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We introduce CrossPrefetch, a novel cross-layered 1/0
prefetching mechanism that operates across the OS and
a user-level runtime to achieve optimal performance. Ex-
isting OS prefetching mechanisms suffer from rigid inter-
faces that do not provide information to applications on the
prefetch effectiveness, suffer from high concurrency bottle-
necks, and are inefficient in utilizing available system mem-
ory. CrossPrefetch addresses these limitations by dividing
responsibilities between the OS and runtime, minimizing
overhead, and achieving low cache misses, lock contentions,
and higher I/O performance.

CrossPrefetch tackles the limitations of rigid OS prefetch-
ing interfaces by maintaining and exporting cache state and
prefetch effectiveness to user-level runtimes. It also addresses
scalability and concurrency bottlenecks by distinguishing
between regular I/O and prefetch operations paths and intro-
duces fine-grained prefetch indexing for shared files. Finally,
CrossPrefetch designs low-interference access pattern pre-
diction combined with support for adaptive and aggressive
techniques to exploit memory capacity and storage band-
width. Our evaluation of CrossPrefetch, encompassing mi-
crobenchmarks, macrobenchmarks, and real-world work-
loads, illustrates performance gains of up to 1.22x-3.7x in
I/O throughput. We also evaluate CrossPrefetch across differ-
ent file systems and local and remote storage configurations.
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1 Introduction

Despite the introduction of ultra-fast nonvolatile block stor-
age technologies (e.g., NVMe), the performance gap between
compute and storage devices remains considerable. Conse-
quently, main memory caching and buffering are widely
employed in OS, user-level file systems [32], and I/O run-
times, and continue to play a critical role to hide the per-
formance gap and reduce I/O bottlenecks [23, 26, 30, 37].
Although varying in techniques and strategies, the exist-
ing OS caching and prefetching designs are all application-
transparent [21, 24, 31, 33]. A well-designed memory caching
design seeks to optimize the overlap between computation
and I/O. The effectiveness of caching is heavily dependent
on the effectiveness of the underlying I/O prefetching mech-
anisms, which predict upcoming I/O accesses and load the
corresponding I/O operations in a timely manner. In OSes
such as Linux, prefetching is accomplished through a generic
readahead component [19] implemented by the virtual file
system (VFS) layer. As prior studies [6, 12, 14, 20, 27] and our
analysis demonstrate that, a good prefetching mechanism
can reduce I/O overhead by 2x-3.7x even for well-tuned
production-class applications (e.g., key-value stores).
Unfortunately, state-of-the-art prefetching designs often
fall short of delivering higher performance gains from I/O
prefetching and fail to fully exploit the available bandwidth
in modern fast storage devices like SSDs. These designs in-
clude application-customized prefetching approaches [1],
OS-level I/O prediction schemes [20, 27], machine learning
(ML)-based strategies [8, 14], and compiler-directed file lay-
out optimizers [11], which primarily focus on advancing
prediction accuracy but neglect cross-layered coordination
and prefetching effectiveness (detailed in §2). The major
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shortcomings of current designs can be summarized into the
following facets.

First, the effectiveness of current OS prefetchers is lim-
ited due to their rigid interfaces and conservative policies,
which makes it difficult to efficiently leverage cache state (i.e.,
pages in cache). System calls such as readahead, fadvise,
and madvise do not provide visibility to the information
such as total bytes prefetched, leading to the possibility of
applications either under-prefetching or over-prefetching.
Consequently, due to the lack of visibility, several applica-
tions (e.g., RocksDB) implement custom prefetching logic
using prefetching system calls. However, as a response, the
OSes may under- or over-prefetch, with no guarantee of the
bytes actually prefetched.

Figure 1 presents a simple example of the OS under-
prefetching for readahead, where request 1 results in an in-
correct offset for request 2, leading to cache misses. Similarly,
over-prefetching results in higher prefetching system calls
and interference with blocking I/O (e.g., read) operations,
negatively impacting application performance. Although OS
support is available to query the cache state of a file through
system calls such as fincore [18], as we discuss in §3 and §2.1,
these system calls incur significant performance overhead
as well as applications changes.

Secondly, the current prefetching operations face a signifi-
cant concurrency bottleneck. This is mainly because prefetch-
ing and regular I/O operations (e.g., read) use the same data
structures (like Xarray [17]) for caching and prefetching,
causing contention for locks. Additionally, when multiple
threads share a file, they contend for file-level locks such as
inode rw-lock and redundantly issue prefetch operations
due to the lack of cache awareness.

Finally, existing OSes, as well as state-of-the-art OS tech-
niques [20, 27, 35], and application-specific approaches [8,
14], do not effectively coordinate the cache state between
the OS and applications. This leads to missed opportunities
to fully utilize available memory capacity and I/O bandwidth
resources, ultimately resulting in poor application perfor-
mance.

To overcome the aforementioned challenges, we propose
CrossPrefetch, I/O prefetching system that accelerates I/O
without amplifying memory requirements. CrossPrefetch is
designed to be cross-layered, application-transparent, and
scalable, with three major innovations.

Firstly, CrossPrefetch disaggregates and distributes
tasks between user space and the OS to improve prefetch-
ing precision, minimize unnecessary I/O operations, and ad-
dress cache state visibility challenges. In this cross-layered
approach, the OS component (Cross-OS) maintains a per-
inode bitmap alongside the OS’s per-file cache tree to assess
prefetching effectiveness. It conveys this information to the
user-level runtime (Cross-LiB) through a new multi-purpose
readahead_info system call, used for performing readahead
operations, exporting OS-level cache bitmap state of a file,
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Figure 1. I/O Prefetching Pathology: The figure illustrates
scenarios demonstrating the impact of a lack of cache awareness. @) The
application issues a readahead request from offset 0OMB to 4MB. However,
due to static limits, the OS only prefetches 128KB. @ The application,
assuming full prefetching, issues subsequent requests starting at 4MB, but
accesses between 128KB and 4MB incur cache misses. @) The application
requests prefetching between 64KB and 4MB, already cached, resulting in
unnecessary system calls and locking costs due to cache unawareness.

and exporting OS-level telemetry. By leveraging this infor-
mation, Cross-L1B optimizes and reduces prefetch system
calls, improves application thread-level prefetching for pri-
vate and shared files, and enables prefetch customizations
bypassing complex OS cache layer modifications.

Secondly, to enhance scalability and mitigate concurrency
bottlenecks, CrossPrefetch segregates the I/O path for reg-
ular I/O and prefetch operations. This facilitates fast cache
state lookup through readahead_info system call. To ac-
commodate thread sharing and non-conflicting access to file
regions, CrossPrefetch employs fine-grained indexing via
range trees. This empowers threads to query their cache
status and initiate informed prefetching requests simultane-
ously. Augmented with lightweight access pattern prediction,
Cross-LiB adjusts prefetch requests according to per-inode
cache states, thereby reducing the need for excessive prefetch
system calls.

Thirdly, to maximize the use of available memory re-
sources, CrossPrefetch implements an aggressive prefetch-
ing/eviction policy based on the available free memory (bud-
get) approach. With per-file cache awareness, CrossPrefetch
switches between aggressive prefetching and eviction, de-
pending on the memory budget available. This adaptive ap-
proach improves overall performance. Finally, CRoss-OS op-
timizes I/O paths by allowing for larger prefetch requests and
dynamic adjustment of prefetching limits based on available
memory budget, resulting in better system performance.
Evaluation: We implement CrossPrefetch in Linux OS, and
a user-level runtime. CrossPrefetch shows significant perfor-
mance gains over application-controlled and OS-delegated
prefetching. On NVMe SSDs with ext4, we observe up to
1.97x gains in microbenchmarks and 2.1x gains in RocksDB
(a key-value store [1]), while reducing cache misses and
lock contentions. Under low memory, for the Snappy ap-
plication, CrossPrefetch shows up to 1.22x gains. Finally,
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CrossPrefetch on RDMA-based remote storage and SSD-
optimized F2FS file system shows high-performance benefits.
Contributions: To summarize,

1. I/O prefetching awareness: We propose a novel cross-
layered design to accelerate I/O prefetching for modern stor-
age without requiring application modifications.

2. Improved concurrency: We introduce techniques to
reduce concurrency bottlenecks and provide fine-grained
prefetching support for threads sharing files.

3. Low-interference prefetching and fine-grained predic-
tion: Utilizing the cross-layered design, we create a low-
interference and fine-grained prefetching approach that com-
bines access pattern prediction with cache-state awareness.

4. Memory-efficient aggressive prefetching and eviction: We
develop memory budget-efficient aggressive prefetching and
eviction methods to enhance I/O acceleration.

2 Background and Related Work

We present a background on OS I/O prefetching followed by
state-of-the-art I/O prefetching techniques, their capabilities,
and limitations.

2.1 OSI/O Prefetching

OS-level I/O prefetching, also known as pre-paging or reada-
head, is a common technique used to accelerate I/O for both
slow and fast storage devices. In Linux, incremental prefetch-
ing is used, where the prefetcher (the readahead component
in the VFS) reads a portion of the file into memory in antici-
pation of a process/thread reading or writing to that portion,
which reduces I/O wait time. To predict when to prefetch,
Linux maintains a per-file PG_readahead marker on pages at
the edge of the populated cache and incrementally prefetches
(up to 128KB) when the marked page is accessed or shrinks
for random accesses based on a file’s hit rate.

I/0 Prefetching System Calls: OSes like Linux provide
system calls and data access pattern hints to override the
OS’s access pattern identification to enable applications and
runtimes to control prefetching. For example, applications
like RocksDB use system calls such as readahead() with
offset and bytes to prefetch from a file or access pattern
hints like fadvice (). The POSIX_FADV_NORMAL hint lets the
OS determine I/O patterns, while POSIX_FADV_SEQUENTIAL
hints that a file will be accessed sequentially, and the OS
can increase prefetch window size. The POSIX_FADV_RANDOM
hint informs the OS of a random access file and turns off
prefetching, and POSIX_FADV_WILLNEED is analogous to the
readahead syscall to populate the cache quickly. Finally,
POSIX_FADV_DONTNEED hints to the OS to remove cache
pages of a file not needed in the future.

However, despite these different interfaces and hints, ap-
plications are often unaware of the effectiveness of explicit
readahead or advice calls, resulting in high cache misses,
software overheads, and performance impact.
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Understanding the Cache State using Fincore: Linux
system calls, fincore [18] and mincore, enable applications
to determine which pages of a file or an address range that
are currently resident in the memory. These calls work by
locking the entire memory address space and walking the
cache tree and a process address space to build this infor-
mation. Therefore, because they are expensive, frequent use
of these calls can result in high overhead and performance
degradation, as we will show shortly.

2.2 Related Work

We next provide an overview of the state-of-the-art OS, ap-
plication, ML, and compiler prefetching techniques for im-
proving I/O performance.

OS-level Prefetching: Several techniques have been pro-
posed to improve I/O prefetching beyond the prefetching
support in the Linux OS. Lynx [27] proposes a learning-based
SSD prefetching mechanism that captures random access
patterns using Markov chains. However, Lynx only works for
memory-mapped files and turns off prediction when page
cache misses increase. ATS [20] uses partitioned context
modeling (PCM) in the OS cache layer to exploit disk data
layout for prefetching. In contrast, FastMap [35] and MMap
on Steroids [34] improve mmap performance, but at the cost
of disabling caching. Leap [6] detects remote file-access pat-
terns based on page faults on the client and prefetches them
using current Linux ABIs. However, all of these techniques
fail to address the mismatch between application requests
and OS prefetching because of a lack of awareness across
these layers.

Application-specific Prefetching: Several application-
level prefetching techniques have been proposed. For exam-
ple, VSS, a storage system for video analytics [15], reduces
cache usage by down-sampling or deleting low-frequency
and high-frequency prefetching videos. Similarly, HTTP-
based streaming video servers aggressively prefetch se-
quential video files [7]. Further, Dong et al. [12] propose
a correlation-based prefetching for Hadoop files drawing
correlations from I/O patterns to replication/prefetch files
from data nodes. Frog [38] is a context-based file system
that adjusts I/O settings for different application contexts.
Finally, I/O prefetching has been proposed for reducing the
load time of mobile applications [22].

ML Techniques: In recent years, machine learning (ML)
techniques have emerged as a promising approach to im-
prove prefetching prediction. Akgun et al.[14] propose a
kernel-level ML framework that enhances storage system
performance by identifying and increasing or decreasing
prefetching through user-defined training functions. Clair-
voyant, an OS ML design [14] for distributed ML, observes
that ML applications are trained in batches, and the batch
numbers generated using a pseudo-random number genera-
tor can be used to predict and prefetch data used for the next
timestamp. Similarly, ML techniques have been proposed at
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the SSD device layer, with Chakrabortti et al.[8] proposing to
learn access patterns and improve prefetching. Additionally,
Stacker [36] designs an autonomic data movement engine
for high-performance computing (HPC) in-situ workflows,
which uses the N-gram model to learn strided access patterns
for prefetching.

Compiler Techniques: Prior research has investigated
static compiler-directed file layout optimization and prefetch-
ing for hierarchical storage in HPC systems. Specifically,
prior work using the IBM Blue Gene compiler minimizes disk
block reads by using a polyhedral model for n-dimensional
data objects [11]. While compiler-optimized prefetching is
beneficial, a lack of coordination with OS prefetching pre-
vents exploiting maximum benefits from prefetching.

To the best of our knowledge, no prior work has
focused on the lack of cross-layered prefetching aware-
ness and their resulting implications on I/O perfor-
mance.

3 Motivation and Analysis

Regardless of whether prefetching is application-centric or
entirely delegated to the OS, current techniques face three
key problems. Firstly, they lack awareness of the prefetching
state. Secondly, they encounter scalability and concurrency
bottlenecks. Lastly, they fail to utilize memory efficiently.

3.1 Lack of Prefetching Progress Awareness

A significant challenge in existing application-level and OS-
level prefetching designs is the lack of synergy and aware-
ness between application I/O needs and OS prefetching effec-
tiveness. Applications often issue prefetch requests without
certainty about page prefetching status, leading to impre-
cise results. For instance, during sequential access to large
files, applications may issue large prefetch requests (e.g.,
using fadvise (SEQUENTIAL)) to overlap computation and
I/0. However, OSes like Linux limit initial prefetch size to
128KB, even without memory pressure. Consequently, appli-
cations assume successful prefetching of the entire request
and experience diskl/O for accesses beyond the limit. Naively
increasing prefetch thresholds could hurt performance under
memory pressure or high I/O loads.

Additionally, some applications disable prefetching (us-
ing fadvise(...FADV_RANDOM. .)) for perceived random
access patterns, which can degrade performance. For in-
stance, RocksDB [1] proactively deactivates prefetching for
workloads involving random access, mistrusting the OS’s
capacity to identify such patterns. This introduces two sig-
nificant concerns: Firstly, a random read or an update often
generates additional I/O requests for activities like search, up-
date, or compaction, which exhibit non-random behavior and
could benefit from effective caching. Secondly, when multiple
threads share database files, they share the cache, and cache
misses could be reduced even for random access. On the other
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hand, disabling caching prevents threads from capitalizing
on the shared cache. Lastly, the Linux OS prefetcher operates
in batches of 32 blocks, deeming subsequent accesses as se-
quential if it falls within this range, consequently triggering
the prefetch of another batch. Disabling OS prefetching can
increase disk I/O when access strides are shorter than 32
blocks.

3.2 Concurrency Bottlenecks and Software
Overheads

Current prefetching mechanisms can incur high software
bottlenecks, such as system calls, concurrency, and data
movement. These challenges become more pronounced in
scenarios where multiple threads concurrently access a file,
as exemplified by RocksDB, where database and log files are
shared among multiple readers and writers.

The bottlenecks associated with locking and concurrency
originate from several key factors. Firstly, both prefetching
and regular I/O operations like read share the same data
structures, such as the cache tree used for lookup and up-
dates. This cache tree is implemented in Linux using Xarray,
which employs a global reader-writer lock. Consequently,
prefetch calls can obstruct regular I/O operations, even those
related to lookup tasks [17]. Conversely, prefetch threads
reading data from the disk and updating the Xarray can
lead to blockages in regular I/O operations. Secondly, the
situation is further exacerbated when employing system
calls like fincore [18] for cache state queries. These calls
construct cache awareness dynamically and lock the entire
virtual memory within the process, resulting in an overall
application slowdown.

The bottlenecks stemming from system calls are due to the
frequent issuance of prefetch calls. For example, in RocksDB,
multiple threads share access to log and database files. These
threads could initiate prefetch operations without knowing
the cached pages’ existence, thereby increasing system calls.

3.3 Failure to Exploit Memory Budgets

The I/O prefetchers in OSes do not exploit available system
memory. For instance, incremental prefetching, which is
commonly used in Linux and FreeBSD [2, 16], is not suffi-
ciently aggressive or adaptive to the available memory space.
The conservative incremental approach limits prefetching to
128KB, irrespective of the available system memory. Unfortu-
nately, this results in high cache misses for several I/O-heavy
applications that perform I/O during startup or switch be-
tween low and high I/O phases. Only implementing aggres-
sive prefetching without adaptive eviction to reduce memory
usage could impact prefetch effectiveness.

3.4 Analysis

In Figure 2, we analyze the aforementioned issues of OS-
delegated and application-centric techniques for RocksDB
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Figure 2. RocksDB Analysis: The graph shows throughput for
a multi-threaded multi-read random workload where 32 threads collec-
tively read 120GB database. We compare APPonly, APPonly([fincore], and
OSonly, representing application-only, application-only using fincore [18],
and OS-only prefetching methods, respectively, alongside our proposed
CrossPrefetch.

APPonly | APPonly[fincore] | OSonly | CrossPrefetch
Locking (%) 16 34 27 19
Cache Misses (%) 98.2 91.5 84.3 63.7

Table 1. Lock Overhead and Avg. Cache Misses (in %)

with 32 application threads performing batched-but-random
reads using db_bench. The y-axis shows the throughput, and
we use a total data size of 100GB (without warm-up) that
fits within the system memory (128GB). Table 1 shows the
average cache miss (%) and the time spent on the lock (%). We
compare four approaches: (1) OSonly, where the OS handles
prefetching; (2) APPonly, which disables OS and application
prefetching for random access; (3) APPonly[fincore], which
uses a background prefetching thread to use fincore [18] to
query cache state and issue prefetch operations; and finally,
(4) the proposed CrossPrefetch approach.

First, we observe that the OSonly approach outperforms
the unmodified RocksDB application (APPonly) that turns off
I/O prefetching for random accesses. The APPonly approach
suffers from higher cache misses, highlighting the need for
more informed prefetching in complex applications. Next,
the OSonly approach performs better than APPonly, but it
employs an incremental prefetching technique that restricts
memory use despite the availability of free memory. Due
to random access, the prefetching window reduces initially
and only improves towards the end. In contrast, the AP-
Ponly[fincore] approach provides cache visibility but suffers
from high concurrency bottlenecks. In fact, these overheads
prevent effective prefetching, resulting in a high cache miss.

Unlike the above approaches, in our proposed cross-
layered CrossPrefetch, the OS exports cache visibility to the
user-level runtime to understand prefetching effectiveness.
Using the exported information from the OS, the runtime
reduces system calls, provides concurrency, and implements
memory budget-centric aggressive prefetching and eviction
policies. Further, CrossPrefetch also adds other OS optimiza-
tions. These combined design capabilities contribute to the
performance gains, which we will detail shortly.
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Figure 3. CrossPrefetch Design Overview. The system is
divided into two parts Cross-OS and Cross-L1B. Cross-LIB intercepts I/O
system calls, predicts access patterns, and decides on prefetching size.
Cross-OS exports cache state, per-file memory use, and optimized I/O
path. Operations 1 to 5 show request execution cycles when prefetch is
triggered.

4 Design and Implementation
4.1 Design Goals

At its core, CrossPrefetch is designed to enhance the current
OS prefetching by adhering to the following principles.
Goal 1: Disaggregate 1/0 prefetching responsibilities
between the OS and a user-level runtime. CrossPrefetch
achieves this disaggregation by utilizing cross-layer aware-
ness of the OS cache state. This awareness empowers higher-
level layers (e.g., runtime) to perform precise and effec-
tive prefetching. This approach prevents under or over-
prefetching, redundant prefetch system calls, and contention
for page cache locks between regular and prefetch operations
by clearly defining their access paths.

Goal 2: Support concurrent prefetching and light-
weight prediction. For files shared among threads,
CrossPrefetch facilitates concurrent prefetching for non-
conflicting blocks and offers low-overhead access pattern
detection that enhances prediction accuracy.

Goal 3: Enable aggressive prefetching and evic-
tion without impacting memory budget. Using per-
application access patterns, per-file cache states, and avail-
able free memory, CRoss-L1B dynamically adjusts prefetch-
ing aggressiveness to reduce cache misses and mitigate I/O
bottlenecks.

4.2 Our Approach: Cross-layered Prefetching

In CrossPrefetch, we seek a balance in dividing the prefetch-
ing responsibilities across the user-level library (CRoss-L1B)
and the OS (Cross-0S). First, CrossPrefetch eliminates un-
necessary application-level prefetch calls. The user-level li-
brary (Cross-LiB) employs cache state bitmaps to discard ap-
plication prefetch system calls (fadvice(), readahead())
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when the requested data blocks are already cached. This
reduction in system calls minimizes overhead and lowers
locking costs (as illustrated in Table 1). In the absence of
Cross-LiB, the OS must handle application system calls.

Secondly, Cross-L1B captures and optimizes the applica-
tion’s thread-level prefetching by capturing their access pat-
tern, which is challenging to accomplish in an OS without
visibility of application-level threads. Specifically, we imple-
ment a concurrent range tree that captures a thread’s access
patterns for private and shared files and optimizes per-thread
prefetching (see §4.5).

Third, CrossPrefetch facilitates simpler customizations
without further complicating the existing complex OS
caching layers. This involves effortless integration of policies
like aggressive prefetching (given available memory) and
eviction within Cross-LiB. While transferring these poli-
cies to the Linux OS is feasible, it introduces complexities
throughout the OS virtual memory stack (including the page
allocator, VFS page cache, and LRU-based eviction) and limits
the adaptability for application-specific configurations.

4.3 CrossPrefetch Layers Overview

This section demonstrates the prefetching steps of
CrossPrefetch. We present the overview in Figure 3 and iter-
ate the steps in detail below.

User-level: Cross-LiB optimizes I/O prefetching of individ-
ual files in an application. It employs a shim layer to transpar-
ently intercept POSIX I/O, detect access patterns, and initiate
prefetch calls. Upon opening a file, CRoss-LIB creates a user-
level file-descriptor structure to maintain file-level access
pattern and prefetch information (). When an I/O request
(e.g., read, write) is issued, Cross-L1B predictor identifies a
file’s access pattern across application threads and decides on
the bytes to prefetch (@). Subsequently, CRoss-LIB uses our
newly introduced readahead_info system call for three pur-
poses: to prefetch blocks, to export the per-file cache state
from the OS, and to export OS-level telemetry like cache
memory usage of a file (@)). Furthermore, we use dedicated
background threads to issue prefetch calls to prevent im-
pacting application thread performance. Finally, Cross-L1B
adapts to the available memory budget and carries out ag-
gressive prefetching and cache evictions.

OS Component: Cross-OS maintains the cache state and
the exported prefetch information for use by Cross-Lib.
Within the OS, to reduce contention between threads is-
suing regular I/O and those initiating prefetch operations,
Cross-OS segregates the regular I/O and prefetching paths.
Contentions mainly arise from acquiring distinct locks, in-
cluding inode (file), page cache, journal, and memory man-
ager locks. During a regular I/O operation (read or write),
Cross-OS updates the bitmap when pages are fetched into or
evicted from the cache (@). Handling the readahead_info
call involves initial checks for the presence or absence of
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requested blocks, followed by the adjustment of prefetch
requests and the issuance of the request. Upon return, the
OS exports the file’s cache bitmap to Cross-LiB. Ultimately,
Cross-OS introduces optimizations to the I/O prefetching
path and prefetch parameters, such as removing predefined
limitations (@).

Listing 1. readahead_info simple code use example

1 void prefetcher(uinode* inode, int fd, off_t offset, size_t
prefech_size)) {

struct cache_info info;
size_t prefetch_limit = 0;
prefetch_limit = offset + prefech_size;
info->cache_state_bitmap = inode->cache_state_bitmap;
while (offset < prefetch_limit) {

readahead_info(fd, offset, size, &info);

offset = predict(&info);

© % NG W

}
}

4.4 Provide Visibility on I/O Prefetching State

Applications and runtimes benefit from the visibility into
the cache state and the progress/status of prefetching re-
quests, as it allows them to evaluate the effectiveness of
prefetching and adjust future requests accordingly. However,
providing visibility should not significantly impact applica-
tion performance or resource usage. Unfortunately, current
mechanisms like fincore(), discussed in §3, do not meet
these requirements.

In contrast, CrossPrefetch achieves cache visibility and
prefetching awareness with minimal performance overhead
and no application changes. CrossPrefetch introduces a new
readahead_info call with an info parameter, which is a
structure that stores per-file bitmap and other information
about the file. The readahead_info system call extends the
existing prefetch call, readahead(), as shown in Code 1.
Cross-LiB uses readahead_info call and info structure to
read the per-file bitmap for prediction and future prefetch
operations.

Besides storing bitmap information, each info structure
maintains other fields used for communication between the
OS and Cross-Lis. This includes information for control-
plane operations or for telemetry. Control-plane operations
include files for which prefetching can be disabled, the offset
and bitmap range to copy to userspace, and optimizations
(§4.7) to increase the prefetch window flexibly. The telemetry
fields include per-application and per-file cache usage, which
are used for aggressive memory prefetching and eviction
(§4.6). Additionally, telemetry includes counters for the num-
ber of per-file page cache hits and misses, providing insights
into the effectiveness of a prefetching policy.

Challenges: Implementing cache visibility poses the follow-
ing challenges: first, the cost of scanning the OS cache data
structure to check whether a block has been prefetched for
a file’s per-inode Xarray [17] is expensive for applications
with many large files. This is because it requires acquiring
spin locks for each inode and its Xarray, which can compete
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with regular I/O operations. Second, copying the page cache
state frequently between the protected OS and the unpro-
tected runtime can incur high data copy costs. Lastly, fast
updates to the per-inode cache bitmap are critical to deciding
which set of blocks to prefetch. This is particularly important
since Linux and other OSes incrementally shrink or grow
pages using background threads that use LRU-based cache
management.

Delineated Prefetching Path: We propose delineating
the I/O prefetching and regular I/O paths when feasible to
address the above challenges. CrossPrefetch utilizes a state-
ful per-file bitmap at the OS level to track the cache state
and improve prefetching efficiency. This complements the
per-file cache trees already present. Each bit in the bitmap
represents a block in the file (by default), and the bitmap
is an array of unsigned longs that dynamically grows and
shrinks with the file size. This bitmap is also imported to
Cross-LiB.

Updating the Bitmaps in Cross-OS: The per-inode
bitmap is continually updated during read, write, and
prefetch operations. We introduce a slow and a fast path
to reduce the contention of a single big per-file cache-tree
lock between regular I/O and prefetch operations. During
regular I/O (i.e., read() and write()), the OS uses a slow
path that involves checking for the requested block’s pres-
ence in the cache by walking the per-file Xarray. This walk
is done using a page vector called pvec, which records the
availability of multiple blocks in the cache. If a block is miss-
ing from the cache, a read request is issued for it, and the
per-inode cache bitmap is updated. During this process, the
cache tree’s lock is held, which can contend with concurrent
prefetch operations and impact regular I/O and prefetching
effectiveness.

Fast Prefetch Lookup: First, Cross-LiB always uses the
user-level copy of the bitmap to check for cached pages.
When a readahead_info call is issued, the OS employs the
fast path for the file’s bitmap lookup to reduce lock con-
tention with non-prefetching I/0. This is achieved by acquir-
ing the bitmap’s rw-1ock. If additional pages are requested
and inserted into the cache, the readahead_info call em-
ploys a slow path, requiring the acquisition of a write lock.
However, this process remains fast due to its reliance on
simple bitmap operations. To further mitigate contention,
Cross-OS updates the per-inode bitmap only once after com-
pleting the entire walk rather than updating it for each page.

Importing Cache Bitmaps to Cross-LiB: Figure 3 illus-
trates a sample use case of how Cross-LiB imports the per-
inode bitmap from Cross-OS into a user-level buffer. When
Cross-LiB calls readahead_info, Cross-OS first checks the
per-inode cache bitmap before initiating a prefetch operation
to determine if the requested blocks are already present in
the cache; this step avoids the need for cache tree traversal,
leading to three possible scenarios: (1) all blocks are already
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present in the cache, and the userspace info structure is up-
dated; (2) all blocks need to be prefetched, prompting a read
request followed by a bitmap update; (3) some block pages
are already in the cache, resulting in the modification and
issuance of the prefetch request. The readahead_info sys-
tem call serves a dual purpose: it copies the per-inode cache
state from the OS to Cross-LiB while also triggering prefetch
operations for blocks required but not yet present in the OS
cache. This consolidation eliminates the need for separate
calls, even though prefetch operations occur less frequently
than read or write operations. To minimize the overhead of
copying the per-file bitmap from the OS to Cross-LiB buffers,
Cross-LiB can specify offset and range values in the info
structure for selective copying, as demonstrated in Listing 1.

System Call and Bitmap Memory Overhead:
CrossPrefetch reduces unnecessary prefetch system
calls by first checking for pages already in the cache and
issuing prefetch requests only when necessary. Similarly,
the per-file bitmaps in CrossPrefetch consume only a small
fraction of memory. Consider a 1TB file requiring just
32MB (> 0.005% memory cost). To further reduce memory
consumption, the OS component copies a select bitmap
range from the OS to the Cross-L1B, such as 64 bytes for a
2MB prefetch. Additionally, as discussed in §4.6, another
memory-centric optimization could be to use a bitmap bit to
represent a range of multiple blocks.

4.5 Scalable and Concurrent Prefetching

We next discuss the mechanics of Cross-LiB with a focus on
enabling concurrent prefetching for private and shared files
with a focus on reducing system call overheads.
Challenges: Supporting concurrent prefetching across tens
and hundreds of application threads is of utmost importance.
For threads accessing private files, CRoss-LIB maintains per-
file (i.e., per-inode) cache bitmaps in userspace. This ap-
proach enables threads operating on entirely different files
to work concurrently by utilizing the current I/O prefetch
request.

However, certain applications, including RocksDB, HPC-
based molecular simulations, and databases, employ per-
thread file descriptors to enable concurrent access to shared
files across multiple threads or processes. These threads use
their file descriptors to read from or write to specific regions
of the files. For instance, RocksDB employs per-thread file
descriptors for concurrent I/O to share log and database files
between client and background threads.

Using per-file prefetching with a shared per-file cache
bitmap and access pattern prediction can introduce scala-
bility challenges. To be more precise, application threads
inspect the per-inode cache bitmap while a dedicated group
of helper threads sends actual prefetch requests to the
OS. Consequently, concurrent updates and access to per-
inode bitmaps must be serialized using read-write locks
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(rw-locks). The fundamental design of CrossPrefetch em-
ploys per-inode bitmap locks to enable concurrent access
across threads to the shared file. However, scalability can be
impacted as the file size increases.

Range Bitmaps with Scalable Range Tree: One approach
to reducing synchronization bottlenecks across application
threads is to maintain a separate bitmap for each thread or a
file descriptor and import a file’s cache bitmap from the OS.
Besides the complexity of keeping the bitmaps consistent,
this approach can also increase per-file memory.

Therefore, we introduce a concurrent per-file range tree.
This tree tracks a range of blocks accessed by each thread
using their private or shared file descriptor. Each range tree
node represents a contiguous range of blocks and includes an
embedded bitmap, with each bit representing a single block
within the range. Each node’s range can dynamically grow
or shrink along with the bitmap. For concurrency, each node
has its own lock, which is acquired solely when accessing a
block within that range.

By maintaining a range tree with per-node ranges and per-
node locks, multiple application threads utilizing the same
or different file descriptors can concurrently access non-
conflicting ranges of a file and their corresponding bitmaps.
This approach not only mitigates scalability bottlenecks but
also eliminates the need to replicate the bitmaps. Importantly,
threads accessing overlapping blocks share the bitmap and
benefit from the awareness of pages already in the cache,
reducing redundant prefetch requests and associated over-
heads. In §4.6, we discuss maintaining separate access pat-
tern prediction for each thread using their respective file
descriptors.

4.6 Low-overhead Prediction and Prefetching

For effective prefetching that adapts to different access pat-
terns, Cross-LisB first detects the access pattern of a file by
intercepting POSIX I/O operations and deciding on the num-
ber of blocks to prefetch. The pattern detector identifies
different access patterns, including sequential, random, for-
ward/backward strides, and changes in access patterns.
Internally, CRoss-L1B uses a simple n-bit counter for de-
tecting a file’s access pattern. The counter indicates the level
of sequentiality and can represent a file in seven different
states: highly random (000, access distance beyond the maxi-
mum prefetch distance of 128KB), random (001, random but
within 128KB distance), partially random (010, a mix of se-
quential and random access), likely-sequential (011, frequent
sequential interspersed with random access), sequential (100,
sequential but with strides), and definitely sequential (110).
During a read or write, CROSs-LIB increments/decrements
the counter’s value based on the sequentiality of the access,
and the counter’s value determines the blocks to prefetch.
When a file is opened, we begin in a "definitely random"
state, signifying that no blocks are prefetched. However, as
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Figure 4. Fine-grained Predictor for Shared Files.

sequential accesses accumulate, the number of prefetched
blocks grows exponentially by 2", where n represents the
value of the access pattern counter. To prevent issuing
prefetch calls for blocks already in the page cache, CrRoss-LiB
examines the cache bitmap and modifies the prefetch request
only for blocks that are not yet in the cache.

Cross-LiB can identify a variety of I/O access patterns,
such as sequential, random, forward/backward strides, etc.
This predictor intercepts each I/O and quickly assesses a
file’s transition or oscillation between access patterns. More-
over, the number of bits used for the per-file counter can be
configured to improve prefetch accuracy. However, for the
workload we analyze, a 3-bit counter provides the best per-
formance without over-prefetching for different workloads
with varying access patterns. To optimize the predictions and
reduce the overheads of pattern detection, once a steady state
is reached (i.e., definitely sequential or random), Cross-L1B
delays predictions for the next n accesses.

Overall, Cross-LiB utilizes the cross-layered capabilities
of OS and runtime prefetching, reducing frequent system
calls and related overheads. Our future work will focus on en-
hancing Cross-LiB with sophisticated domain-specific pre-
dictors.

Support for File-descriptor Prefetching: To prefetch files
accessed by multiple threads or processes, CRoss-LiB utilizes
file-descriptor prefetching and range-tree mechanisms (§4.5).
It maintains an access pattern detector for each descriptor
and a userspace file descriptor structure containing block
range information and access pattern counters. Figure 4 il-
lustrates how Cross-LIB executes prefetching. For instance,
if Thread 1 accesses fd1 sequentially while Thread 2 ac-
cesses fd2 randomly, prefetching takes place exclusively
for non-overlapping regions of the file accessed by Thread
1. In scenarios involving overlapping accesses across file
descriptors, Cross-LiB leverages cache awareness to avoid
redundant prefetching while ensuring cache hits. When con-
figured, Cross-LiB could use a single bitmap bit to represent
the entire range in the tree to reduce memory use.
Memory-aware Aggressive Prefetching and Eviction:
CrossPrefetch improves I/O performance for varying mem-
ory availability and changing access patterns, including high
and low-intensity I/O phases. It delegates prefetching control
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to Cross-LiB, which uses pages cache awareness to adjust
prefetching and eviction based on memory budgets set by
applications, containers, VMs, or system administrators. The
key insight is to utilize the available memory to aggressively
prefetch from the start of an application and reduce high
compulsory cache misses (i.e., blocks loaded to the cache for the
first time). This contrasts with OSes that employ incremental
prefetching and suffer from high initial cache misses.
Aggressive I/0 Prefetching: To maximize the effective use
of available memory, CRoss-L1B continually monitors mem-
ory usage and adapts prefetch aggressiveness accordingly.
Cross-LIB assesses system memory availability and defines
higher and lower threshold values to signify when to cease
aggressive prefetching and when to halt all prefetching, re-
spectively. System administrators can customize these values
via a configuration file.

When using aggressive prefetching, when a file is opened,
Cross-L1B optimistically assumes that the access pattern is
sequential and prefetches a number of blocks (defaulting
to 2MB) before sufficient I/O has been executed to ascer-
tain the actual access pattern. If this optimistic prediction
proves accurate and the file is marked as "definitely" sequen-
tial, CrossPrefetch issues larger prefetch requests (memory
budget permitting), thereby accelerating access to the file
and reducing cache misses. If the prediction turns out to be
incorrect, CROss-L1B reverts to regular prefetching behavior
and stops prefetching when a file is identified as having a
random access pattern. Moreover, developers can easily ex-
tend Cross-L1B to accommodate custom prefetching policies
and window sizes based on a file’s priority.

Aggressive Reclamation: To aggressively reclaim cache
pages, CrossPrefetch adopts a two-pronged strategy. Firstly,
CRross-LIB maintains per-process memory budgets and mon-
itors active and inactive files using the LRU mechanism.
When memory budgets become constrained, CrossPrefetch
evicts inactive file cache blocks, circumventing the need
to traverse each file’s range tree. Secondly, for large files,
apart from the block-level evictions managed by the OS LRU,
CrossPrefetch expels infrequently accessed blocks by lever-
aging per-file cache states through the fadvice() function.
Much like Linux, we adopt a 30-second duration to desig-
nate a file as inactive, relocating it to the forefront of the
inactive LRU files list. Under persistent memory pressure,
Cross-LiB traverses the subsequent set of LRU files, evict-
ing LRU ranges as deemed necessary. While we assess the
benefits of this approach in §5, our future work will explore
fine-grained (per-inode) LRUs within the OS to expedite
memory reclamation.

Support for Memory-Mapped I/O: mmap is used by appli-
cations for read-intensive workloads to reduce system call
and data copy overheads between the OS and user space.
However, predicting and prefetching for mmap I/O without
explicit I/O calls is challenging because the application per-
forms byte-level load and store operations on mmap’ed files,
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making it harder to capture the application’s access pattern.
Note that the underlying block device still fetches blocks and
adds them to the cache pages at the OS layer.

To avoid the prohibitive cost of intercepting each load
and store, Cross-L1B’s background thread uses the cached
bitmap exported from the OS to detect access patterns (i.e.,
how pages were accessed) and performs prefetching, also
varying the prefetch window size. While our basic approach
provides benefits, it resembles Linux OS prefetching and is
somewhat inaccurate. To the best of our knowledge, accu-
rate prefetching techniques for memory-mapped files are
lacking, and our future work will exclusively focus on this
by exploring ideas like userspace fault handling to detect
memory access.

4.7 Optimizing OS Prefetching Path

We observe that modern OSes (e.g., Linux) enforce strict I/O
limits even when using fast storage (e.g., NVMe) and reason-
ably large memory. It’s not surprising that relaxing these
limits is crucial for efficient I/O prefetching. For instance,
Linux sets the incremental prefetch limit to 32 pages (128KB),
regardless of the available disk bandwidth or memory ca-
pacity. In contrast, we extend the OS to grant higher-level
layers (e.g., Cross-LiB) the capability to (dynamically) in-
crease the prefetch limit using the info structure in the
readahead_info call. For instance, while CrRoss-L1B could
issue a prefetch request of up to 1.2 GB to match our NVMe
bandwidth, the prefetch requests do not exceed 64MB. Larger
requests do not significantly impact blocking I/O (e.g., read-
/write) since the VES layer limits an I/O request to a max-
imum of 2MB, and implements congestion control to post-
pone prefetch requests that would delay blocking I/O.

In summary, CrossPrefetch reduces the overhead of
prefetch operations to iterate the Xarray and reduces cache
hit costs, uses delineated path for prefetch and blocking I/O
operations, and reduces contention of cache tree locks, all of
which improve prefetching effectiveness.

4.8 System Implementation

CrossPrefetch is implemented in approximately 7.6K lines of
code distributed across Cross-LiB (5.6K LOC) and Cross-OS
(2K LOC), integrated into Linux kernel 5.14. Cross-OS
is implemented within the VFS and the memory man-
agement layer. As evaluated in §5, CrossPrefetch remains
agnostic to the underlying OS file systems. Moreover,
CrossPrefetch does not necessitate application changes.
To utilize CrossPrefetch, applications link with Cross-L1B,
which intercepts POSIX I/O operations to predict access pat-
terns and prefetch accordingly. Cross-LiB also implements
a shim for employing the readahead_info system call to
prefetch data, access cache state using a bitmap, retrieve
per-process memory usage from the OS, and enable commu-
nication between Cross-LiB and the OS to relax stringent
prefetch limits.
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Mechanism Description
APPonly Application tailored prefetching using readahead
calls
OSonly Prefetching delegated to OS and application prefetch-
ing is disabled
CrossP[+predict] Fine-grained and low-interference prediction avoid-
ing prefetching entire file
CrossP[+predict+opt] CrossP[+predict] without OS limits but also provide
memory-centric aggressive prefetching and eviction
CrossP[+fetchall+opt] | Proposed CrossPrefetch that uses cache state aware-
(memory insensitive) | ness to prefetch missing blocks of a file using
readahead_info() assumes all data fits in memory
Table 2. Comparison Approaches
APPonly | OSonly | CrossP[+predict] | CrossP[+predictropt] | CrossP[+fetchall+opt]
shared-rand 93 89 69 75 91
shared-seq 19 18 17 14

Table 3. Microbench: Avg. Cache Misses (in %)

5 Evaluation

The primary goal is to investigate the following design as-
pects.

1. To what extent does CrossPrefetch’s cross-layered
prefetching improve I/O throughput?

2. Can CrossPrefetch scale across threads within an appli-
cation and across processes in multiple applications?

3. To what extent is CrossPrefetch effective across differ-
ent file systems and storage devices?

4. How effective are CrossPrefetch’s aggressive memory
prefetching and eviction strategies?

5. How does CrossPrefetch perform on real applications?

5.1 Experimental Setup and Methodology

CrossPrefetch is implemented in the Linux 5.14 kernel and
evaluated on various systems with different configurations,
as detailed in Table 2. Due to its slower performance com-
pared to other methods, Fincore [18] is omitted from our
comparison for brevity, as indicated by our motivation anal-
ysis (Figure 2). Irrespective of whether prefetching opera-
tions are initiated by applications or CrossPrefetch, we do
not modify applications. We assess CrossPrefetch’s perfor-
mance on a system featuring two memory sockets totaling
80GB, a 64-core, 2.8 GHz AMD 7543 processor, and a 1.6 TB
NVMe SSD. The NVMe SSD provides maximum read and
write bandwidths of 1.4GB/s and 0.9GB/s, respectively, and
is partitioned using the ext4 file system as the default.

To understand CrossPrefetch’s benefits across file systems
other than ext4, we replicate some experiments using the
same hardware configuration, but this time utilizing the state-
of-the-art F2FS file system [29], which is optimized for flash
storage. Lastly, we analyze the benefits and implications
of CrossPrefetch on a distinct storage medium: a remote
NVMe storage connected to the host system through RDMA-
based NVMe-oF (NVMe over Fabric) technology. Before each
experiment, we clear the page cache.

5.2 Impact of Cross-layered Prefetching

We first evaluate microbenchmarks to understand

CrossPrefetch’s prefetching capabilities, concurrent
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access scalability, and the effectiveness of its mmap
implementation.

5.2.1 Microbenchmark Study We conduct experiments
on a custom multi-threaded microbenchmark to analyze the
impact of CrossPrefetch on private and shared file accesses
and for sequential and random workloads. Threads issue
16KB I/O reads on private files, either sequentially (private-
seq) or randomly (private-rand). The benchmark threads also
share a large file with sequential (shared-seq) or random
(shared-rand) reads to simulate HPC applications that share
files and update non-overlapping regions in the file [4]. For
all access patterns, the file size is limited to 200GB (2.15%
larger than the available memory), and the memory cache
is cleared before execution. We use APPonly and OSonly as
baselines, as shown in Table 2. We also study shared file
performance in the presence of multiple writers and readers
Figure 6. To decipher the reasons for CrossPrefetch gains,
we show cache misses (%) for two workloads in Table 3 for
brevity.
Observations: For random reads on private and shared
files, the APPonly approach turns off OS prefetching, result-
ing in high cache misses. The OSonly approach performs
incremental prefetching limited to 128KB despite high mem-
ory availability at the start. Unfortunately, with incremental
prefetching, random accesses reduce prefetch window (ini-
tially to 0), which increases cache misses and leads to lower
throughput.

In contrast, the [+fetchall+opt] approach monitors miss-
ing blocks using the bitmaps exported from the OS and
prefetches entire file(s). While idealistic, this approach is
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Workloads | APPonly OSonly CrossP[+predict+opt]
readseq 578.55 MB/s | 829.52 MB/s 1270.32 MB/s
readrandom | 84.35 MB/s | 484.34 MB/s 751.57 MB/s

Table 4. mmap: Sequential and Random workloads

impractical, specifically when the available memory is con-
strained. Despite using a workload that is 2.5x the size of
available memory, [+fetchall+opt] still provides 1.54x bene-
fits. However, it triggers cache pollution, increasing misses
for shared and private files (see Table 3).

Furthermore, [+predict] uses precise prediction and

achieves higher performance gains through higher cache
hits. [+predict+opt] removes OS prefetch restrictions and per-
forms aggressive-but-adaptive prefetching beyond 128KB
limits based on available memory and I/O bandwidth. This
results in increased cache hits, reduced prefetch system calls
(not shown for brevity), and provides 1.81x and 1.97x gains
over the APPonly for shared and private files, respectively.
For sequential access, most approaches perform reasonably
well due to low cache miss rates (Table 1). CrossPrefetch
further reduces system calls and improves cache hits for
sequential access to both private and shared files.
Concurrent Access Analysis: In Figure 6, we vary the num-
ber of concurrent readers on the x-axis while maintaining
concurrent writers to four threads. First, APPonly and OSonly
approaches suffer from the global reader-writer lock of the
OS cache-tree. Additionally, [+fetchall+opt] struggles to scale
as threads increase due to the per-file bitmap lock and insuffi-
cient memory. Conversely, in the case of [+predict+opt] with
the scalable range-tree, each node (range) has its own read-
/write lock, substantially enhancing the concurrent access
performance for non-overlapping access.
Effectiveness of Memory-Mapped Access: To under-
stand the effectiveness of prefetching support when work-
loads use mmap, we evaluate CrossP[+predict+opt] by vary-
ing the thread count and compare the throughput against
APPonly and OSonly approaches in Table 4. As shown,
APPonly turns off prefetching using madvice, resulting in a
substantial slowdown. In contrast, [+predict+opt] improves
performance by monitoring the cache state and using the
Cross-LiB predictor to estimate and prefetch more blocks.
However, as discussed in §4.6, because [+predict+opt] period-
ically fetches the cache state from the OS to identify access
pattern as opposed to intercepting all load/store operations,
our current implementation leaves performance on the table.

5.3 CrossPrefetch Impact on RocksDB

We next evaluate the cross-layered prefetching impact using
the widely used RocksDB’s dbbench benchmark. RocksDB
is a production-scale LSM-based NoSQL database [5] de-
signed to exploit SSD’s parallel bandwidth and multi-core
parallelism. We analyze RocksDB’s workloads with multi-
ple approaches, as detailed below. We use 40 million keys
(120GB) as the database for our analysis.
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Methodology: Table 2 summarizes the five approaches com-
pared in this analysis. APPonly relies solely on application-
controlled prefetching based on its perception of the access
pattern, while the OSonly approach delegates prefetching
to the OS. [+predict] uses cross-layered prediction without
prefetching the entire file, while [+predict+opt] dynamically
sets prefetch parameters based on available memory and
I/0 bandwidth, thereby removing static limits in the OS. Fi-
nally, [+fetchall+opt], an idealistic but impractical approach,
attempts to prefetch the entire file when opened using cross-
layered prefetch information.

Sensitivity to Thread Count: Figure 7a illustrates the
effect of varying thread count on the throughput for multi-
readrandom workload. As thread count increases, the miss-
ratio reduces, implying the advantage of threads benefiting
from a shared cache state. The APPonly approach incurs per-
formance degradation due to the lack of prefetching support
for most files, whereas the OSonly approach performs in-
cremental prefetching for all files with prefetching limits
(128 KB), which reduces the benefits. In contrast, [+predict]
and [+predict+opt] achieve 1.39x gains over the APPonly and
1.22x gains over the OSonly approaches without the need
to load all database files to memory. Finally, [+fetchall+opt]
provides maximum gains by prefetching all database files
but significantly amplifies memory usage.

Performance Breakdown: Table 5 shows the break-
down of CrossPrefetch’s incremental performance gains
on RocksDB for 32-threads multi-read random workload.
CrossPrefetch performance improvements are primarily
through the following incremental factors: first, the cache
visibility (+cache visibility) increases cache hit rate and re-
duces system calls by exporting cache states to the user
space. Second, the support for concurrent prefetching using
the scalable per-file range tree (+range tree) adds to the per-
formance gains. Third, the support for understanding the
memory budget and aggressively prefetching the data (+aggr.
prefetch) further reduces cache misses, all leading to higher
performance gains.

Sensitivity to Prefetch Limit Size: In Figure 10, we il-
lustrate the impact of varying the prefetch limit size in the
kernel along the x-axis from 32KB to 8MB. We observe that
merely increasing the prefetch limit size for both APPonly
and OSonly does not enhance performance due to their lack
of cache state awareness and limited prefetching concur-
rency. In contrast, CrossPrefetch does not adhere to such
prefetch limits. Increasing the prefetch size for each request
(without memory pressure) provides performance gains,
but the gains are limited, highlighting that only increas-
ing the prefetch limit does not provide all the benefits of
CrossPrefetch.

Performance Across Access Patterns: For different
db_bench access patterns shown in Figure 7b, CrossPrefetch
shows similar trends. For sequential reads, OSonly per-
forms better than APPonly through efficient prefetching.
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Table 5. Breakdown of CrossPrefetch incremental
gains.

[+fetchall+opt] and [+predict] provide higher gains for ac-
cess patterns like read-while-scanning (readscan), while
[+predict+opt] provides considerable gains over OSonly or
APPonly for reverse read access, resulting in 3.7x gains.

Sensitivity to Memory Capacity: In Figure 7c, we eval-
uate RocksDB with 120GB database and vary the memory-
to-disk size ratios along the x-axis from 1:6 to 1:1, where
1:6 denotes the memory capacity set to 20GB. We observe
that OSonly without the understanding of memory bud-
get, under-performs, specifically when the memory capac-
ity is constrained. In contrast, APPonly’s lack of aware-
ness of cache state results in more system calls but shows
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Figure 10. Prefetch Limit Impact: Figure shows the multi-read

random workload for RocksDB when varying prefetch limit size (32 threads).

better performance compared to OSonly when the mem-
ory is constrained as it generally turns off prefetching
for the batched multi-read random workload. In contrast,
[+fetchall+opt] without aggressive eviction performs on par
with APPonly and OSonly under low-memory scenarios.
However, [+predict+opt] delivers superior performance with
its aggressive prefetching and eviction.

Sensitivity to Filesystems and Remote Storage: We eval-
uate five RocksDB access patterns using F2FS and ext4-based
remote storage (NVMe-oF). Apart from sequential reads,
CrossPrefetch generally outperforms other approaches, par-
ticularly for reverse read, where it achieves up to 5.68x gains.
This can be attributed to cache awareness, access pattern
detection, and reduced lock contention. This demonstrates
the adaptability of CrossPrefetch, as it consistently deliv-
ers performance gains across file systems and local/remote
storage.

5.4 Multi-instance and Multi-process Workloads

To evaluate CrossPrefetch’s I/O benefits on data-intensive
multi-instance workloads, we use the Filebench macro-
benchmark with sequential (seqread) and random read (ran-
dread), metadata-intensive MongoDB (mongodb) that creates
thousands of files, and streaming video server (videoserve)
workloads. We run 16 instances for each workload with
an overall workload of 160GB. We compare CrossPrefetch’s
[+predict+opt], [+predict], and [+fetchall+opt] approaches
against APPonly and OSonly baselines in Figure 8b. As
observed, APPonly’s prefetch operations increase system
call overheads and interference between prefetch and read-
/write operations. OSonly avoids overheads but experiences
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interference and contention with the 128KB prefetching
limit. [+predict+opt] reduces overheads, and limits interfer-
ence with a dedicated bitmap structure, thereby improv-
ing performance. For example, [+predict+opt] compared to
[+fetchall+opt] for videoserve, reduces cache pollution, and
provides 55% performance improvement.

5.5 CrossPrefetch Impact on Real-world Workloads

Finally, we study two real-world workloads: RocksDB [13]
with widely-used YCSB [9] and Snappy compression [10].
RocksDB + YCSB: We evaluate CrossPrefetch using the
YCSB [9] cloud benchmark with workloads A-F, encompass-
ing varying read/write ratios and utilizing the Zipfian dis-
tribution [25]. YCSB includes both a warm-up phase (write-
only) and a run phase, and we conduct our experiments
during the run phase employing 16 client threads. Figure 9a
illustrates the throughput using a 4KB value size and 40 mil-
lion keys. Workload A is write-intensive (50%), and its perfor-
mance is dominated by new block writes without benefiting
from the cache. In contrast, for the random read-intensive
workloads B and C, CrossPrefetch’s ability to prefetch blocks
alongside read operations concurrently results in perfor-
mance gains. [+predict+opt], with its fine-grained prefetch-
ing, avoids prefetching the entire file and, therefore, out-
performs [+fetchall+opt]. We observe similar gains for work-
load D, where most accesses involve recently inserted values.
For scan-intensive workload E, the overall throughput is
low due to application-level software overheads, but both
[+predict+opt] and [+fetchall+opt] provide a twofold increase
in throughput. Lastly, for workload F with 50% updates,
CrossPrefetch accelerates the overwrite operations.
Snappy Compression: To evaluate CrossPrefetch’s sensi-
tivity to memory capacity, we use Snappy [10], a file compres-
sion engine widely used as a backend compression engine
in various applications [3, 13, 28]. We modify Snappy to
compress files in parallel using 16 threads. Snappy reads the
entire file into memory before compressing and demands a
significant amount of memory size, which can impact perfor-
mance. We compress a 120GB dataset consisting of multiple
100MB files using Snappy and vary the memory-to-disk size
ratios from 1:6 to 1:1 (i.e., increase memory) on the x-axis.
Each thread opens a file, issues one or two read operations
(mostly sequential), and moves on to the next file, creating a
streaming-like access pattern. To exploit sequential access,
we modify the application to explicitly issue a fdavise after
opening a file in the APPonly approach. We observe that
APPonly is limited by excessive system calls, while OSonly
is ineffective with incremental prefetching. [+fetchall+opt]
lacks aggressive eviction under low-memory conditions, re-
sulting in a similar performance to APPonly and OSonly.
However, [+predict+opt] enables aggressive prefetching and
eviction, providing up to 31% performance gains with a 1:2
memory-to-disk ratio.
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6 Conclusion

This paper focuses on accelerating I/O prefetching for mod-
ern storage and introduces the design of CrossPrefetch.
CrossPrefetch optimizes prefetching by designing a cross-
layered stack between the OS and user runtimes, where
the OS provides cache visibility to the higher-level runtime.
The runtime uses cache visibility to provide concurrent and
fine-grained prediction prefetching to exploit storage band-
width and memory availability. Evaluation of CrossPrefetch
with various benchmarks and applications shows significant
performance improvements ranging from 1.22x to 3.7x on
modern fast storage devices.
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A Artifact Appendix
A.1 Abstract

CrossPrefetch artifact comprises OS-level components user-
level library and application, which are required for the
execution. The artifact comprises real-world applications
(RocksDB, Snappy, YCSB workload) besides microbench-
marks, as shown in the paper. The artifact includes steps
to compile the OS, user-level library, and application bench-
marks, and steps to run these workloads. More details are
presented below.

A.2 Artifact Check-List (Meta-Information)

e Program: user-level library and Linux kernel

e Compilation: The artifact includes a series of scripts to
compile the user-level library, modified Linux kernel,
and all other real-world application workloads and
benchmarks.

e Run-time environment: Experiments are run on a
baremetal Linux machine.
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e Hardware: We conduct experiments on local and re-
mote storage. For all experiments on local storage, we
use a Linux system with at least 32 AMD/Intel CPUs,
128GB of free RAM, a 512GB Samsung PM173X NVMe
SSD, and superuser access permission to install pack-
ages. For the experiments to be run on remote storage,
two machines (Client and Storage server) connected
via InfiniBand with RDMA interface are required.
Output: The output generates regular execution logs
and a text table to summarize the performance. The
artifact describes the output files and information.
e How much time is needed to prepare workflow (ap-
proximately)?: 30 minutes
e How much time is needed to complete experiments
(approximately)?: The artifacts have two types of work-
loads: (1) workloads that run for a shorter duration
(< 60 minutes with relatively smaller input; and (2)
longer workloads with large storage and memory re-
quirements that can take about 4-6 hours (depending
on the machine configuration) to complete for all data
points.
Publicly available?: Yes
e Code licenses (if publicly available)?: GPLv2
e Archived (provide DOI)?: Yes https://doi.org/10.1145/
3617232.3624872

A.3 Description

A3.1 How to Access The artifacts are available
on  GitHub: https://github.com/RutgersCSSystems/
crossprefetch-asplos24-artifacts

A.3.2 Hardware Dependencies For the local experi-
ments, a system with an x86-64 CPU is required. The mini-
mum system needs 32 cores of CPU, 64GB of RAM, and 250
to 500 GB of available solid-state drive. The instructions for
the experiments are tailored to and tested on an x86 host
system but may work on other ISAs.

A.3.3 Software Dependencies We run workloads in a
Ubuntu 18.04/20.04 system with a modified Linux 5.14.0. The
README in the repository provides the following script to
install all packages.

$ scripts/install_packages.sh

Note that all our instructions are for Debian-based pack-
ages. Similar packages exist for other OS flavors, which could
be easily installed.

A.4 Installation

The artifact includes scripts to compile the CrossPrefetch li-
braries and benchmarks and automated steps to install pack-
ages, compile, and install the modified Linux kernel.

Manual Installation: First, the repository provides a step-
by-step guide to compile and install each workload and the
scripts to run the experiments and generate results. We rec-
ommend using these instructions first to understand the
overall workflow, steps, and any installation errors that may
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occur. The repository provides steps for the Linux installa-
tion script in compile_modified_deb.sh. There are other
helper scripts, as mentioned in the artifact README file.
Automatic Installation: Beyond this manual approach, the
repository README provides information to use a single
script to compile and install all applications and user-level
libraries at once (compile_all.sh). When using this auto-
matic installation script, the progress logs for the compilation
can be found in the following path:
$ scripts/compile/

A.5 Evaluation and Expected Results

We provide a comprehensive step-by-step README on
GitHub to reproduce the experiment in the paper. As a brief
overview of the evaluation, we illustrate how to execute the
real-world YCSB workload (Figure 9a) with CrossPrefetch.
More evaluations can be found on our GitHub page.

Before running, we assume the modified kernel
(Cross-0S) is installed on the machine (please see the
README file) and the current work directory is in the
project’s root directory.

1. First, compile and install the user-level library (CroOss-LIB):
$ source ./scripts/setvars.sh;

$ cd $BASE/shared_libs/simple_prefetcher;

$ ./compile.sh
2. Next, to run YCSB, please use the following commands:

$ cd $BASE/appbench/apps/RocksDB-YCSB;

$ ./compile.sh;

$ ./release-run-med.sh
3. We also provide a script to extract the results and present
a text table.

$ python3 release-extract-med.py;

$ cat RESULT.csv
Expected Results for YCSB: According to our observation
on a CloudLab Machine (r6525). CrossPrefetch significantly
outperforms both APPonly and OSonly for workloads A to
F, offering gains between 1.17x to 4x improvements across
write and read-intensive workloads. The results could vary
based on the storage throughput, CPU speed, and available
memory, but we expect the overall performance to be high.

A.6 Experiment Customization

Our scripts offer easy-to-customize options for differ-
ent workloads, access patterns, prefetching parameters,
including bitmap size CROSS_BITMAP_SHIFT, prefetch-
ing size (PREFETCH_SIZE_VAR), prefetcher threads
(NR_WORKERS_VAR) and more. These parameters can be
configured within the library compile file (compiler.sh).
In addition, each benchmark script can be edited to adjust
application parameters. For brevity, we provide some
examples in our github repository.
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