MDA definition.

III. RESULTS

A. Histological Registration
The acute NPV segmentations were representative of clini-

cian segmentations, achieving an average score of 4.75 out of
5 in the four subjects by the expert radiologist. The volume-
conserving longitudinal MR registration error was 1.26 ±
0.52 mm and the average volume change of tissue during
registration was 0.24 ± 0.12 percent relative to the starting
volume. The average total registration error between acute MR
imaging and histology was 1.00 ± 0.13 mm.

To demonstrate MR-to-histology registration, the “delayed”
NPV acquired 10 minutes prior to euthanasia 3 days post-
ablation is compared to the registered H&E in Figure 3 in
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Fig. 3. a) A digital H&E image of a section acquired from subject 4,
acquired at 2.5× magnification, and b) the registered resampled 3D MR
CE-MRI image acquired during follow-up (delayed) imaging acquired 3
days following ablation. The ground-truth expert segmentation of histo-
logical necrosis is shown in pink, with the delayed NPV segmentation
indicated in green, and the acute NPV segmentation evaluated in this
study indicated in blue. c) The volumetric overlay of all three segmenta-
tions demonstrates good agreement between histological necrosis and
the delayed NPV in all three views (grid lines = 5 mm).

Fig. 4. Average test data Precision Recall-curves of MPMR classifiers
and clinical NPV and CTD biomarkers (n=4). Dice iso-score contours
are denoted by light-grey annotations.

subject 4. The delayed NPV segmentation on CE-MRI (Figure
3b) correlates to the region of coagulative necrosis in the
registered H&E section (Figure 3a), which is characterized
by pale eosin staining (pallor) of muscle and tumor tissue. A
volumetric comparison of the longitudinally-registered 3D his-
tology necrosis label (pink), delayed NPV (green), and acute
NPV (blue) is shown in Figure 3c. In 2D cross-section profiles
of the volumes in each dimension, the pink necrosis contour
aligns well with the in vivo delayed NPV segmentation. As
expected, the acute NPV, acquired 40 minutes post-ablation,
is larger than the delayed NPV and necrosis label.

B. MPMR Leave-One-Out Classifier Training

MPMR classifiers with optimized hyper-parameters were
trained in a LOO approach with four folds. All voxels from
one subject served as the test dataset for each fold.The average
precision-recall (PR) curves across all LOO folds for the
MPMR biomarkers are shown in Figure 4 and compared to the
clinical NPV (blue) and CTD metric (red) curves. All MPMR
classifiers out-perform the CTD model, with the SVMC and
LRC predictors surpassing a Dice score of 0.6.

In Figure 5, the training (dashed) and testing (solid) Dice
scores are compared in each subject across MPMR classifiers.
All MPMR classifiers achieved higher Dice scores than the
optimized CTD in all subjects. Although RFC achieved the
highest Dice score in the full dataset, the average RFC Dice
score (0.58, Table III) was the lowest of all MPMR classifiers
in the LOO training. Additionally, the test Dice score was
on average 25.9% lower than the training scores for the RFC
indicating potential data over-fitting. In contrast, testing scores
were only 8.0% and 4.0% lower than the training scores for
the LRC and SVMC models on average. Therefore, trained
LRC and SVMC models generalized well to new subjects in
each fold.

Precision, recall, and Dice scores for all LOO folds for
all clinical and MPMR biomarkers are summarized in Figure
6 and Table III. Acute NPV, the current gold-standard MR
biomarker of thermal ablation, achieved the highest average
Dice score of 0.68 ± 0.10 (n=4), followed by the SVMC
(0.63 ± 0.05) and LRC (0.63 ± 0.04), then RFC (0.58 ±
0.15). MPMR classifiers were slightly more precise than the
acute NPV at the cost of reduced recall scores. Interestingly,
the RFC achieved the highest average precision of all clinical
and MPMR biomarkers of 0.62 ± 0.21.

In subjects 1 and 2, the LRC improved Dice over acute
NPV by 2.2 and 8.9%, respectively; and in subject 2, SVMC
improved Dice over acute NPV by 1.8%. However, acute NPV
had the greatest Dice in subjects 3 and 4. In comparison to
the optimized CTD, all three MPMR classifiers improved Dice
scores in subjects 1-4 by 941.4%, 7.8%, 46.7%, and 13.7%
on average across n=3 classifiers. Furthermore, the inter-
subject variability in Dice scores, as measured by the standard
deviation in Table III was the greatest for the 240 CEM43 and
CTD models (0.27 and 0.26, respectively) and lowest for the
SVMC and LRC models (0.05 and 0.04, respectively).

C. Optimized CTD Leave-one-Out Training

The optimal CTD thresholds calculated in each fold were
119.1, 120.0, 26.3, and 218.5 CEM43, which are all lower
than the accepted 240 CEM43 threshold. The 240 CEM43

and optimized CTD thresholds achieved similar average Dice
scores of 0.43 ± 0.27 and 0.42 ± 0.26, respectively. LOO
training for optimized CTD led to variable results, where Dice
increased by 0.02 on average in 3/4 subjects and decreased by
0.09 in subject 3 (Table III). CTD optimization resulted in
higher recall and lower precision as the CTD thresholds in
the LOO training datasets were reduced. Inconsistent train-
test score differences across folds (Figure 5) indicate that
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Fig. 5. Dice performance scores of the LOO training in 4 folds/subjects.
Dice scores for the training data set (dashed) and test data set (solid)
are shown for each MPMR classifier.

Fig. 6. Average Precision, Recall and Dice scores for clinical biomark-
ers and MPMR supervised classifiers. Error bars represent standard
deviation across folds (n=4).

optimized thermal dose thresholds in training subjects do not
generalize consistently to new ”unseen” subjects.

D. Spatial Accuracy

Spatial performance was assessed in the test data of each
subject in the corresponding LOO fold. Representative exam-
ples of clinical and MPMR model predictions in subject 4 are
shown in Figure 7. The volume of intersection between the
label and prediction is depicted by the opaque green volume,
which is positively correlated to the Dice score. The average
absolute value of the percent differences between predicted
and labeled necrosis volumes were 59.5, 54.7, and 50.0% for
the acute NPV, 240 CEM43 and CTD biomarkers, respectively.
The absolute differences were 34.3, 30.4, and 28.8% for the
LRC, SVMC, and RFC biomarkers, respectively (Table III).

High recall of the acute NPV is due to the consistent over-
estimation of the histological necrosis boundary (Figure 7a).
Conversely, the 240 CEM43 and optimized CTD predictions
did not cover the full extent of thermal damage (Figure 7b),
or the optimized CTD threshold severely overestimated the
necrotic volume in the LOO fold for subject 3. The LRC
and SVMC prediction contours (Figure 7c-d) both align more
closely with the optimized CTD contour than the RFC (Figure
7e), albeit with higher sensitivity than CTD. The RFC provides
the most conservative prediction of the necrotic volume and

the least variance in volume difference errors across folds (±
4.5%).

The 5-mm grid in Figure 7 demonstrates the magnitude of
contour errors for all predictions. These errors were quantified
with the mean-distance-to-agreement (MDA) metric in the
whole volume in each subject and are summarized in Table
III. The 240 CEM43 and CTD metrics had the greatest MDA
error across all subjects, ranging from 1.4-6.5 mm. Acute NPV
MDA error was lowest overall with a range of 1.2-1.3 mm
for all subjects. Of the MPMR classifiers, MDA was lowest
for RFC (1.4-1.7 mm). The SVMC and LRC classifiers were
similar with MDA errors ranging from 1.2-2.0 mm.

.

IV. DISCUSSION

This study investigated using supervised machine learning
with non-contrast MPMR biomarkers to provide a clinically
useful and accurate acute prediction of the thermal lesion in
an intra-muscular VX2 tumor model. Trained MPMR clas-
sifiers outperformed the clinical 240 CEM43 and optimized
120 CEM43 CTD prediction. Additionally, MPMR biomarkers
achieved higher Dice scores than the acute NPV, the current
clinical reference standard in 50% of subjects in a LOO
training strategy. Although the contrast-enhanced NPV is an
accurate biomarker of acute perfusion loss, perfusion changes
can be temporary or transient. Acute perfusion also does
not adequately measure delayed cellular apoptosis [14]. Fi-
nally, administering contrast agent to patients effectively ends
the treatment, increasing patient costs if a second MRgFUS
ablation treatment is required. Although MRTI provides an
estimate of ablation volume during treatment, thermal metrics
tend to underestimate the treatment effect. The voxel-wise
supervised learning approach presented here is a promising
proof-of-concept for a non-contrast, accurate MR biomarker
for acute and intra-treatment assessments of MRgFUS in
patients.

When considering oncological targets, a major concern
is leaving a region of viable tumor untreated, leading to
disease progression [6]. Such is the case for acute NPV,
which overestimated the final histologically necrotic volume
in this study. Although acute NPV achieved the highest mean
recall, over-estimation poses a high risk of tumor recurrence.
Knowledge of a consistent safety margin is valuable for
clinician assessment of treatment success. In this study, the
mean NPV MDA was 1.2 mm across all subjects with minimal
variability (± 0.0 mm), potentially serving as a safety margin
for treatment assessment. Conversely, the thermal and MPMR
metrics were highly specific but generally under-predicted
necrosis. This bias could lead to unnecessary ablation of
healthy tissue. However, a similar safety margin could be
applied to an MPMR biomarker, since they each achieved low
variability in MDA scores across subjects (± 0.1-0.3 mm).

In contrast, the 240 CEM43 clinical biomarker under-
estimated histological necrosis in all subjects on average by
50%, with clinically significant inter-subject variability in
MDA (1.3-6.5 mm). The 240 CEM43 metric has been previ-
ously reported to correlate well with thermal necrosis in rabbit
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Fig. 7. 3D plots of the histological necrosis label (pink) and predictor segmentations in subject 4. The segmentations are visualized as overlapping
volumes, where the volume of the intersection is represented by the opaque green volume. A 2D projection of the histological label and prediction
segmentation is given in each dimension (grid-spacing = 5 mm).

muscle and VX2 tumor tissue in previous studies; however,
these studies investigated non-overlapping FUS sonications
and did not quantify thermal dose metrics with histological
necrosis directly [11], [35]. A multi-point sonication ablation
and histological correlation comparable to ours was performed
by Wiljemans et al. [14], where the MR-derived 240 CEM43

area was compared to the necrosis area in a H&E cross-section
at several time-points post-sonication. They found that the
histological necrosis volume 3 days after ablation was up to
6.0 times larger than predicted by the 240 CEM43. This finding
corroborates our presented work, where a lower thermal dose
threshold better predicted the final tissue lesion.

We found that the optimal threshold ranged from 26-218
CEM43 across training data sets. The lowest threshold corre-
lates well with early studies in rabbit muscle by McDannold
et al. which concluded that 31.2 CEM43 causes visible lesion
damage as measured by contrast-enhanced T1w and T2w
images acquired within 2 hours of sonications [36], [37]. Pos-
sible causes of discrepancy between optimal thresholds across
studies are numerous, including the ground-truth metric for
necrosis, the timing of post-sonication assessment, and volu-
metric versus cross-sectional correlation metrics. Although the
”optimal” CTD for muscle tissue cannot be concluded by this
study alone, our results are consistent with previous findings
that 240 CEM43 is a conservative threshold of tissue necrosis,

particularly in multi-point and large volume sonications [1],
[38], [39].

The CEM43 metric is sensitive to errors in the underlying
temperature data. Absolute temperature errors above 43◦C
due to inaccuracies and limitations of PRF MRTI are ex-
ponentially exacerbated in CEM43 calculations. Sources of
error in MRTI data acquisition include unknown or inaccurate
baseline temperatures, the tissue-specific water proton shift
coefficient [8], and motion and respiration artifacts [40]. Bulk
anatomical motion throughout hour-long ablation procedures
can also cause misplacement of the thermal dose when it is
calculated from serial MRTI acquisitions. This motion was
corrected with MTRI magnitude image registration to the high-
resolution post-treatment T1w image in the present study;
however, current clinical workflows may not perform this type
of correction. Additionally, indirect thermal damage in highly
perfused tissues, such as the liver, may result from perfusion
of higher temperature ”ablated” blood to neighboring tissue
[4]. The prior-baseline approach implemented in this study
aimed to correct for progressive localized heat accumulation
which is not currently measured in clinical implementations of
the PRF method [29]. Increased recall from applying the prior
baseline correction improved the Dice score for 240 CEM43

in subjects 1 and 3 by 20 % and 15%, respectively. Despite
this correction, the clinical thermal dose prediction remained
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TABLE III
PREDICTOR PERFORMANCE SCORES IN SUBJECTS 1-4

Subject NPV CEM240 CTD LRC-MP SVMC-MP RFC-MP

Dice

1 0.57 0.02 0.05 0.58 0.55 0.36
2 0.62 0.60 0.63 0.68 0.63 0.71
3 0.73 0.53 0.44 0.64 0.65 0.63
4 0.78 0.56 0.57 0.63 0.67 0.62

Average 0.68 +/- 0.10 0.43 +/- 0.27 0.42 +/- 0.26 0.63 +/- 0.04 0.63 +/- 0.05 0.58 +/- 0.15

Precision

1 0.43 0.32 0.25 0.46 0.42 0.31
2 0.51 0.71 0.67 0.57 0.57 0.64
3 0.64 0.70 0.34 0.65 0.66 0.76
4 0.66 0.73 0.72 0.71 0.68 0.75

Average 0.56 +/- 0.11 0.62 +/- 0.20 0.50 +/- 0.23 0.60 +/- 0.11 0.58 +/- 0.12 0.62 +/- 0.21

Recall

1 0.86 0.01 0.03 0.79 0.81 0.42
2 0.81 0.52 0.59 0.84 0.71 0.79
3 0.85 0.42 0.62 0.64 0.64 0.53
4 0.95 0.46 0.46 0.57 0.66 0.53

Average 0.87 +/- 0.06 0.35 +/- 0.23 0.43 +/- 0.27 0.71 +/- 0.13 0.71 +/- 0.08 0.57 +/- 0.16

MDA
[mm]

1 1.3 5.6 6.5 1.2 1.3 1.6
2 1.2 1.5 1.4 2.0 2.0 1.4
3 1.2 4.1 2.5 1.7 1.5 1.7
4 1.2 1.7 1.7 1.5 1.4 1.5

Average 1.2 +/- 0.0 3.2 +/- 2.0 3.0 +/- 2.4 1.6 +/- 0.3 1.6 +/- 0.3 1.5 +/- 0.1

% Volume Difference

1 100.8 -89.4 -96.1 70.5 92.7 32.3
2 58.9 -11.5 -26.9 47.1 23.6 22.0
3 33.3 82.3 -39.8 -0.1 -2.1 -30.1
4 45.1 -35.7 -37.2 -19.2 -3.0 -29.5

Average of Absolute
% Volume Difference 59.5 54.7 50.0 34.3 30.4 28.5

% Volume Difference = 100× (predicted− label)/label

an inadequate overall predictor of histological necrosis.

In comparison to CTD, changes in innate MR properties
of damaged or thermally coagulated tissues do not require
a priori knowledge of tissue properties nor rely on thermal
history to compute. ADC maps and T2w images are sensitive
to the presence or absence of fluid, which can be altered as
a result of increased edema and immune infiltration or imme-
diate coagulative necrosis after thermal ablation. Compared
to thermal metrics alone, the inclusion of T2w and ADC
information increased sensitivity and reduced false positives,
which improved the localization of positively classified voxels
to the treatment region. In Subject 1, CTD biomarkers severely
underestimated the histological ablation volume. MPMR clas-
sifiers notably improved recall and Dice scores in this subject,
from 0.05 to 0.58 for the LRC. In the remaining subjects, the
MPMR biomarker outperformed the CTD-based predictions
of thermal necrosis by 18% on average, as assessed by Dice
scores.

The results demonstrate that a non-contrast, multi-
parametric biomarker trained on multiple subjects may be less
sensitive to errors in baseline temperature or MRTI imaging
accrued during treatment. Pre- and post-treatment differences
in innate MR contrasts are sensitive to transient tissue changes
which correlate to final treatment volumes, such as acute
perfusion loss or the presence of edema. These changes may
indicate indirect thermal injuries which are not modeled by
the CEM43 thermal dose equation. Multi-parametric imaging

can provide a more robust characterization and prediction of
thermal damage following FUS treatments than MRTI alone.

This study investigated three supervised machine learning
classifiers for the non-contrast MPMR biomarker. Of these
three models, the SVMC with radial basis function kernels
and the LRC models achieved similar average precision, recall
and Dice scores in the LOO analysis. These models also
demonstrated low variability in Dice scores across LOO folds
and small differences in test and train scores. Overall, these
results indicate that LRC and SVMC models can generalize
well to multiple test cases and were not over-fit during training.
RFC performance was relatively diminished in the LOO
analysis. Despite minimizing RFC complexity during hyper-
parameter tuning, the average 26% decrease in test scores
from the training score may indicate model over-fitting. The
RFC model ultimately generated the highest precision of all
clinical and MPMR biomarkers. As exemplified in Figure 7
and Supplementary Figure 1 (S1), the LRC and SVMC models
were prone to misclassify the same negative-labeled voxels as
the optimized CTD biomarker, indicating that these models
were more susceptible to underlying errors in the MRTI data
than the RFC model. Although the RFC Dice was the lowest of
all MPMR classifiers, a more conservative and precise estimate
of the lesion may be preferred clinically. An unbalanced scorer,
such as the likelihood ratio, which can prioritize sensitivity or
specificity, may also be used to tune classifiers to the desired
clinical outcomes.
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Overall, MPMR improvement over the clinical reference
standard contrast-enhanced metric was not achieved; how-
ever, the MPMR sequences could be further optimized for
the expected ranges of change in T2w and ADC maps. In
DWI, optimizing the TE for the targeted tissue improves
ADC map SNR. Acquiring multiple b-values can allow for
quantitative separation of perfusion and diffusion-dominant
effects [41]. Additionally, T2w images are qualitative, and
although normalized for classifier training, the weighting could
vary across subjects and scanners and over time. Quantitative
T1 and T2 mapping are becoming increasingly fast and
clinically applicable with techniques such as multi-tasking,
fingerprinting [42], and multi-pathway multi-echo acquisitions
[43]. This feasibility study demonstrates the potential for a
more accurate and generalizable biomarker for post-ablation
treatment assessment.

A. Limitations

The volumetric histological processing utilized in this study
was costly and intensive, limiting the number of subjects and
amount of data for this analysis. However, a quantified com-
parison of delayed NPV to registered histological outcomes
may allow follow-up CE-MRI to serve as a surrogate label
for supervised learning in the future. Due to the limited data
acquired for this study, a voxel-wise approach to machine
learning was implemented in this study. A 3×3 voxel neigh-
borhood patch was used for each input feature to provide
the models with contextual information and promote robust
learning despite small registration errors (<3 mm). Although
a 2D patch was used, the prediction from the classifiers
was only for a single voxel. Voxel-wise predictions tend to
be noisy and cannot fully leverage spatial connectivity and
context to improve the prediction. For small sample sizes,
predictions could be improved using connected components;
however, this method requires knowing how many different
locations have been treated, which may vary depending on
near- and far-field heating. However, larger datasets from more
subjects would allow for CNN or deep learning applications
which could produce more connected 2D or 3D maps that
are less susceptible to image noise. These complex algorithms
may also learn post-treatment differences in multiple tissue
types, increasing the likelihood of applying transfer learning
to several applications.

Sources of error related to MR registration to histological
outcomes are multi-fold. Registration errors of MR and histo-
logical registration were on the order of an MRTI voxel (1-mm
isotropic); however, errors can vary across and within subjects
and directly impact classifier scores. The longitudinal MR
registration has been rigorously validated in Zimmerman et al.
[33]. Although localized tissue swelling after ablation was not
directly accounted for, anatomical landmarks near the region of
the ablation, such as blood vessels, were utilized to determine
target registration error. Single-voxel shifts in pre- and post-
ablation registered ADC and T2w maps can introduce errors
in difference map calculations. However, treatment effect
classifiers often rely on pre- and post-treatment differences
as inputs. Pre-processing with context-based radiomic filters

or implementation of a CNN may reduce the impact of noisy
or imperfectly registered MPMR data.

V. CONCLUSION

The motivation behind this work was to investigate non-
contrast MPMR biomarkers which can predict histological
treatment outcomes. The novel data set presented here has
histology labels directly registered with the multi-parametric
images with a spatial accuracy of approximately 1.0 mm. His-
tological registration facilitated supervised machine learning to
fully leverage the information available in MPMR imaging for
acute MRgFUS assessment. A voxel-wise logistic regression
and support vector machine classifier using immediate post-
treatment ADC, T2w and MR thermometry as input data
performed similarly to the gold-standard contrast-enhanced
non-perfused volume (NPV). MPMR assessment may provide
more accurate predictions of thermal necrosis using non-
contrast imaging methods. Future work includes collecting
expansive quantitative multi-parametric data to optimize MR
imaging protocols for the greatest predictive accuracy. Non-
contrast MR biomarkers will allow more flexible non-invasive
treatments, improving the clinical viability of MRgFUS treat-
ments of localized tumors.
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APPENDIX

A. 3D Histology-to-MR Registration Implementation

Tissue preparation for histopathology is divided into three
main steps that introduce deformation into the tissue: tissue
excision (D1), gross slicing (D2), and microtome sectioning
(D3). Restoring the spatial relationship between MR and
histopathology requires correcting deformations from each
step of the destructive histopathology pipeline: block-face
registration (R1), ex vivo registration (R2), and in vivo reg-
istration (R3). These steps are graphically outlined in Fig. 8.
To complete the reconstructive pipeline, several imaging steps
were required between tissue excision and sectioning. Briefly,
the harvested quadriceps tissue was inked for MR orientation,
fixed in formalin for one week, and embedded in an agar
hydrogel (2.5%) for ex vivo MR imaging (T1-weighted VIBE,
0.5 x 0.5 x 1 mm resolution). The agar block was then grossly
sliced along the head-foot axis of the ex vivo MR imaging
with an industrial-grade meat slicer. The 3-mm thick gross
slices (“blocks”) were re-inked to maintain MR orientation,
then embedded in whole-mount paraffin blocks for sectioning.

Each paraffin block was sectioned in 10 µm increments with
a microtome, with digital block-face images acquired every 50
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Fig. 8. Workflow for registering in vivo MR with volumetric histopathol-
ogy. The three main steps for tissue processing are D1) tissue excision,
D2) gross slicing, and D3) microtome sectioning. Dotted lines indicate
information drawn from digital imaging during tissue processing that
facilitates registration. The three registration steps to restore the re-
lationship between histopathology and in vivo MR are R1) block-face
registration, R2) ex vivo registration, and R3) in vivo registration.

µm, and sections acquired for H&E staining every 250 µm.
H&E-stained sections were imaged with a digital bright-field
microscope at 2.5 magnification (0.0076 mm resolution). For
R1, each digital H&E slide was registered to the corresponding
block-face image via intensity-based affine and subsequent
multi-scale registration, resulting in a diffeomorphism between
histology and block-face images. In R2, the tissue outline
of each block-face image was segmented using a custom-
trained V-Net neural network, and stacked to generate a
3D reconstruction of each tissue block. Reconstructed tissue
blocks were sequentially registered together, starting with the
center tissue block and working outwards, using surface-
based registration [25], [44] to determine an affine and dif-
feomorphism for each block. The fully reconstructed block-
face image surface was registered to the segmented tissue
surface of the ex vivo MR image. In R3, anatomical and
treatment-related features in corresponding in vivo and ex
vivo T2-weighted images were used to generate 3D surfaces,
which were registered together with surface-based registration
[44]. The series of transformations and diffeomorphisms were
composed to yield a single diffeomorphism between each
histology section and in vivo MR, similar to [25].

B. Mean-distance-to-agreement (MDA)
The MDA is a measure of the mean spatial proximity of

two segmentation contours, A and B. It is calculated by:

Σn
i=1d(A,B) + Σm

i=1d(B,A)

m+ n
(3)

where d(A,B) is the minimum Euclidean distance between
any voxel m on the contour of segmentation A to any voxel n
on the contour of segmentation B, and vice versa [45].
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