Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

SCI Publications


T. Sun, D. Li, B. Wang. “Decentralized Federated Averaging,” Subtitled “arXiv preprint arXiv:2104.11375,” 2021.


Federated averaging (FedAvg) is a communication efficient algorithm for the distributed training with an enormous number of clients. In FedAvg, clients keep their data locally for privacy protection; a central parameter server is used to communicate between clients. This central server distributes the parameters to each client and collects the updated parameters from clients. FedAvg is mostly studied in centralized fashions, which requires massive communication between server and clients in each communication. Moreover, attacking the central server can break the whole system's privacy. In this paper, we study the decentralized FedAvg with momentum (DFedAvgM), which is implemented on clients that are connected by an undirected graph. In DFedAvgM, all clients perform stochastic gradient descent with momentum and communicate with their neighbors only. To further reduce the communication cost, we also consider the quantized DFedAvgM. We prove convergence of the (quantized) DFedAvgM under trivial assumptions; the convergence rate can be improved when the loss function satisfies the P\L property. Finally, we numerically verify the efficacy of DFedAvgM.

T. Sun, D. Li, B. Wang. “Stability and Generalization of the Decentralized Stochastic Gradient Descent,” Subtitled “arXiv preprint arXiv:2102.01302,” 2021.


The stability and generalization of stochastic gradient-based methods provide valuable insights into understanding the algorithmic performance of machine learning models. As the main workhorse for deep learning, stochastic gradient descent has received a considerable amount of studies. Nevertheless, the community paid little attention to its decentralized variants. In this paper, we provide a novel formulation of the decentralized stochastic gradient descent. Leveraging this formulation together with (non) convex optimization theory, we establish the first stability and generalization guarantees for the decentralized stochastic gradient descent. Our theoretical results are built on top of a few common and mild assumptions and reveal that the decentralization deteriorates the stability of SGD for the first time. We verify our theoretical findings by using a variety of decentralized settings and benchmark machine learning models.

M. Thorpe, B. Wang. “Robust Certification for Laplace Learning on Geometric Graphs,” Subtitled “arXiv preprint arXiv:2104.10837,” 2021.


Graph Laplacian (GL)-based semi-supervised learning is one of the most used approaches for classifying nodes in a graph. Understanding and certifying the adversarial robustness of machine learning (ML) algorithms has attracted large amounts of attention from different research communities due to its crucial importance in many security-critical applied domains. There is great interest in the theoretical certification of adversarial robustness for popular ML algorithms. In this paper, we provide the first adversarial robust certification for the GL classifier. More precisely we quantitatively bound the difference in the classification accuracy of the GL classifier before and after an adversarial attack. Numerically, we validate our theoretical certification results and show that leveraging existing adversarial defenses for the -nearest neighbor classifier can remarkably improve the robustness of the GL classifier.

J. P. Torres, Z. Lin, M. Watkins, P. F. Salcedo, R. P. Baskin, S. Elhabian, H. Safavi-Hemami, D. Taylor, J. Tun, G. P. Concepcion, N. Saguil, A. A. Yanagihara, Y. Fang, J. R. McArthur, H. Tae, R. K. Finol-Urdaneta, B. D. Özpolat, B. M. Olivera, E. W. Schmidt. “Small-molecule mimicry hunting strategy in the imperial cone snail, Conus imperialis,” In Science Advances, Vol. 7, No. 11, American Association for the Advancement of Science, 2021.


Venomous animals hunt using bioactive peptides, but relatively little is known about venom small molecules and the resulting complex hunting behaviors. Here, we explored the specialized metabolites from the venom of the worm-hunting cone snail, Conus imperialis. Using the model polychaete worm Platynereis dumerilii, we demonstrate that C. imperialis venom contains small molecules that mimic natural polychaete mating pheromones, evoking the mating phenotype in worms. The specialized metabolites from different cone snails are species-specific and structurally diverse, suggesting that the cones may adopt many different prey-hunting strategies enabled by small molecules. Predators sometimes attract prey using the prey’s own pheromones, in a strategy known as aggressive mimicry. Instead, C. imperialis uses metabolically stable mimics of those pheromones, indicating that, in biological mimicry, even the molecules themselves may be disguised, providing a twist on fake news in chemical ecology.

W. Usher, X. Huang, S. Petruzza, S. Kumar, S. R. Slattery, S. T. Reeve, F. Wang, C. R. Johnson,, V. Pascucci. “Adaptive Spatially Aware I/O for Multiresolution Particle Data Layouts,” In IPDPS, 2021.

V. Vedam-Mai, K. Deisseroth, J. Giordano, G. Lazaro-Munoz, W. Chiong, N. Suthana, J. Langevin, J. Gill, W. Goodman, N. R. Provenza, C. H. Halpern, R. S. Shivacharan, T. N. Cunningham, S. A. Sheth, N. Pouratian, K. W. Scangos, H. S. Mayberg, A. Horn, K. A. Johnson, C. R. Butson, R. Gilron, C. de Hemptinne, R. Wilt, M. Yaroshinsky, S. Little, P. Starr, G. Worrell, P. Shirvalkar, E. Chang, J. Volkmann, M. Muthuraman, S. Groppa, A. A. Kühn, L. Li, M. Johnson, K. J. Otto, R. Raike, S. Goetz, C. Wu, P. Silburn, B. Cheeran, Y. J. Pathak, M. Malekmohammadi, A. Gunduz, J. K. Wong, S. Cernera, A. W. Shukla, A. Ramirez-Zamora, W. Deeb, A. Patterson, K. D. Foote, M. S. Okun. “Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: Advances in Optogenetics, Ethical Issues Affecting DBS Research, Neuromodulatory Approaches for Depression, Adaptive Neurostimulation, and Emerging DBS Technologies,” In Frontiers in Human Neuroscience, Vol. 15, pp. 169. 2021.
ISSN: 1662-5161
DOI: 10.3389/fnhum.2021.644593


We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer’s disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.

B. Wang, D. Zou, Q. Gu, S. J. Osher. “Laplacian smoothing stochastic gradient markov chain monte carlo,” In SIAM Journal on Scientific Computing, Vol. 43, No. 1, SIAM, pp. A26-A53. 2021.


As an important Markov chain Monte Carlo (MCMC) method, the stochastic gradient Langevin dynamics (SGLD) algorithm has achieved great success in Bayesian learning and posterior sampling. However, SGLD typically suffers from a slow convergence rate due to its large variance caused by the stochastic gradient. In order to alleviate these drawbacks, we leverage the recently developed Laplacian smoothing technique and propose a Laplacian smoothing stochastic gradient Langevin dynamics (LS-SGLD) algorithm. We prove that for sampling from both log-concave and non-log-concave densities, LS-SGLD achieves strictly smaller discretization error in 2-Wasserstein distance, although its mixing rate can be slightly slower. Experiments on both synthetic and real datasets verify our theoretical results and demonstrate the superior performance of LS-SGLD on different machine learning tasks including posterior …

Z. Wang, W. Xing, R. Kirby, S. Zhe. “Multi-Fidelity High-Order Gaussian Processes for Physical Simulation,” In International Conference on Artificial Intelligence and Statistics, PMLR, pp. 847-855. 2021.


The key task of physical simulation is to solve partial differential equations (PDEs) on discretized domains, which is known to be costly. In particular, high-fidelity solutions are much more expensive than low-fidelity ones. To reduce the cost, we consider novel Gaussian process (GP) models that leverage simulation examples of different fidelities to predict high-dimensional PDE solution outputs. Existing GP methods are either not scalable to high-dimensional outputs or lack effective strategies to integrate multi-fidelity examples. To address these issues, we propose Multi-Fidelity High-Order Gaussian Process (MFHoGP) that can capture complex correlations both between the outputs and between the fidelities to enhance solution estimation, and scale to large numbers of outputs. Based on a novel nonlinear coregionalization model, MFHoGP propagates bases throughout fidelities to fuse information, and places a deep matrix GP prior over the basis weights to capture the (nonlinear) relationships across the fidelities. To improve inference efficiency and quality, we use bases decomposition to largely reduce the model parameters, and layer-wise matrix Gaussian posteriors to capture the posterior dependency and to simplify the computation. Our stochastic variational learning algorithm successfully handles millions of outputs without extra sparse approximations. We show the advantages of our method in several typical applications.

W. W. Xing, A. A. Shah, P. Wang, S. Zhe, Q. Fu, R. M. Kirby. “Residual Gaussian process: A tractable nonparametric Bayesian emulator for multi-fidelity simulations,” In Applied Mathematical Modelling, Vol. 97, Elsevier, pp. 36-56. 2021.


Challenges in multi-fidelity modelling relate to accuracy, uncertainty estimation and high-dimensionality. A novel additive structure is introduced in which the highest fidelity solution is written as a sum of the lowest fidelity solution and residuals between the solutions at successive fidelity levels, with Gaussian process priors placed over the low fidelity solution and each of the residuals. The resulting model is equipped with a closed-form solution for the predictive posterior, making it applicable to advanced, high-dimensional tasks that require uncertainty estimation. Its advantages are demonstrated on univariate benchmarks and on three challenging multivariate problems. It is shown how active learning can be used to enhance the model, especially with a limited computational budget. Furthermore, error bounds are derived for the mean prediction in the univariate case.

W. W. Xing, R. M. Kirby, S. Zhe. “Deep coregionalization for the emulation of simulation-based spatial-temporal fields,” In Journal of Computational Physics, Academic Press, pp. 109984. 2021.


Data-driven surrogate models are widely used for applications such as design optimization and uncertainty quantification, where repeated evaluations of an expensive simulator are required. For most partial differential equation (PDE) simulations, the outputs of interest are often spatial or spatial-temporal fields, leading to very high-dimensional outputs. Despite the success of existing data-driven surrogates for high-dimensional outputs, most methods require a significant number of samples to cover the response surface in order to achieve a reasonable degree of accuracy. This demand makes the idea of surrogate models less attractive considering the high-computational cost to generate the data. To address this issue, we exploit the multifidelity nature of a PDE simulation and introduce deep coregionalization, a Bayesian nonparametric autoregressive framework for efficient emulation of spatial-temporal fields. To effectively extract the output correlations in the context of multifidelity data, we develop a novel dimension reduction technique, residual principal component analysis. Our model can simultaneously capture the rich output correlations and the fidelity correlations and make high-fidelity predictions with only a small number of expensive, high-fidelity simulation samples. We show the advantages of our model in three canonical PDE models and a fluid dynamics problem. The results show that the proposed method can not only approximate simulation results with significantly less cost (by bout 10%-25%) but also further improve model accuracy.

Y. Xu, V. Keshavarzzadeh, R. M. Kirby, A. Narayan. “A bandit-learning approach to multifidelity approximation,” Subtitled “arXiv preprint arXiv:2103.15342,” 2021.


Multifidelity approximation is an important technique in scientific computation and simulation. In this paper, we introduce a bandit-learning approach for leveraging data of varying fidelities to achieve precise estimates of the parameters of interest. Under a linear model assumption, we formulate a multifidelity approximation as a modified stochastic bandit, and analyze the loss for a class of policies that uniformly explore each model before exploiting. Utilizing the estimated conditional mean-squared error, we propose a consistent algorithm, adaptive Explore-Then-Commit (AETC), and establish a corresponding trajectory-wise optimality result. These results are then extended to the case of vector-valued responses, where we demonstrate that the algorithm is efficient without the need to worry about estimating high-dimensional parameters. The main advantage of our approach is that we require neither hierarchical model structure nor\textit a priori knowledge of statistical information (eg, correlations) about or between models. Instead, the AETC algorithm requires only knowledge of which model is a trusted high-fidelity model, along with (relative) computational cost estimates of querying each model. Numerical experiments are provided at the end to support our theoretical findings.

Y. Xu, A. Narayan. “Randomized weakly admissible meshes,” Subtitled “arXiv preprint arXiv:2101.04043,” 2021.


A weakly admissible mesh (WAM) on a continuum real-valued domain is a sequence of discrete grids such that the discrete maximum norm of polynomials on the grid is comparable to the supremum norm of polynomials on the domain. The asymptotic rate of growth of the grid sizes and of the comparability constant must grow in a controlled manner. In this paper we generalize the notion of a WAM to a hierarchical subspaces of not necessarily polynomial functions, and we analyze particular strategies for random sampling as a technique for generating WAMs. Our main results show that WAM's and their stronger variant, admissible meshes, can be generated by random sampling, and our analysis provides concrete estimates for growth of both the meshes and the discrete-continuum comparability constants.

R. Zambre, D. Sahasrabudhe, H. Zhou, M. Berzins, A. Chandramowlishwaran, P. Balaji. “Logically Parallel Communication for Fast MPI+Threads Communication,” In Proceedings of the Transactions on Parallel and Distributed Computing, IEEE, April, 2021.


Supercomputing applications are increasingly adopting the MPI+threads programming model over the traditional “MPI everywhere” approach to better handle the disproportionate increase in the number of cores compared with other on-node resources. In practice, however, most applications observe a slower performance with MPI+threads primarily because of poor communication performance. Recent research efforts on MPI libraries address this bottleneck by mapping logically parallel communication, that is, operations that are not subject to MPI’s ordering constraints to the underlying network parallelism. Domain scientists, however, typically do not expose such communication independence information because the existing MPI-3.1 standard’s semantics can be limiting. Researchers had initially proposed user-visible endpoints to combat this issue, but such a solution requires intrusive changes to the standard (new APIs). The upcoming MPI-4.0 standard, on the other hand, allows applications to relax unneeded semantics and provides them with many opportunities to express logical communication parallelism. In this paper, we show how MPI+threads applications can achieve high performance with logically parallel communication. Through application case studies, we compare the capabilities of the new MPI-4.0 standard with those of the existing one and user-visible endpoints (upper bound). Logical communication parallelism can boost the overall performance of an application by over 2x.

L. Zhou, C. R. Johnson, D. Weiskopf. “Data-Driven Space-Filling Curves,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 27, No. 2, IEEE, pp. 1591-1600. 2021.
DOI: 10.1109/TVCG.2020.3030473


We propose a data-driven space-filling curve method for 2D and 3D visualization. Our flexible curve traverses the data elements in the spatial domain in a way that the resulting linearization better preserves features in space compared to existing methods. We achieve such data coherency by calculating a Hamiltonian path that approximately minimizes an objective function that describes the similarity of data values and location coherency in a neighborhood. Our extended variant even supports multiscale data via quadtrees and octrees. Our method is useful in many areas of visualization, including multivariate or comparative visualization,ensemble visualization of 2D and 3D data on regular grids, or multiscale visual analysis of particle simulations. The effectiveness of our method is evaluated with numerical comparisons to existing techniques and through examples of ensemble and multivariate datasets.

Y. Zhou, N. Chalapathi, A. Rathore, Y. Zhao, Bei Wang. “Mapper Interactive: A Scalable, Extendable, and Interactive Toolbox for the Visual Exploration of High-Dimensional Data.,” In IEEE Pacific Visualization Symposium, 2021.


The mapper algorithm is a popular tool from topological data analysis for extracting topological summaries of high-dimensional datasets. In this paper, we present Mapper Interactive, a web-based framework for the interactive analysis and visualization of high-dimensional point cloud data. It implements the mapper algorithm in an interactive, scalable, and easily extendable way, thus supporting practical data analysis. In particular, its command-line API can compute mapper graphs for 1 million points of 256 dimensions in about 3 minutes (4 times faster than the vanilla implementation). Its visual interface allows on-the-fly computation and manipulation of the mapper graph based on user-specified parameters and supports the addition of new analysis modules with a few lines of code. Mapper Interactive makes the mapper algorithm accessible to nonspecialists and accelerates topological analytics workflows.


H. Childs, S. D. Ahern, J. Ahrens, A. C. Bauer, J. Bennett, E. W. Bethel, P. Bremer, E. Brugger, J. Cottam, M. Dorier, S. Dutta, J. M. Favre, T. Fogal, S. Frey, C. Garth, B. Geveci, W. F. Godoy, C. D. Hansen, C. Harrison, B. Hentschel, J. Insley, C. R. Johnson, S. Klasky, A. Knoll, J. Kress, M. Larsen, J. Lofstead, K. Ma, P. Malakar, J. Meredith, K. Moreland, P. Navratil, P. O’Leary, M. Parashar, V. Pascucci, J. Patchett, T. Peterka, S. Petruzza, N. Podhorszki, D. Pugmire, M. Rasquin, S. Rizzi, D. H. Rogers, S. Sane, F. Sauer, R. Sisneros, H. Shen, W. Usher, R. Vickery, V. Vishwanath, I. Wald, R. Wang, G. H. Weber, B. Whitlock, M. Wolf, H. Yu, S. B. Ziegeler. “A Terminology for In Situ Visualization and Analysis Systems,” In International Journal of High Performance Computing Applications, Vol. 34, No. 6, pp. 676–691. 2020.
DOI: 10.1177/1094342020935991


The term “in situ processing” has evolved over the last decade to mean both a specific strategy for visualizing and analyzing data and an umbrella term for a processing paradigm. The resulting confusion makes it difficult for visualization and analysis scientists to communicate with each other and with their stakeholders. To address this problem, a group of over fifty experts convened with the goal of standardizing terminology. This paper summarizes their findings and proposes a new terminology for describing in situ systems. An important finding from this group was that in situ systems are best described via multiple, distinct axes: integration type, proximity, access, division of execution, operation controls, and output type. This paper discusses these axes, evaluates existing systems within the axes, and explores how currently used terms relate to the axes.

L. Cinquini, S. Petruzza, Jason J. Boutte, S. Ames, G. Abdulla, V. Balaji, R. Ferraro, A. Radhakrishnan, L. Carriere, T. Maxwell, G. Scorzelli, V. Pascucci. “Distributed Resources for the Earth System Grid Advanced Management (DREAM), Final Report,” 2020.


The DREAM project was funded more than 3 years ago to design and implement a next-generation ESGF (Earth System Grid Federation [1]) architecture which would be suitable for managing and accessing data and services resources on a distributed and scalable environment. In particular, the project intended to focus on the computing and visualization capabilities of the stack, which at the time were rather primitive. At the beginning, the team had the general notion that a better ESGF architecture could be built by modularizing each component, and redefining its interaction with other components by defining and exposing a well defined API. Although this was still the high level principle that guided the work, the DREAM project was able to accomplish its goals by leveraging new practices in IT that started just about 3 or 4 years ago: the advent of containerization technologies (specifically, Docker), the development of frameworks to manage containers at scale (Docker Swarm and Kubernetes), and their application to the commercial Cloud. Thanks to these new technologies, DREAM was able to improve the ESGF architecture (including its computing and visualization services) to a level of deployability and scalability beyond the original expectations.

A. P. Janson, D. N. Anderson, C. R. Butson. “Activation robustness with directional leads and multi-lead configurations in deep brain stimulation,” In Journal of Neural Engineering, Vol. 17, No. 2, IOP Publishing, pp. 026012. March, 2020.
DOI: 10.1088/1741-2552/ab7b1d


Objective: Clinical outcomes from deep brain stimulation (DBS) can be highly variable, and two critical factors underlying this variability are the location and type of stimulation. In this study we quantified how robustly DBS activates a target region when taking into account a range of different lead designs and realistic variations in placement. The objective of the study is to assess the likelihood of achieving target activation.

Approach: We performed finite element computational modeling and established a metric of performance robustness to evaluate the ability of directional and multi-lead configurations to activate target fiber pathways while taking into account location variability. A more robust lead configuration produces less variability in activation across all stimulation locations around the target.

Main results: Directional leads demonstrated higher overall performance robustness compared to axisymmetric leads, primarily 1-2 mm outside of the target. Multi-lead configurations demonstrated higher levels of robustness compared to any single lead due to distribution of electrodes in a broader region around the target.

Significance: Robustness measures can be used to evaluate the performance of existing DBS lead designs and aid in the development of novel lead designs to better accommodate known variability in lead location and orientation. This type of analysis may also be useful to understand how DBS clinical outcome variability is influenced by lead location among groups of patients.

C. R. Johnson, T. Kapur, W. Schroeder,, T. Yoo. “Remembering Bill Lorensen: The Man, the Myth, and Marching Cubes,” In IEEE Computer Graphics and Applications, Vol. 40, No. 2, pp. 112-118. March, 2020.
DOI: 10.1109/MCG.2020.2971168

K. A. Johnson, G. Duffley, D. Nesterovich Anderson, J. L. Ostrem, M. Welter, J. C. Baldermann, J. Kuhn, D. Huys, V. Visser-Vandewalle, T. Foltynie, L. Zrinzo, M. Hariz, A. F. G. Leentjens, A. Y. Mogilner, M. H. Pourfar, L. Almeida, A. Gunduz, K. D. Foote, M. S. Okun, C. R. Butson. “Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome,” In Brain, July, 2020.
ISSN: 0006-8950
DOI: 10.1093/brain/awaa188


Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate ‘reverse’ tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.