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Abstract

Homography estimation is a basic image-alignment
method in many applications. Recently, with
the development of convolutional neural networks
(CNNs), some learning based approaches have
shown great success in this task. However, the
performance across different domains has never
been researched. Unlike other common tasks
(e.g., classification, detection, segmentation), CNN
based homography estimation models show a do-
main shift immunity, which means a model can be
trained on one dataset and tested on another with-
out any transfer learning. To explain this unusual
performance, we need to determine how CNNs es-
timate homography. In this study, we first show the
domain shift immunity of different deep homogra-
phy estimation models. We then use a shallow net-
work with a specially designed dataset to analyze
the features used for estimation. The results show
that networks use low-level texture information to
estimate homography. We also design some exper-
iments to compare the performance between differ-
ent texture densities and image features distorted on
some common datasets to demonstrate our findings.
Based on these findings, we provide an explanation
of the domain shift immunity of deep homography
estimation. !

1 Introduction

Homography is one of the most fundamental concepts in
computer vision. It provides a geometric relationship for
any two images of the same planar surface in space. There-
fore, estimating homographies correctly among images is the
first step in understanding scene geometry, which can signif-
icantly improve the performance of many vision tasks such
as multiframe HDR imaging [Gelfand et al., 2010], multi-
frame image super resolution [Wronski er al., 20191, burst
image denoising [Liu et al., 2014], video stabilization [Liu
et al., 2013], image/video stitching [Zaragoza et al., 2013;
Guo et al.,, 2016], and SLAM [Mur-Artal et al., 2015;
Zou and Tan, 2013].

"https://github.com/MingzhenShao/Homography_estimation

Methods for homography estimation can be either geo-
metric or deep learning based. Geometric based methods
aim to find geometrically meaningful correspondences (e.g.,
points, edges) across visual data and then match them to com-
pute homographies. The performance of such methods is re-
liant on the accuracy of the feature correspondences. These
methods perform quite well when correspondences can be
clearly detected and matched. However, searching for cor-
respondences across different viewpoints can be difficult and
time-consuming under some conditions. Sometimes, devel-
opers may even need to design different methods for different
scenes based on the viewpoint, illumination, and image prop-
erties to achieve better search results.

For these reasons, deep learning based methods have at-
tracted interest in recent years. Some models have been
proposed and have achieved impressive accuracy in their
testing datasets [DeTone et al., 2016; Nguyen et al., 2018;
Erlik Nowruzi et al., 2017; Wang et al., 2019; Le et al., 2020;
Zhang ef al., 2020]. However, none of these works analyze
the performance across different domains. Based on a widely
accepted concept, we need some domain transfer before ap-
plying a deep learning model to a different domain, but this
is not the case in the homography estimation task. All deep
learning based homography estimation models show a do-
main shift immunity, which means we do not need any do-
main transfer between different datasets.

We demonstrate the domain shift immunity by compar-
ing the performance of the same model on different domains
without any fine-tuning. In order to explain this unusual per-
formance, the most direct approach is to find out which fea-
tures are used for the estimation. The biggest challenge for
this approach is the feature density. As we know from the
geometric methods, a homography matrix can be calculated
with very limited correspondences. If we directly visualize
the feature map with real-world images, the rich information
in such images may cause many disturbances when we ana-
lyze the features. Therefore we design a special dataset with
simple shapes and visualize the feature maps with these im-
ages. By analyzing the features, we find the networks focus
on the low-level texture information (features extracted by the
initial convolutional layers such as edges, corner points, etc.).

Two experiments are designed to demonstrate that low-
level texture information is the key feature for homography
estimation. We first compare the performance among differ-



ent texture densities in the proposed dataset. Then we change
different features of real-world images in some common
datasets and compare the performance of the estimations.
Based on our findings, we provide an explanation of the
domain shift immunity of deep homography estimation.
To the best of our knowledge, the present study is the first
attempt to analyze how deep learning models estimate
homography in different domains. Our contributions can be
summarized as follows:

1. We find the domain shift immunity of deep learning
based homography estimating models.

2. We propose a dataset and a visualizing method to show
the focus of homography estimation models.

3. We provide an explanation of the domain shift immunity
of homography estimation models.

2 Related Work

The estimation of homography by traditional approaches
generally requires matched image feature points, such as
SIFT [Lowe, 2004], SURF [Bay er al., 2006], ORB [Rublee
et al., 2011], LPM [Ma et al., 2017], GMS [Bian et al.,
20201, SOSNet [Yurun et al., 20191, LIFT [Yi et al., 2016],
and OAN [Zhang et al., 2019]. After a set of feature cor-
respondences is obtained, a homography matrix is estimated
by Direct Linear Transformation (DLT) [Hartley and Zisser-
man, 2004] with some outlier rejection methods, such as
RANSAC [Fischler and Bolles, 1981], IRLS [Holland and
Welsch, 19771, and MAGSAC [Barath et al., 2019]. These
traditional approaches heavily rely on the quality of image
features, if the feature correspondences are well captured,
they commonly achieve good performance. Estimations,
however, may be inaccurate due to an insufficient number of
matched points or poor distribution of the features, which is
a common case due to the existence of textureless regions
(e.g., sky, ocean, grassland), repetitive patterns (e.g., forest,
bookshelf, symmetrical building), or illumination variations.
Moreover, if the image contains dynamic objects (e.g., a mov-
ing bus), it will be more challenging for the outlier rejection
methods. There is another type of traditional approach can
estimate a homography without feature correspondences, the
direct method. These approaches, such as the Lucas-Kanade
algorithm [1981], calculate the sum of squared differences
(SSD) between two images. The differences guide the shift
of the images, yielding updates about the homography. A
follow-up method also proposed an enhanced correlation co-
efficient (ECC) [Evangelidis and Psarakis, 2008] to replace
the SSD for robustness. Compared to the feature points based
methods, the direct methods are more sensitive to the interfer-
ence (e.g., dynamic objects, illumination variations).

In recent years, inspired by the success of various deep
learning based methods in many challenging tasks, a deep
learning based homography estimating model is first pro-
posed by DeTone et al. [2016]. This model has only eight
convolutional layers and provides an end-to-end homogra-
phy estimation. It takes source and target images as in-
put and uses manually generated groundtruth to supervise

the training. Some later works [Erlik Nowruzi et al., 2017,
Le et al., 2020] also follow this pipeline and replace the back-
bone with some more complex network structures for bet-
ter performance. There is an obvious challenge for super-
vised training: getting the homography matrix from real im-
age pairs is difficult. A commonly adopted method is using a
synthetic target image to avoid this problem, but this method
may cause a depth disparity. In order to solve this problem,
some unsupervised training methods are proposed. Nguyen et
al. [2018] propose an unsupervised approach that computes
photometric loss between two images and adopts a spatial
transform network (STN) [Jaderberg et al., 2015] for image
warping. After that, Zhang et al. [2020] propose a method
for learning a content-aware mask instead of calculated loss
directly on the intensity and uniformly on the image plane in
order to increase the prediction accuracy of the unsupervised
training.

These learning based methods can provide pixel-level per-
formance that is much better than traditional methods. How-
ever, unlike traditional ones, none of these methods explain
how estimation works and if it can handle the input images
from different domains. Our work shows that the deep learn-
ing based homography estimation task has domain shift im-
munity, and such immunity is backbone structure unrelated.
By analyzing the feature used for the estimation, we also pro-
vide an explanation to the domain immunity.

3 Methods
3.1 Reforming the Homography Matrix

The most widely used representation of a homography is a
3 x 3 transformation matrix and fixed scale. Using [u, v] for
pixels in an image and [u’, v'] for its projection to the other
image in a homogenous coordinate plane, we get the repre-
sentation of a homography matrix as follows:
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However, these nine parameters (Hy1, Hi2, ..., H33) mix the
rotational and translational terms performed on different
scales in a single vector. Directly using these parameters to
train deep learning models will lead to unbalance problems,
increasing the difficulty of training. To solve this problem,
we use four 2D offset vectors (eight values) to represent the
homography matrix.

The method to reform a homography to our four 2D offset
vectors is as follows:

1. choose four points with position (u;, v;),7 € [1,4] that
can make up a rectangle.

2. find the same four points at the homogenous coordinate
plane with position (u}, v}),4 € [1,4].

27 k2
3. calculate as Au; = u} — u;, Av; = v) —v;, 7 € [1,4] as
the 2D offset vectors.

With the four offset vectors, it is straightforward to obtain
the homography matrix [ with 8 degrees of freedom by solv-



ing a linear system. The four-point parameterization repre-
sents a homography as follows:
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3.2 Homography Estimation Network
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Figure 1: Homography estimation network structure

Compared to the very first approach proposed by DeTone et
al., some very deep models with complex backbones have
been proposed for better performance in accuracy or robust-
ness. However, these complex backbones increase the dif-
ficulty of analyzing how the models perform across different
domains. Furthermore, the experiments show that the domain
shift immunity does not rely on some specific backbone struc-
tures.

We propose a shallow network structure with only nine
convolution layers to avoid the disturbance of too many pa-
rameters. Our homography estimation network (HEN) uses
a global average pooling (GAP) layer to turn the eight chan-
nel feature maps into eight output values, which also makes
analyzing easier than using the fully connected layer. Our
HEN takes a grayscale source and target image pair as input
and outputs the eight values (Hypoint) to represent the ho-
mography matrix. Due to the depth of the model, our HEN
could not provide comparable accuracy to the state-of-the-art
approaches, but it can still provide pixel-level accuracy that
is robust enough to analyze the domain shift immunity. The
structure of our homography estimation network is shown in
Figure 1.

3.3 Data Generation

We use the synthetic image pairs to train and test our net-
works. These generated image pairs may not be ample
enough to show the homography transformation in the real
world, but they are sufficient to compare the performance
of different networks in common states. What’s more, with
these synthetic image pairs, we can easily compare the per-
formance between different domains.

To generate an image pair, we first randomly crop a square
patch I of size 128 x 128 at position p from the reference
image I. (We avoid the borders to prevent bordering artifacts
later in the data generation pipeline.) The four corners of the
image patch I are randomly perturbed by values § within the
range [—32, 32], and thus the four correspondences define a

(b) Perturb four cor-
ners of the square
to get a tetragon
and compute the ho-
mography H.

(a) Randomly crop
a square at position
p from the original
image [ as I;.

(c) Apply H ' to I
and crop a square at
the same position p
as image /.

Figure 2: Data generation

homography H. Then, we apply the inverse of the homogra-
phy H~! to I to produce the image I’. A second patch I is
cropped from I’ at the same position p. The two patches I
and [ are converted into grayscale and then stacked channel-
wise to generate a 2-channel image that is used as the input
for the model. The generating process is illustrated in Fig-
ure 2.

3.4 Geometric Simple Shape Dataset

Visualizing the focus of a deep learning based model is a
widely used method for analyzing how it works. However,
unlike other common deep learning tasks, homography can be
calculated from very limited correspondences. Simply visual-
izing the networks’ focus on common datasets (e.g., BSD300,
AFLW2000, etc.) will only result in high response areas with
no logical consistency.

Therefore, we designed a simple dataset named geometric
simple shape (GSS) to eliminate the disturbance of the rich
information while analyzing the model’s focus. The images
in the GSS share a black background and contain only sim-
ple geometric shapes (squares, triangles, or circles). These
shapes are located at a random position with arbitrary size
and color. The number of shapes in each image is less than
ten, and any elaborate curvilinear shapes are avoided.

Figure 3 is a demonstration of the focus visualizations on
different datasets using the class activation mapping (CAM)
method proposed by Zhou ef al. [2016]. The top line is a vi-
sualization on common datasets, and the bottom line is the vi-
sualization on our proposed GSS dataset. With the proposed
GSS dataset, we can significantly reduce the disturbance of
too many features (with some decline in accuracy).

3.5 Relative Focus Visualization

Another challenge in visualizing the focus of a homography
estimation model is the basic noise. The basic noise, which is
the output of a homography estimation model when we input
a pair of full black images. All the outputs should be zero
because there is no homograph transform between these im-
ages. Still, due to the bias values in each convolutional layer,
the network will provide nonzero outputs. The basic noise
will not cause trouble during normal prediction, but when we
use CAM to visualize the focus, especially on the GSS dataset
(most areas are black), it may import some disturbance into
our focus visualizations.



Figure 3: Visualizing the focus on different datasets. (top: common
datasets (BSD300 and AFLW2000), bottom: GSS)

In order to remove the disturbance of the basic noise, we
use a new relative focus visualization method. With the
H p,0int homography matrix, the output of the last convolu-
tional layer contains eight channels, one for each value in the
Hyp0int- Instead of directly visualizing the feature maps, we
enhance their interpretability by subtracting them channel-
wise from the output of a black image pair. Using Is for
an input GSS image pair and Bs for a black image pair,

Focus; = abs(ch;(Is) — ch;(Bs)), i€ {1,..,8} (3)

where Focus; is the focus map of the ith channel, and ch;(Is),
ch;(Bs) are the feature maps of ith channel from the last con-
volutional layer with the input image pair /s, Bs separately.
The green circles in Figure 4 show the basic noise in the orig-
inal feature map, which has been removed by the proposed
visualization method.

Figure 4: Comparison of focus maps on a single channel, with
green circles highlighting regions affected by basic noise: (left) fo-
cus map of black image pair, (middle) focus map before removing
basic noise, (right) focus map after removing basic noise.

4 Experimental Results and Analysis

In this section, we first show the immunity of homography
estimation models to the domain shift. Then we use the pro-
posed visualizing method on our GSS dataset to analyze the
features used for homography estimation. The results show
that the network is focusing on the low-level textures, such as
edges.

By comparing the performance between different texture
densities and distorted image features, we demonstrate that
the low-level textures are the critical features for homogra-
phy estimation. In addition, we provide an explanation of
the domain shift immunity based on these findings. All mod-
els are trained on the BSD300 dataset with the proposed data
generation method and tested on target datasets without any
fine-tuning.

4.1 Immunity to Domain Shift

We use the BSD300, AFLW?2000, and ISBI to test the im-
munity of homography estimation networks on different do-
mains. These datasets cover a wide range of different do-
mains such as scenery, faces, and cells. We also test the per-
formance with varying network structures, from the proposed
shallow HEN network to some very deep networks, such as
VGG16 and ResNet50.

The results are shown in Table 1, and some demo images
are shown in Figure 5. We first observe that although there
is some volatility in shallow networks, the predictions for
each network in different domains (results in each row) all
achieve pixel-level accuracy, which is an order of magnitude
less than the errors associated with a classical ORB descrip-
tor with the RANSAC method (around 11.7 pixels) on com-
parable datasets [DeTone et al., 2016]. A very deep network
like ResNet50 even provides steady accuracy in all three do-
mains. The pixel-level accuracy demonstrates the effective-
ness of networks across various domains. From Figure 5, we
can find the differences in the textures of the different datasets
with ISBI > BSD300 > AFLW2000. A commonly ac-
knowledged principle in the field of neural networks is that
shallow networks possess limited capacity to extract essen-
tial features from inputs, which makes them more sensitive
to the datasets. This principle explains the HEN becoming
less accurate in each domain, and the shallow networks all
performing worse in AFLW2000 compared to ISBI.

These results show: the deep homography estimation mod-
els have a domain shift immunity, and such immunity is net-
work structure unrelated.

Dataset AFLW2000 BSD300 ISBI
ResNet50 1.11 1.05 0.77
VGG16 3.42 2.60 2.25
HEN 5.84 5.47 4.95

Table 1: Prediction accuracy of networks in different domains (MAE
in pixels)

4.2 Focus of Models

The immunity shows that the homography estimation models
use some general features commonly existing in different do-
mains. To find these features, we use the proposed HEN, GSS
dataset, and visualization method to show the model’s focus.
We refrain from using deep networks like ResNet50 in this
analysis as they have been shown to be robust in extracting
information from inputs as seen in Table 1. This robustness
may introduce significant interference when analyzing the ac-
curacy changes after altering specific textures.

Before analyzing the focus map of the model, we first con-
duct a simple experiment to show the proposed visualization
method can locate the high-contribution parts. The exper-
iment compares the performance between two feature den-
sities, normal2gap and selected2gap. Normal2gap uses all
of the output of the final convolutional layer as input to the
GAP layer, whereas selected2gap uses only the top 80% high-
response features based on the F'ocus;. Since we use the



Figure 5: Network prediction results on different domains (from top to bottom, BSD300, AFLW2000, and ISBI). The groundtruth is shown

in blue and the prediction is shown in red.

GAP layer to turn the feature map into the final prediction,
the relationship between the prediction accuracy and the fea-
tures is easy to tell. Features that contain more relevant in-
formation for the prediction will result in greater accuracy.
The prediction accuracy of these two type features is shown
in Table 3.

Feature type
MAE (pixel)

normal2gap
13.73

selected2gap
12.07

Table 2: Prediction accuracy on GSS with different feature densities.

We first notice that the accuracy of the prediction for the
GSS dataset is slightly worse than for other common datasets
(last row in Table 1). We observe that the accuracy of the
prediction on the GSS dataset is slightly less than on other
commonly used datasets, as seen in the last row of Table 1.
This decline is caused by the limited information contained
in the GSS dataset. As discussed above, although registration
networks can estimate homography with very limited corre-
spondences, more information in the inputs can still provide
better performance.

By comparing the MAE between normal2gap and se-
lected2gap, selected2gap provides approximately 1.7 pizels
improvement in accuracy, which shows the proposed visual-
izing method can locate the high-contribution parts.

We use the proposed visualization method to show the fo-
cus of different images on the GSS dataset. Some illustra-
tions are shown in Figure 6. The first two columns are the
input image pairs, and the following eight columns are the
visualization of focus on each channel. We can easily find
the high-response areas located near low-level texture parts
(edges in these images). Moreover, because homography can

be estimated with very limited correspondences, we notice
that not all edges are highly responded to.

4.3 Performance with Different Texture Densities

Based on the focus visualization results, we hypothesize that
homography estimation models use low-level textures for the
prediction. The straightforward approach is to compare the
performance between different texture densities; the images
with more low-level textures should perform better. The pro-
posed GSS dataset can be easily applied to this task. The
dataset can be separated into two types: only one shape and
multiple shapes. These two types are tested with the HEN,
and the prediction accuracy is listed in Table 3.

The input images with multiple shapes perform better, and
from the focus map in Figure 6, we can see that the images
with multiple shapes provide more high-response areas. Fur-
thermore, it is evident that the distinction between these two
types is based solely on the density of low-level textures. This
makes it clear that low-level textures play a crucial role in ho-
mography estimation.

Image type
MAE (pixel)

single shape
13.25

multiple shapes
11.48

Table 3: Prediction accuracy between different texture densities.

4.4 Performance with Different Feature
Distortions

Thus far, all experimental evaluations have been carried out

utilizing our simplistic GSS dataset. We also need to test

our findings on some real-world images. However, locat-

ing which low-level texture is used or comparing the low-

level texture density between different datasets is difficult for



real-world images. Instead of directly locating these features,
we evaluate the performance changes when applying different
processing approaches to the features. We choose two classic
image processing approaches: distortion and color inversion.
The distortion will change low-level textures, and the color
inversion changes only the color information and leaves the
low-level textures almost the same. If low-level textures are
the key features used for prediction in real-world images, reg-
istering the original image to an image with altered textures
will result in a significant decrease in accuracy. Similarly, if
other features are used for prediction (like the Lucas-Kanade
method), there will be a decrease in accuracy upon registering
to an image with inverted colors.

The distorted textures are generated using the following
steps: We first initialize a random vector field (12 x 12 x 2).
The range of the vector is [—20, 20]. Then we interpolate the
field to the size of the original images and use this field for
warping. The color inversion is simply using 255 minus the
current value as the inverted color. We apply these two meth-
ods to the I; while keeping I, unchanged. Figure 7 is an
illustration of these images.

We compare the performance of the proposed processing
methods on the BSD300 and ISBI datasets. As shown in Ta-
ble 4, the inverted color images share the same accuracy as
the original images, whereas the texture distortion images are
much less accurate. These results show that the deep homog-
raphy estimation models also use low-level textures in real-
world images.

4.5 Immunity to Domain Shift

By showing the homography estimation models use low-level
textures for prediction, we can provide an explanation of the
domain shift immunity. As the experiments show, the do-
mains for which the estimation models provide good immu-
nity all contain a variety of low-level textures. While ap-
plying the models to some texture-less datasets such as the
GSS, the immunity is not as robust as on other texture density

(c) Image with in-
verted color

(b) Image with dis-
torted textures

(a) Original gray
image 14

Figure 7: Images with different processing approaches

Dataset BSD300 ISBI
Original images 5.47 4.95
Texture distortion images 11.71 9.12
Inverted color images 6.09 4.86

Table 4: Prediction accuracy for images with different processing
approaches (MAE in pixels).

datasets. Therefore, the immunity of the deep homography
estimation models is derived from two factors: the homogra-
phy estimation task does not require a large amount of data
(as a small number of well-matched correspondences can lead
to an accurate estimation); and the deep models use low-level
textures that are commonly present across various domains
for estimation.

5 Conclusions

This paper studied the immunity of homography estimation
networks to domain shift. We first demonstrate the domain
shift immunity of different networks and show that the im-
munity is unrelated to the network structure. We further de-
signed a special dataset and visualizing method to show the
focus of the estimating networks is located around the low-



level textures. We then developed two experiments to evalu-
ate the performance under different texture densities and fea-
ture distortions. Our experiments show that neural networks
use low-level textures for homography estimation. Based on
these findings, we explain the domain shift immunity of ho-
mography estimation networks.

References

[Barath et al., 2019] D. Barath, J. Matas, and J. Noskova.
Magsac: Marginalizing sample consensus. In 2079
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10189-10197. IEEE Com-
puter Society, 2019.

[Bay et al., 2006] Herbert Bay, Tinne Tuytelaars, and Luc
Van Gool. Surf: Speeded up robust features. In Computer
Vision — ECCV 2006, pages 404-417, 2006.

[Bian et al., 2020] JiaWang Bian, Wen-Yan Lin, Yun Liu,
Le Zhang, Sai-Kit Yeung, Ming-Ming Cheng, and Ian
Reid. GMS: Grid-based motion statistics for fast, ultra-
robust feature correspondence. International Journal of
Computer Vision (IJCV), 2020.

[DeTone et al., 2016] Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Deep image homography esti-
mation. arXiv, preprint arXiv: 1606.03798, 2016.

[Erlik Nowruzi et al., 2017] Farzan Erlik Nowruzi, Robert
Laganiere, and Nathalie Japkowicz. Homography estima-
tion from image pairs with hierarchical convolutional net-
works. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV) Workshops, Oct 2017.

[Evangelidis and Psarakis, 2008] Georgios D. Evangelidis
and Emmanouil Z. Psarakis. Parametric image align-
ment using enhanced correlation coefficient maximization.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 30(10):1858-1865, 2008.

[Fischler and Bolles, 1981] Martin A. Fischler and Robert C.
Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated
cartography. Commun. ACM, 24(6):381-395, 1981.

[Gelfand et al., 2010] Natasha Gelfand, Andrew Adams,
Sung Hee Park, and Kari Pulli. Multi-exposure imaging on
mobile devices. In Proceedings of the 18th ACM Interna-
tional Conference on Multimedia, MM 10, page 823826,
2010.

[Guo et al., 2016] Heng Guo, Shuaicheng Liu, Tong He,
Shuyuan Zhu, Bing Zeng, and Moncef Gabbouj. Joint
video stitching and stabilization from moving cameras.
IEEE Transactions on Image Processing, 25(11):5491—
5503, 2016.

[Hartley and Zisserman, 2004] R. 1. Hartley and A. Zisser-
man. Multiple View Geometry in Computer Vision. 2004.

[Holland and Welsch, 1977] Paul W. Holland and Roy E.
Welsch. Robust regression using iteratively reweighted
least-squares. Communications in Statistics - Theory and
Methods, 6(9):813-827, 1977.

[Jaderberg et al., 2015] Max Jaderberg, Karen Simonyan,
Andrew Zisserman, and koray kavukcuoglu. Spatial trans-
former networks. In Advances in Neural Information Pro-
cessing Systems, volume 28, 2015.

[Le er al., 2020] Hoang Le, Feng Liu, Shu Zhang, and
Aseem Agarwala. Deep homography estimation for dy-
namic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[Liu et al., 2013] Shuaicheng Liu, Lu Yuan, Ping Tan, and
Jian Sun. Bundled camera paths for video stabilization.
ACM Trans. Graph., 32(4), 2013.

[Liu et al., 2014] Ziwei Liu, Lu Yuan, Xiaoou Tang, Matt
Uyttendaele, and Jian Sun. Fast burst images denoising.
ACM Trans. Graph., 33(6), 2014.

[Lowe, 2004] David G. Lowe. Distinctive image features
from scale-invariant keypoints, 2004.

[Lucas and Kanade, 1981] Bruce D. Lucas and Takeo
Kanade. An iterative image registration technique with
an application to stereo vision. In Proceedings of the 7th
International Joint Conference on Artificial Intelligence -
Volume 2, page 674-679, 1981.

[Ma et al., 2017] Jiayi Ma, Ji Zhao, Junjun Jiang, Huabing
Zhou, and Xiaojie Guo. Locality preserving matching.

In International Joint Conference on Artificial Intelligence
(IJCAI), pages 4492-4498, 2017.

[Mur-Artal et al., 2015] Ratl Mur-Artal, J. M. M. Montiel,
and Juan D. Tardds. Orb-slam: A versatile and accurate
monocular slam system. IEEE Transactions on Robotics,
31(5):1147-1163, 2015.

[Nguyen et al., 2018] Ty Nguyen, Steven W Chen, Shreyas S
Shivakumar, Camillo J Taylor, and Vijay Kumar. Unsu-
pervised deep homography: A fast and robust homogra-
phy estimation model. In Robotics and Automation Letters
3(3), pages 23462353, 2018.

[Rublee et al., 2011] Ethan Rublee, Vincent Rabaud, Kurt
Konolige, and Gary Bradski. Orb: An efficient alterna-
tive to sift or surf. In 2011 International Conference on
Computer Vision, pages 2564-2571, 2011.

[Wang et al., 2019] Chen Wang, Xiang Wang, Xiao Bai, Yun
Liu, and Jun Zhou. Self-supervised deep homography es-
timation with invertibility constraints. Pattern Recognition
Letters, 128:355-360, 2019.

[Wronski ef al., 2019] Bartlomiej Wronski, Ignacio Garcia-
Dorado, Manfred Ernst, Damien Kelly, Michael Krainin,
Chia-Kai Liang, Marc Levoy, and Peyman Milanfar.
Handheld multi-frame super-resolution. ~ACM Trans.
Graph., 38(4), 2019.

[Yi et al., 2016] Kwang Moo Yi, Eduard Trulls, Vincent
Lepetit, and Pascal Fua. Lift: Learned invariant feature
transform. In Computer Vision — ECCV 2016, pages 467—
483, 2016.

[Yurun et al., 2019] Tian Yurun, Yu Xin, Fan Bin,
Wu Fuchao, Heijnen Huub, and Balntas Vassileios.



Sosnet: Second order similarity regularization for local
descriptor learning. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[Zaragoza er al., 2013] Julio Zaragoza, Tat-Jun Chin,
Michael S. Brown, and David Suter. As-projective-as-
possible image stitching with moving dlt. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

[Zhang et al., 2019] Jiahui Zhang, Dawei Sun, Zixin Luo,
Anbang Yao, Lei Zhou, Tianwei Shen, Yurong Chen, Long
Quan, and Hongen Liao. Learning two-view correspon-
dences and geometry using order-aware network. Interna-
tional Conference on Computer Vision (ICCV), 2019.

[Zhang et al., 2020] Jirong  Zhang, Chuan  Wang,
Shuaicheng Liu, Lanpeng Jia, Nianjin Ye, Jue Wang,
Ji Zhou, and Jian Sun. Content-aware unsupervised deep
homography estimation. In European Conference on
Computer Vision, pages 653-669, 2020.

[Zhou et al., 2016] Bolei Zhou, Aditya Khosla, Agata
Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. In Proceed-
ings of the IEEE conference on computer vision and pat-

tern recognition, pages 2921-2929, 2016.

[Zou and Tan, 2013] Danping Zou and Ping Tan. Coslam:
Collaborative visual slam in dynamic environments. /EEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 35(2):354-366, 2013.



	1 Introduction
	2 Related Work
	3 Methods
	3.1 Reforming the Homography Matrix
	3.2 Homography Estimation Network
	3.3 Data Generation
	3.4 Geometric Simple Shape Dataset
	3.5 Relative Focus Visualization

	4 Experimental Results and Analysis
	4.1 Immunity to Domain Shift
	4.2 Focus of Models
	4.3 Performance with Different Texture Densities
	4.4 Performance with Different Feature Distortions
	4.5 Immunity to Domain Shift

	5 Conclusions

