
Loops: Leveraging Provenance and Visualization to Support
Exploratory Data Analysis in Notebooks

Klaus Eckelt , Kiran Gadhave , Alexander Lex , and Marc Streit

Added ChangedRemoved Unchanged

Markdown Code Data Visualization Analysts

A

C

N

D

E

F

 Compact & B Detailed Notebook Diff

Fig. 1: A Loops enabled notebook showing the evolution of the analysis. While the notebook N only shows the most recent state,Loops
visualizes the notebook history next to the notebook. The compact notebook diffs A provide an overview of how the notebook’s
structure and content changed over time. The rectangles represent the notebook cells, color-coded according to their status relative to
the previous version. We show the type of cell (markdown, code, tables, visualizations/images) using an icon and show the execution
count where appropriate. The detailed notebook diffs B reveal how cell content changed, using difference visualizations specific to the
type of content; including tables C , code D , text E , and visualizations F .

Abstract—Exploratory data science is an iterative process of obtaining, cleaning, profiling, analyzing, and interpreting data. This
cyclical way of working creates challenges within the linear structure of computational notebooks, leading to issues with code quality,
recall, and reproducibility. To remedy this, we present Loops, a set of visual support techniques for iterative and exploratory data
analysis in computational notebooks. Loops leverages provenance information to visualize the impact of changes made within a
notebook. In visualizations of the notebook provenance, we trace the evolution of the notebook over time and highlight differences
between versions. Loops visualizes the provenance of code, markdown, tables, visualizations, and images and their respective
differences. Analysts can explore these differences in detail in a separate view. Loops not only improves the reproducibility of
notebooks but also supports analysts in their data science work by showing the effects of changes and facilitating comparison of
multiple versions. We demonstrate our approach’s utility and potential impact in two use cases and feedback from notebook users from
various backgrounds. This paper and all supplemental materials are available at https://osf.io/79eyn.

Index Terms—Comparative visualization, computational notebooks, provenance, data science

1 INTRODUCTION

Computational notebooks are the tool of choice in many data science
applications [10]. As a literate programming tool [35], notebooks
combine analysis and narration for the analysis in a single document.
Notebooks can integrate diverse formats, such as different programming
languages, multimedia content, interactive widgets, and visualizations
as part of the output. The most commonly used notebook technology
is the Jupyter family [34], the use of which has doubled annually in
recent years [51].

• Klaus Eckelt and Marc Streit are with Johannes Kepler University Linz,
Austria. E-mail: klaus@eckelt.info; marc.streit@jku.at.

• Kiran Gadhave and Alexander Lex are with University of Utah, United
States. E-mail: kirangadhave2@gmail.com; alex@sci.utah.edu.

The promise of literate programming—interspersing explanatory
text with code—is reproducibility of the result. However, previous
research has shown that reproducibility is not the norm when using
computational notebooks [22, 49, 64, 67]. A large-scale study by Pi-
mentel et al. [49] showed that only 24.11% of 863,878 public Jupyter
Notebooks could be re-executed and just 4.03% produced the same re-
sults. Computational notebooks “can foster poor coding practices” [47],
become messy [23], and as a result, are often not reproducible [22, 49].
Poor coding and documentation practices also affect data analysis re-
producibility, as analysts often start with a vague understanding of their
resources and goals [3, 25].

The information foraging and sensemaking loop describes how ana-
lysts search, filter, and extract information, continuously developing a
mental model that aligns with the new information and their existing
knowledge [50]. In the series of loops that make up the analysis process,
each iteration refines the understanding and brings the analyst closer to

https://orcid.org/0000-0001-6832-9070
https://orcid.org/0000-0001-6916-2583
https://orcid.org/0000-0001-6930-5468
https://orcid.org/0000-0001-9186-2092
https://osf.io/79eyn

their goal. But an iterative analysis process does not match well with
the notebook’s linear structure; hence, it can be difficult for analysts
to understand the state of their notebook. For example, analysts often
update their code to reflect new insights or hypotheses, losing track
of previous attempts and results [54]. Alternatively, they may dupli-
cate their code to compare different approaches, resulting in messy
notebooks that contain outdated or redundant code [54, 66]. Another
issue, specific to sequentially executed notebooks such as Jupyter, are
out-of-order executions that break the logical flow and introduce hid-
den dependencies [23, 49, 54]. These practices make reproducing the
analysis process and results difficult for analysts and others who want
to reuse or verify their work.

Previous works tried to mitigate these issues by capturing the prove-
nance of notebooks [31, 55] or providing live support for exploratory
and/or iterative data science tasks [14, 15]. However, to date, these two
approaches have been studied independently and rarely combined.

To remedy this, we introduce Loops, our primary contribution,
a novel visual exploration approach that tracks and visualizes the
changes of a notebook over time, allowing analysts to better under-
stand the impact of their changes and the notebook’s history. Loops
juxtaposes the notebook with compact representations of the analy-
sis “loops”. Loops visualizes changes made to the notebook and how
they impact the output. By tracking the provenance of notebooks
and visualizing the history and differences, we can assist analysts in
their ongoing analysis by revealing the impact of their changes. We
also contribute a discussion of the different types of content found
in computational notebooks and how differences in these contents
between notebook versions can be effectively visualized. We im-
plement Loops as an open-source JupyterLab extension, available
at https://github.com/jku-vds-lab/loops. We validate our
approach through use cases and feedback from notebook users that
demonstrate its utility.

2 RELATED WORK

We start this section by discussing research that studied the prevalent
issues of computational notebooks and the challenges analysts face
when working with them. We then discuss how the provenance of
computational notebooks can be tracked and visualized, followed by
existing work on visual comparison aspects.

2.1 Data Science in Computational Notebooks
Computational notebooks support incremental and iterative analyses
well, enabling analysts to edit, arrange, and execute small code blocks
in “cells”. Cells combine an input for code with the output it produces,
and can be executed in any order. However, this execution of cells in
any order compromises reproducibility.

Large-scale studies document that the order of cells in a notebook
and their execution order do not match for more than a third of the
notebooks analyzed [22, 49]. In addition, the execution order cannot
be tracked by the notebook alone, as only the last state of a cell is
visible. In most cases, public notebooks have multiple large gaps in the
execution sequence appearing in the notebook, where it is unclear what
analysts executed and if it still exists in the notebook [49]. Notebook
environments with reactive code execution models avoid issues from
out-of-order execution and gaps in the execution sequence as they
recompute results when the user changes a cell. Thus, at least the most
recent state of the notebook can be reproduced. However, the previous
code and outputs are still replaced when changes are made, leading
to code duplication and messy notebooks when comparing different
approaches. Also, when encountering dead ends, analysts often fail
to document intermediate steps [9, 54]. Thus, notebooks are generally
unsuitable for documenting the provenance of the analysis process.

Exploring the history of a notebook was rated the most challenging
task after deployment in the survey by Chattopadhyay et al. [9]. When
asked about remedies for tracking the evolution of a notebook, analysts
favored automated versioning of their code and outputs [9]. However,
tracking provenance alone is not sufficient. The tracked information
must also be easily retrievable and easily digestible, for example, by
relating it to another version of the notebook. We conclude that analysts

can benefit from techniques that allow them to easily compare visual
and textual changes between notebook versions, such as different data
versions or alternatives tested [3,9,54]. These requirements have guided
the design of our approach.

2.2 Tracking and Visualizing Notebook Provenance

In the 2015 UX survey by the Jupyter organization [60], version control
was one of the most desired features currently lacking in the Jupyter
platform. Traditional version control management with tools like git is
commonly used for notebook platforms such as Jupyter and Quarto [61].
However, these document-based notebooks represent visual outputs
as encoded strings that frequently change, even if the content does
not change, which makes the version history messy and confusing
to navigate [9]. Further, traditional version controls cannot track the
history of the outputs and metadata, like the execution order, which
are not stored as part of the notebook structure. The Git extension
for JupyterLab [30], based on nbdime [29], juxtaposes notebooks for
comparison and shows differences in code and plain text. Commercial
platforms, such as Observable or Google Colab, automatically track
changes and store snapshots of notebooks on every change. JupyterLab
creates a snapshot every time an analyst saves a notebook. Users can
browse these notebook snapshots by date, but they do not provide
details about the changes made in each snapshot. In Google Colab,
users can also compare the textual content of two selected snapshots,
such as code, markdown, or textual output. Comparisons of data or
graphical output, including visualizations and images, are not supported.
Observable notebooks allow forking to create variations of the analysis,
yet lack features for direct comparison or reintegration of changes into
the original notebook, which leads to messy workspaces with multiple
copies of the same analysis [9].

ProvBook [55] is an extension to Jupyter Notebooks that tracks the
provenance of cells. It enables users to compare individual cells to
their previous versions by juxtaposing the previous code, the output it
produces, and metadata, but without any explicit encoding of the differ-
ences. The effect of a change in one cell on other cells is not visible
with this approach. MLProvLab [33] tracks the notebook’s provenance
and displays each version as a graph where the nodes are the notebook’s
cells and variables are the connecting edges. The graph’s evolution
over time can be inspected by browsing the executions. From the graph,
a cell’s code can be compared to earlier executions. MARG [52] visu-
alizes a notebook as a graph with cells as nodes and connects them in
the order of the analysis. This way, divergence points in the analyses,
after which analysts try out multiple alternatives, can be displayed. The
resulting graph is similar to provenance graphs of analysis processes
in visual analytics tools [21, 24, 57]. The approach, however, requires
manually annotated notebooks and provides no comparisons. AARD-
VARK [16] is a visual debugging method to identify and compare
differences in the program flow and variable values after code modifi-
cations. Persist [17] tracks provenance for interactions in interactive
outputs in notebooks, yet does not tackle overall notebook provenance.

Most closely related to our work is Verdant [31], which automati-
cally records the provenance of analyses conducted in notebooks and
visualizes it in two tabs: the activity and artifacts tab. Like the histories
in Google Colab and Observable, the activity tab lists time-stamped
revisions. For each revision, a barcode visualization summarizes the
changes to the notebook. Selecting a revision opens the notebook’s
old state in a separate tab in JupyterLab. Verdant’s artifact tab lists the
cells and displays the input and output versions. Analysts can inspect
the history of cells across all notebook revisions. In all views, only
differences in the cell’s code input are highlighted.

In contrast to the works described above, our visual representation
of the notebook and its history resembles that of the source notebook.
Instead of representing the notebook with a graph or barcode, we
represent the notebook cells as rectangles aligned from top to bottom
next to the notebook. In addition, we align the history with the cell that
is currently active in the notebook. Loops’ visualization of the notebook
history shows the notebook structure, how it changes over time, if and
how the cells have changed, who changed them, and summarizes the
difference between the various types of content in the notebook, thereby

https://github.com/jku-vds-lab/loops

providing a comprehensive view of the changes made.

2.3 Visual Comparisons
Comparison of different states of inputs and outputs is an essential task
for understanding the evolution of notebooks. However, the types of
content present in notebooks are diverse, and hence, efficient compar-
ison methods have to be tailored to the type of content. This section
discusses ways to compare notebook content visually, focusing on plain
and rich text, code, data tables, and images. We do exclude dynamic
content such as audio, video and embedded websites.

Gleicher et al. [19] describe the design space of comparative vi-
sualization as being made up of juxtaposition, superimposition, and
explicit representation. Juxtaposition—presenting objects side-by-side
or over time through animation—is often easy to implement and can
be used for any visual representation. The downside of the approach
is that it relies on memory for comparison. Superimposition—placing
objects in the same coordinate system—is common for spatial data or
comparisons of similar objects but can easily lead to clutter. Explicit
representation directly encodes differences, eliminating the need for
mental comparisons. To contextualize differences, explicit representa-
tion is frequently combined with superimposition or juxtaposition. In
the following, we discuss visual difference encodings for the various
content types present in notebooks.

Text difference visualizations are widely employed in text editors.
Overleaf and Google Docs, for example, track and highlight textual
changes for plain and rich text. Myers algorithm [41] is most com-
monly used to create human-readable text differences. The algorithm
computes a “diff” by finding the shortest path in the edit graph for two
strings. It is the default option of git and several code editors to show
code differences [44]. While changes to plain and rich text are com-
monly visualized within the document with explicit encodings, most
code editors default to juxtaposing the compared versions and explicitly
encoding additions and removals.We support both in-document and
juxtaposed comparison in Loops.

In addition to the layout considerations above, Gleicher [18] also
points out that image differences could be identified at different ab-
straction levels: on the data, feature, and image level. The data level
refers to the raw data to create the image, the feature level refers to the
abstracted data (e.g., the height of a bar in a histogram), and the image
level to the resulting imagery. As our approach operates on the visible
output of Jupyter notebooks, we focus on related work that compares
images (and data visualizations) at the image level.

Notebook environments and the related work discussed so far juxta-
pose graphical outputs in the notebook, but do not use explicit visual
encoding of differences [18]. For superimposition, blending and color
weaving have been proposed to combine information from layered
images [19, 38]. To explicitly encode differences between images, a
common method is to convert them to grayscale and create a difference
image by subtracting the individual pixel values of one image from the
corresponding pixel values of the other [20, p. 87–90]. Pixel differ-
ences can be color-coded, for example, in red and green for negative
and positive differences, respectively [26]. However, global transla-
tions, antialiasing, or compression in lossy formats can cause large but
irrelevant differences [26, 27, 53]. To suppress these artifacts, fuzzy dif-
ference methods can be applied that either take neighboring pixels into
account [26], or allow a certain distance between the compared pixels
in color space [27]. Resemble.js [53] employs a nuanced approach,
calculating pixel-based image differences with options to ignore sub-
tle changes, color differences, transparency, and antialiasing; it also
provides several modes to visualize differences. VAICO [56] supports
comparing more than two images simultaneously, using hierarchical
clustering of regions of differences and superimposition of the results.

To identify differences in data visualizations, previous studies eval-
uated the efficacy of superimposition and juxtaposition for various tasks
in crowd-sourced experiments [28, 45]. While participants performed
best with animated and superimposed visualizations when estimating
correlations or identifying the largest difference between visualizations,
juxtaposed visualizations performed better for certain tasks [28]. Vis-
a-Vis [5] visualizes the evolution and differences in visualizations in

the context of changes in code and code structure. Vis-a-Vis displays
the current source code, output, and a revision tree, grouping revisions
by code structure. The interface displays outputs linked to a structure,
along with a comparison image showing the outputs’ per-pixel variance.
In Loops, we juxtapose or superimpose two images (including images
of data visualizations) and highlight pixel differences. We color-code
pixel differences to indicate added, removed, or changed content. We
also group neighboring changes by slightly dilating the pixel-based
difference. If the images/visualizations are superimposed, we provide
sliders to vary the opacity of the images dynamically.

As data is fundamental to data science, data differences are at least
as important as code differences. Datasets evolve over time as ana-
lysts filter, clean, update, or expand them during their work. However,
data difference visualizations are rarely integrated into the tools used
by analysts. While notebooks can be used to analyze arbitrary data
set types, we focus on arguably the most common data type: tabular
data. TACO [43] introduces an approach to visualizing changes in data
tables. The technique categorizes changes as additions and removals,
merges and splits, reorders, and content changes. TACO juxtaposes the
compared tables and shows a heatmap of the differences, highlighting
content modifications, additions, and removals through distinct colors.
Furthermore, the changes are summarized in a histogram, offering an
overview of each version. CHAMELEON [25] is a visual analytics ap-
proach that focuses on the impact that changes in data have on machine
learning projects. They show a data version timeline, from which two
versions can be compared in detail. Changes in the data’s distribution
are visualized with superimposed diverging histograms for each feature.
In addition, a prediction change matrix and a sensitivity histogram
explicitly show how the machine learning model’s predictions are af-
fected by the change in data. In prior work [13], we visualize data
sets that change over time as time curves [4]. Juxtaposed summary
visualizations and explicit difference visualizations show how the data
changed between two versions, with differences sorted based on the
extent of change. Perhaps most closely related to our work is Diff
in the Loop [62], which contains a code editor that tracks changes to
code and runtime variables. A separate view shows how the data set
has changed through code edits by visualizing the distribution of all
affected features.

In Loops, we explicitly visualize the differences in tabular data by
color coding changes, additions, and removals. The resulting visual-
ization is similar to the heatmap in TACO [43]. However, we do not
incorporate color coding to indicate the magnitude of change within a
table’s cell, nor do we consider the reordering of columns a change. The
effects that differences of the tabular that have on the subsequent analy-
sis are not visualized directly but through the difference visualizations
in the following cells as soon as they are re-executed.

3 LOOPS APPROACH

Data analysis is an iterative process. Based on the insights analysts
gain during their analysis, they need to change their previous code and
assess how the results are affected. With Loops, we not only track
the notebook provenance for reproducibility of the analysis results,
but also to support the ongoing analysis process. We aim to achieve
this by visualizing how the notebook has changed in the series of
loops that make up the analysis process. We show the changes made
by analysts and their impact on the notebook outputs with difference
visualizations (diffs) for the whole notebook and individual cells.

Loops design is guided by the issues that analysts face when working
in notebooks (see Sec. 2.1). First, we help analysts document their
analysis process, including all intermediate steps, by automatically
recording the notebook’s provenance. Second, exploring the history of a
notebook was rated as one of the most challenging tasks [9]. We remedy
this with Loops notebook history visualization, which reveals when
and in what order cells were changed and executed, which cells were
changed most frequently, and whether other collaborators have changed
any cells. We summarize all this information for individual notebook
versions in the compact notebook diff. A detailed notebook diff also
reveals how cells were changed, addressing the third issue analysts face
in notebooks: comparing alternatives. Currently, comparisons happen

sheet_id = "1f2L--qQlV

sheet_name = "2023-1011"

url = f"https://docs.g

df = pd.read_csv(url)

df.head()

Notebook History

Cell Comparison

Notebook

Text & Rich Text Diff Code Diff Table Diff Image & Vis Diff

Concert Analysis

OctoberNovember 2023

[1]

[5]

[6]

[9]

Detailed Notebook DiffCompact Notebook Diff
Fig. 1(A) and Fig. 3

Summarizes the notebook
structure over time, how
the cells have changed, and
who changed them.

Comparison of cell content with .difference visualizations
Fig. 5 and Fig. 6(E)

Also shows who changed
the cells and how their
content changed using

.difference visualizations

Fig. 1(B) and Fig. 6

Fig. 2: The notebook’s history is presented next to the analyst’s notebook,
visualizing changes between notebook versions with compact or detailed
notebook diffs. The cell comparison can be opened on demand to explore
the differences in further detail.

by duplicating code, resulting in notebooks with outdated or redundant
code [54]. We facilitate the comparison by placing the notebook history
next to the notebook and aligning the diffs in the history with the
currently active cell in the notebook (see Fig. 2). The detailed notebook
diff shows difference visualizations for every change in the cells’ input
and output. This allows us to show the changes made by analysts, but
also the impact of their changes on other cells. Loops also provides
a full-width detail view for cell comparison, with which individual
changes can be explored further (see Fig. 2).

In the following subsections, we explain how Loops tracks the note-
book’s provenance and how it is visualized and compared in its compo-
nents. The supplementary video (see Sec. 8) demonstrates the workflow
and interactions.

3.1 Tracking and Visualizing the Notebook History

Loops automatically records the interaction provenance, as requested
by analysts in prior work [9]. Every time users execute a cell in the
notebook and thus update it, Loops saves the notebook’s state. Loops
stores the cells of the notebook, their order, which cell was active and
executed, who executed it, the cells’ input (i.e., the code) and output,
and how these inputs and outputs were displayed in the notebook–
rather than the content of variables used in the execution. Consequently,
Loops stores everything an analyst sees while working in the notebook
and thus influences their information-foraging and sensemaking loops.
The goal of Loops is not to collect comprehensive provenance that
guarantees reproducibility but to support and make the iterative analysis
process comprehensible. We argue that through this support, many
issues that often lead to unreproducible notebooks can be mitigated (see
also Sec. 1).

As with most provenance data, the scale of interaction histories can
become uninterpretable and overwhelming quickly [9]. Therefore, we
considered how the provenance can be best aggregated. If at all, previ-
ous work has grouped notebook versions by temporal proximity [32].
For Loops, however, we decided to take a different approach that lever-
ages the semantics of notebooks: Loops groups the stored notebooks
states as long as their cells are executed in linear order (see Fig. 3).
This means that the notebook provenance is aggregated as long as the
analyst executes the notebook from top to bottom, even if the analysis
is interrupted between executions.

Although the analysis process is typically not linear, its steps still
build on each other: Data must be loaded before exploration, cleaned
before modeling, etc. These dependencies are also reflected in the
structure of the notebook [52]. Going back in the notebook—and re-
evaluating already executed parts—corresponds to a new iteration of
the analysis loop. In Fig. 1 A , for example, a new version is introduced
as the analyst edits and re-executes the first cell of the notebook again
before updating the data processing step and re-running the modeling
step with the new data. The aggregated notebook provenance thus
reflects the analysis loops we visualize and compare in Loops.

Changes

Aggregated

Versions

time

Cell 1 v1

Cell 1 v1

Cell 2 v1

Cell 2 v2

Cell 2 v2

Cell 2 v2

Cell 1 v2

Cell 1 v2

Cell 3 v1

Cell 3 v1

Cell 1 v3

Cell 1 v3

Cell 2 v3

Cell 2 v3

Cell 3 v2

Cell 3 v2

Fig. 3: Aggregation of notebook changes to the versions visualized with
Loops. Each column of changes corresponds to an execution of a cell.
To simplify the provenance visualization, changes are aggregated into
the same version as long as the notebook is executed from top to bottom.
Note that no information about the structure of changes is lost.

This methodology to record and aggregate the provenance of note-
books is designed primarily to address the challenges encountered in
sequentially executed notebooks (see Sec. 2.1). However, we argue
that our approach is also valuable for analyses within reactive note-
books (see also Sec. 7).

The versions are visualized and arranged horizontally according to
their creation order. Each cell is represented as a rectangle with rounded
corners, reminiscent of a notebook cell. Like in a notebook, the cells
are arranged vertically. Cells of adjacent versions are connected by
thin gray lines, which serve as a visual guide for tracing cells across
the notebook’s versions. This is especially helpful if cells are not
aligned (see Fig. 4). In addition, we align the cells of each visualized
version around the cell that is currently active in the notebook. When
the analyst changes the active cell, our provenance visualization re-
aligns the cell’s history vertically to enable better comparison (see
Fig. 6 E).

Notebook versions can be visualized at two levels of detail: (1) The
compact notebook diff provides an overview of the version, indicating
added, changed, executed, and deleted cells. (2) The detailed notebook
diff also reveals the cells’ content and how they have changed compared
to the previous version. Below the notebook diffs, Loops displays a bar
chart with a continuous time scale showing the temporal distribution
of the notebook versions and the extent of their changes, indicating
active and dormant periods of analysis (see Fig. 4). By visualizing the
structure of the notebook, how and when it changed, and who changed
it, we address the analysts’ need for a retrievable and comparable
history [9].

3.1.1 Compact Notebook Diff

The compact notebook diff, shown in Fig. 4, gives an overview of the
evolution of the notebook, showing all cells in the same small size. We
embed icons that indicate whether a cell contains markdown or code. If
a code cell produces outputs, we encode the output type, i.e., whether it
is a table or a visualization/image. Furthermore, an execution counter
displays how often the cell was executed in each version. This helps
identify the parts of the notebook that have been modified the most
or not executed at all. Cells are color-coded according to their status:
unchanged, changed, added, or deleted relative to the previous version.
In accordance with common comparison tools for text and code, we use
color-blind safe shades of ○ green and ○ red for additions and removals,
○ yellow for content changes, and ○ gray for unchanged content.
Furthermore, the currently active cell in the notebook is emphasized
with a ○ blue shadow (see Fig. 4). When multiple analysts contributed
to a notebook, we indicate each version’s contributors at the top of the
difference visualization (see Fig. 4). Contributors are sorted according
to the number of executions they performed.

The compact cell design allows us to display 30 cells on Full HD
screens without scrolling. This allows us to present the majority of
notebooks in their entirety, as prior research indicates that more than
50% of all notebooks comprise 30 cells or fewer, and 95% contain 100
cells or fewer [54]. Fig. 4 shows an analysis carried out over several
weeks with 211 executions visualized in 27 versions.

Fig. 4: Notebook history with compact notebook diffs for an analysis conducted over several weeks. Rectangles represent the notebook cells, which
are color-coded to show insertions (○ green), removals (○ red), change (○ yellow), and no changes (○ gray). For executed cells, we show how
often each cell was executed plus an icon indicating whether the cell contains markdown or code. For code cells, we change the icon if the cell
outputs a table or visualization/image. The cells of the versions are aligned around the active cell, emphasized with a blue shadow In the initial
version on the left, the first analyst () created and executed multiple cells. Later, mainly the cells at the end of the notebook were edited iteratively,
and the entire notebook was executed again only a few times, primarily when the analyst changed in versions 57 (), 88 (), and 211 ().

3.1.2 Detailed Notebook Diff

The detailed notebook diff, shown in Fig. 1, visualizes the changes in
both code and output of a cell, allowing analysts to understand their
changes’ impact better. We adapt the displayed cell content depending
on its output and change to give a better overview of a notebook version.

The content of markdown cells with headlines and code cells that
output visualizations or images are always shown, as these elements
provide structure to the document, and showing them facilitates naviga-
tion [9, 54]. However, we limit the cell content shown to the markdown
cells’ headings and the code cells’ visualizations/images, as long as
other cell parts are unchanged. If there are no changes, code or outputs
that don’t generate a visualization have their content hidden. Cells
where neither the code nor the output are displayed are represented
with a small rectangle, as in the compact notebook diff. This approach
allows the notebook diff to focus on changes and their impact across
the notebook (see Fig. 1 B). If there are changes in code or outputs,
a superimposed difference visualization for the respective cell content
is displayed (described in Sec. 3.2). The code and the outputs of the
currently active cell are always displayed so that the history of the cell
can be easily tracked and compared, as illustrated in Fig. 6 E . Because
we display the content of cells in the detailed notebook diff, we shift
from color-coding the entire cell to color-coding only the cell border.
This adjustment addresses contrast issues and ensures the cell content
remains clearly visible.

In addition to its content, we show the cell’s type and how often it has
been executed in the top left and right corner, respectively, mirroring
the compact notebook diff. Furthermore, we show who contributed
to the changes in the cell. Contributors are represented by avatars
adjacent to the execution count and are arranged based on the number
of executions they have performed (see Fig. 1).

3.2 Visualizing Cell Content Differences

For a comprehensive comparison of the cell content, analysts can open
a separate detail view for cell comparison from each cell in the history.
We show this view below the notebook to leverage horizontal space
that is useful for side-by-side comparisons (see Fig. 6 C).

The cell comparison can be used for either code or output and
features large difference visualizations that display the content of the
cell and how it changed (see Fig. 5). The view automatically shows
an appropriate difference visualization based on the content type. We
have carefully designed visual encodings that consistently visualize
changes in the cell’s code and the various types of content present

in the cell’s output. All difference visualizations can display either
juxtaposed or superimposed comparison, offering flexibility in viewing
and comparing changes. In both layouts, changes are explicitly encoded
by applying the same color scale used for cells.

Next, we introduce the difference visualizations tailored for various
content types. These visualizations are employed not only in cell
comparison but also in the detailed notebook diff, albeit in a more
condensed format.

3.2.1 Text and Code Comparison

For the visualization of text and code differences, we based our de-
signs on standard methods used in word processors and editors. Our
difference visualization employs the Myers algorithm [41], which is
widely used to detect insertions and deletions in text. Myers difference
algorithm is particularly effective for comparing text documents, as it
can efficiently identify the longest common subsequence of words or
lines between two texts, making the display intuitive to understand. We
use this approach for plain and rich text.

For visualization of code differences, we use a dedicated code edi-
tor. This editor provides syntax highlighting and employs the Myers
difference algorithm but with additional post-processing steps applied
to the detected changes (see Fig. 5 A). These additional steps account
for the unique characteristics that code presents in contrast to text
documents to ensure that the differences are meaningful and relevant.
Alternative algorithms have been shown to provide better results for
code than the standard Myers algorithm, but prior work has not consid-
ered post-processing steps [44]. Given its frequent use in coding tools
and developers’ ensuing familiarity, we chose this combination over
alternatives.

3.2.2 Tabular Data Comparison

Understanding how tabular data changes over the course of an analysis
is crucial. Changes may be introduced through code or updates of the
data source [3, 25, 40].

In Loops, these changes are explicitly visualized. Inspired by
TACO [43], our visualization compares two tables as they are out-
put in the notebook. It identifies changes within the cells of a table and
also detects the addition or removal of rows and columns. Columns or
rows that are added or removed are highlighted in green and red, respec-
tively. Changing the order of columns is not considered a change, as the
columns’ data remain unchanged. Cells in a table with changed content
are highlighted in yellow; removed or newly added content is juxta-

B

C

A

Fig. 5: Detailed code, table, and image/data visualization differences. The code difference A shows that the plotted subset was extended and that
the data for the visualization’s x and y axes were preprocesed further. The table difference visualization B shows that the concert data’s price
column was adjusted and a empty column was added. The data visualization difference C shows changes in the y-axis labels and regression lines.

posed within the cell, with the removed text being struck through (see
Fig. 5 B).

3.2.3 Comparing Images and Visualizations
Images and data visualizations can be compared at multiple levels: on
data, feature, and image level [18]. In Loops, we compare them at the
image level (and assume visualizations are rendered as raster graphics)
and thus do not differentiate between images and data visualizations
in the following. While the comparison is made at the image level,
the image difference visualization is part of a broader context that
includes differences of all other steps preceding the image change. The
difference visualization we propose aims to highlight smaller changes
in particular, as larger changes—such as changes to the underlying
data, the plot type, or one of its encodings—are also reflected in the
data or code differences. Appendix A.3 contains a gallery of difference
visualizations for several types of visualizations and changes in them.

Balancing the needs for comparison between generic images (photos,
diagrams) and data visualizations is difficult. For instance, a slight
change in brightness may not matter in a photograph but can indicate a
crucial change to the data underlying a heatmap. Given the data science
focus of this work, we prioritize the requirements for comparing data
visualization over those for generic images.

Image subtraction is used routinely for enhancing differences be-
tween images [20, p. 87] and is useful when changes in successive
images need to be detected [8, p. 429]. This is the primary use case
of our work: to highlight changes between iterations. We use pixel-
based subtraction to create the difference visualizations for images. The
process is illustrated in Appendix A.1.

If the image sizes vary, they are first scaled, preserving their aspect
ratio, and subsequently padded to the same size. We pad to the right
and top because data visualizations usually align axes with the bottom
left. To determine the color for the added pixels as part of the padding
process, we extract the background color by analyzing the outermost
1% of pixels on all four borders of the image, and assume that the most

frequent color is the background color. The images are then subtracted
and subsequently turned into grayscale by calculating the perceived
luminance of each pixel to preserve the color differences [8, p. 256].
Thresholding converts the grayscale image into a binary image, by set-
ting all pixels exceeding a 1% change in luminance to white (changed)
and all others to black (unchanged). As the pixel-based approach may
result in many small disjoint changes, we apply additional morpho-
logical operations to make the difference visualization more compre-
hensible, akin to summarizing text changes on a word rather than a
character level. Differences are dilated twice, which merges adjacent
differences into one, using a 3×3 kernel for the detailed comparison
and a 9×9 kernel for the detailed notebook diff to ensure visibility in
the scaled-down representation. Afterwards, the differences are eroded
once, using the same kernel, to reduce the size of the differences again.
Performing the erosion only once (when we dilated twice) results in
the difference being slightly larger than the changed content, forming a
small border around the changed pixels. This approach is inspired by
the background color used to mark changes in text, providing a clear
and distinct visualization of modifications (compare Appendix A.3).
The calculated difference is then transformed into an RGB image. Pix-
els that changed from the background color to a different color are
encoded in green, from a non-background color to the background
color in red, and pixels that changed color in yellow (see Fig. 6 E).
We also calculate the changes’ bounding boxes. In initial experiments,
we highlighted changes using rectangular or convex hull bounding
boxes, but within the bounding boxes the changes were challenging to
identify. Instead, we now count the bounding boxes to inform the user
about the number of changed regions in the image, first removing any
bounding boxes nested within others, to highlight subtle changes as in
the scatterplot in Fig. 12.

Users can choose whether the images with explicit difference encod-
ing are displayed juxtaposed or superimposed. In the superimposed
difference visualization, the images are combined with alpha blending,
and the opacity levels can be controlled with a slider (see Fig. 5 C).

Whether juxtaposition or superimposition is better is task-
dependent [19, 28, 45]. Generally, superimposition is most helpful
if the compared images are similar, while significant changes are better
represented in juxtaposed views [19, 28, 45]. We therefore superimpose
highly similar images and juxtapose dissimilar images. To determine
similarity and decide on the layout to use by default, we evaluated
multiple image similarity metrics: (i) Mean Squared Error (MSE),
(ii) Structured Similarity Index (SSIM) [65], (iii) Normalized Mu-
tutal Information (NMI) [58], and (iv) Oriented FAST and Rotated
BRIEF (ORB) [7]. We excluded MSE and NMI from further considera-
tion due to a lack of interpretability of the resulting value. The results of
SSIM and ORB are promising, but to avoid a discrepancy between the
visualized differences and the calculated similarity we opted for a more
straightforwrd approach based on our explicit encoding of differences.
We divide the number of changed pixels by the total number of pixels in
the image to obtain a relative pixel similarity measure. Further details
on the similarity metrics and the results of our experiments are provided
in Appendix A.2.

In addition to guiding the default representation (superimposed vs
juxtaposed), we also show the numerical value in the difference vi-
sualization. We present the difference visualization superimposed as
long as the similarity is at least 90%. Otherwise, we use the juxtaposed
layout. If the similarity of pixels is less than 75%, we remove the
explicit encoding of differences, assuming that the images are different
enough to be recognized without visual aids. Our experiences match
findings by Lyi et al. [37] who found that “explicit-encoding can be
used for designs where visualizing subtle difference is of importance”.

4 IMPLEMENTATION

We have implemented the open source prototype of Loops as an ex-
tension for JupyterLab that is available on GitHub: https://github.
com/jku-vds-lab/loops/. A deployed instance of JupyterLab with
Loops is available at: https://mybinder.org/v2/gh/jku-vds-
lab/loops/main; this instance also contains example notebooks. Al-
though the screenshots and use cases presented in this work use Python,
the Loops prototype can be used with any programming language avail-
able in Jupyter, as it only operates on Jupyter’s frontend and has no
dependencies on the notebook’s kernel.

We use Trrack [11] to store the notebook states as a provenance
graph. For the difference visualizations, we use html-diff [59] for rich
text differences, the Monaco Editor [39] for code differences, D3 [6] to
create the table difference visualizations, and OpenCV [7] to create the
image differences.

5 USE CASES

We demonstrate Loops by means of two use cases. The first use case
presents an analysis of Austrian concert data conducted over several
weeks and demonstrates Loops’ visualization of the analysis history.
The second use case demonstrates how we support analysts in com-
paring the results of a what-if analysis on data from lung cancer pa-
tients. The notebooks of the two use cases, together with the prove-
nance of the analysis, are available in the deployed instance of Loops:
https://mybinder.org/v2/gh/jku-vds-lab/loops/main. Fur-
thermore, we collected qualitative feedback from notebook users with
various backgrounds, which we summarized in Sec. 6.

5.1 Use Case 1: Multi-Week Concert Data Analysis
Our use case presents an analysis of Austrian concert data conducted
over several weeks and demonstrates Loops visualization of a long
analysis process by two analysts (see Fig. 4). The data set is a long-
form table with 501 entries from 2003 to 2023. Its features describe the
artist, date, location, ticket price, and act (headliner/support). We load
the concert data from an external Google Sheets spreadsheet, which is
updated regularly and allows us to show differences that are not caused
by code changes. The history contains 211 executions represented in
27 versions. The final notebook consists of 16 cells, a typical size for
notebooks [54].

Analyst starts the analysis on October 6th by importing the concert
data and applying a few initial data wrangling steps. They then profiled

the tabular data to examine available years and how distributions change
over time. The primary goal of the analysis was to investigate the
increase in ticket prices over the years. While they created various plots
using different visualization techniques, it was necessary to repeatedly
return to the data wrangling step to update the data types to fit the
plot (v19–v46 in Fig. 4). After updating the data, the visualization cell
was changed up to 13 times in one version.

The analyst re-executed the notebook on October 16th (v57) and
17th(v66). The detailed notebook diff reveals no code changes, but
outputs were changed due to external data updates. As cell outputs are
overwritten upon execution, investigating how an output changes with
new data becomes challenging, particularly with multiple outputs in
the notebook. In this context, Loops enhances our ability to recognize
and track changes by clearly highlighting output differences.

The most extensive phase of the analysis occurred on November
6th, involving 118 of 211 versions, visible in the bar chart in Fig. 4.
Analyst extended the visualization of price trends over time with
regression lines and adjusted prices for inflation by including a data
set containing inflation rates. Adjusting prices for inflation required
several iterations, and we used Loops to verify the changes using the
difference visualizations shown in Fig. 5. In the last version of the
notebook from November 27th (v211), analyst executed the entire
notebook, which caused the visualizations to change due to the updated
concert and inflation data.

The history of the notebook shown in Fig. 4 provides several insights:
(1) This first analysis steps by analyst are represented in the first five
versions of Fig. 4 that summarize 46 notebook versions. They show
that after creating and executing the cells with basic visualizations of
distributions, most changes and executions aimed at visualizing the
price trend. This involved repeated cycles of changing the data format
and visualizations. (2) Versions in which we resumed the analysis
after a break are evident as the notebook was re-executed from the top,
ensuring that required libraries and the data are loaded. This can be
seen in versions 57, 66, 88, and 211 of Fig. 4 that correspond to October
16th, 17th, November 6th, and 27th, respectively. (3) Versions 57, 88,
and 211 additionally indicate a transition to a different analyst. (4)
The history also shows that during the extensive analysis on November
6th (v88–v194), no changes were made to previously created cells.

5.2 Use Case 2: What-If Analysis on Cancer Patient Data
The analysis in this use case builds on our previous work comparing
lung cancer patient cohorts from the AACR Project GENIE [1, 12]. We
aimed to validate the mutational differences between these cohorts, as
reported in the literature [42]. However, we found that the cohort data
also considerably varied in the amount of missing data. Our approach
identified mutations in the FGFR4 gene as a key feature to differentiate
between patient cohorts, although they differed primarily by the amount
of missing data. We hypothesized that this gene would have minimal
impact if the data were complete. In this analysis, we now want to go
beyond the available data and perform a what-if analysis, substituting
the missing data [36].

The first analyst begins the analysis by replicating our previous
findings. They import the necessary libraries, load the cancer patient
cohort data, and inspect the data set. As the goal is to identify dif-
ferences between cohorts using a random forest model, they separate
the features used for the prediction and the cohort labels into distinct
variables. They perform basic feature selection, eliminating features
with the same value for all patients, as these do not provide any in-
formation for our model. After this, they again inspect the data set to
verify the changes. They also create a visualization to show the distri-
bution of FGFR4 genetic mutations among the analyzed cohorts. After
preparing the data, they set hyperparameters, train the random forest
model, and output its accuracy. They create a bar chart to visualize the
model’s most important features, and the results align with our previous
analysis.

Next, the analyst substitutes the missing data and assesses how
the results of the analysis change. They extend the initial feature
engineering step and substitute the missing genetic data with a nearest-
neighbor approach using the data of the five patients with the most

https://github.com/jku-vds-lab/loops/
https://github.com/jku-vds-lab/loops/
https://mybinder.org/v2/gh/jku-vds-lab/loops/main
https://mybinder.org/v2/gh/jku-vds-lab/loops/main
https://mybinder.org/v2/gh/jku-vds-lab/loops/main

B D

C

E

A

F

Fig. 6: Analysis of cancer patient data in JupyterLab with Loops. The cells in the notebook history are aligned with currently active cell in the
notebook A . The visualization of the notebook’s evolution shows four versions corresponding to the initial execution of the notebook and the following
what-if analysis. Analyst adds a cell to substitute missing values B , which changes the data C . They subsequently update the code in version
three D and retrain the model with the new data, which changes the features that are most important to distinguishing cohorts E . Analyst then
updates the code for substituting missing values again in the final version of the notebook F .

similar genetic profile (Fig. 6 B). As they output the new data, all of
the cells are marked as changed (Fig. 6 C), due to a change in data type
by averaging the nearest neighbors data. They therefore change the
code to only use the data of the most similar patient (Fig. 6 D). After re-
executing the subsequent cells, the detailed notebook diff shows that the
bar chart changed significantly for the new model. The analyst opens
the cell comparison (Fig. 6 E) and sees that FGFR4 is no longer one
of the most important features distinguishing cohorts. Also the overall
order of important features has changed significantly, as highlighted by
the bars’ altered labels. EGFR now ranks as the most significant gene,
followed by TP53 and PIK3CA. KEAP1, and PTPBR have been added
to the list, while STK11 and KRAS have been removed (Fig. 6 E).

In the last version of the notebook (Fig. 6 F), another analyst
reworked the data substitution. They update the code so that the data
of multiple patients are considered, as analyst had planned, while
keeping the same data type. However, this change results only in minor
changes of the data and the model (see Fig. 17).

This use case exemplifies our approach to test and compare different
analysis paths. The same procedure can analyze the effects of different
substitution methods, models, or hyperparameters. The AACR Project
GENIE is an ongoing effort with continuous data updates, so the anal-
ysis will need to be repeated in the future. With Loops, any resulting
output differences can be quickly identified.

6 QUALITATIVE USER FEEDBACK

We gathered feedback on our approach by interviewing notebook users
with various backgrounds: a student (S) in AI, a professional data scien-
tist (DS), a researcher (R) working in human-centered AI, and a lecturer
(L) teaching undergraduate and graduate students in AI. We recruited
the participants from our professional network, targeting individuals
proficient in computational notebooks. We emailed invitations to in-
dividuals and research groups until we could recruit a representative
for each user group. All participants have a minimum of three years of
experience working with notebooks. The interviews lasted between 40
and 60 minutes and were guided by a set of initial questions provided
in Appendix C. We encouraged participants to provide think-aloud feed-
back, fostering a natural conversation flow. Despite this, we ensured

that all questions were addressed during the interview. Each interview
was conducted individually and recorded, after which the recordings
were reviewed to take detailed notes on the interviewees’ comments,
feedback, and responses. The interviews with DS and R were con-
ducted remotely, while the interviews with S and L were conducted in
person. Participants were not compensated for their involvement.

In the interviews, we first asked them questions about how they work
in notebooks (see Appendix C). Participants S, DS, and R stated that
they commonly create multiple cells, each containing code with slight
variations to facilitate the comparison of alternatives. When asked how
they deal with alternatives once they had picked a solution, none of
the participants could articulate the specific criteria they apply. S and
DS leaned towards retaining all code, even if it resulted in cluttered
notebooks. Notably, all four participants had experienced situations in
which they would have needed code they had previously deleted. The
four notebook users stated that they mainly work alone on notebooks;
collaboration only takes place asynchronously, if at all. These responses
are consistent with the results of previous studies [3, 9, 54].

As a next step in the interview, we showed them a notebook we
had prepared based on the concert data analysis of Use Case 1. We
explained the data, the analysis goals, and the notebook structure.
We then opened the compact representation of the analysis history.
L appreciated how the history lets them track activities in the notebook
over time. Participants stated that the color-coding with green for new
and red for removed cells was obvious, yet, they were unsure about
the meaning of yellow cells, triggering us to add a legend to Loops.
They liked that the cells’ execution can be tracked, as they regularly
experience issues with out-of-order execution and needed to find out
how they got to a particular state. When asked which cells had changed
the most, all participants could quickly identify the corresponding cells.

After exploring the compact notebook diff, we started executing the
notebook, showing how the history aligns with the currently active
cell and how it is updated as cells are executed. The execution of the
notebook with data that have been updated since its last execution (see
Use Case 1) resulted in changed outputs. Since participants were not yet
familiar with the data, they could not tell how outputs changed from the
notebook alone. We changed the last notebook version to the detailed

notebook diff, revealing the changes in data and visualizations. S and
DS appreciated how the extension summarizes the individual versions
of the notebook. DS added that Loops simplifies analyzing the impact
of changes. They also appreciated that the differences are directly
visible without using git, and that difference visualizations are available
for all content types. R appreciated that previous outputs remain visible,
enabling them to revisit them during long-running executions or after
unintended executions.

We also opened the comparison detail view for multiple cells to
demonstrate the detailed text, code, table, and image difference visu-
alizations. Participant S highlighted the comparison detail view as a
great addition to the notebook representation. The participants recog-
nized how the familiar encoding of code differences was translated
to other types of content. They consider all difference visualizations
to be most useful when changes are subtle. The flexibility to toggle
between superimposed and juxtaposed comparisons was also appreci-
ated. For the image difference visualization, DS liked how images are
shown in grayscale to highlight the changes with color. S noted that it
may surprise her when she sees that a chart has changed significantly,
e.g., due to a change in chart type. However, she also added that she
could recognize this change based on the differences in the preceding
code difference. Participant R often creates large composite figures
and hence found the image difference visualization to be particularly
useful when styling these figures to pinpoint elements that still require
updates.

Overall, participants were enthusiastic about the change summaries
during analysis and appreciated that the notebook’s provenance was
recorded, ensuring no loss of code or results. They also found the visu-
alization of notebooks and cell content differences intuitive. However,
participants also noted some concerns and weaknesses. They expressed
a desire to extend the examination of differences beyond the visible
contents of the notebook, e.g., to changed variables (R) or to the full
data set when it is truncated in the notebook (DS, R, L). The current
version of Loops only indicates that the size of the table changed next to
the difference visualization of the visible content. S expressed concerns
about balancing the size of difference encodings in image difference
visualizations for small and large changes. L would value the ability to
analyze changes from the most recent execution rather than the aggre-
gated changes from the last version of the notebook. R and S suggested
an onboarding process to explain the aggregation, Loops’s features and,
most importantly, interactions. Furthermore, R emphasized the utility
of showing a notebook history in collaborative scenarios, allowing
users to track changes made after handing over the notebook. Similarly,
S expressed a desire for transparency in collaborative work, suggesting
a feature that identifies change contributors.

7 DISCUSSION

We have demonstrated the utility of our approach in the use cases and
received positive feedback from potential users. In the following, we
first summarize the scalability limitations of our approach regarding
the notebook’s history and content, followed by a discussion on the
limitations concerning collaboration and reactive notebooks.

Scalability. The compact notebook diff scales well with an in-
creasing number of cells. However, the number of versions depends
on the user’s execution patterns, and horizontal space is limited. Vi-
sualizing code differences within the notebook diff also faces spatial
constraints, often requiring users to scroll horizontally within the cell
to view differences fully. Our attempts to reduce code differences to
the neighborhood of changed content encountered challenges. Espe-
cially when exploring a cell’s history, the individual changed code parts
should remain comparable. To address this, we are considering a more
nuanced degree-of-interest function to control the amount of visualized
code in a changed version and its adjacent versions [2].

In the notebook diff, the pixel-based difference visualization for
tabular data faces similar spatial constraints, as Niederer et al. [43]
already discussed for TACO. Due to the limited horizontal space, only a
few hundred columns can be displayed without scrolling. However, we
argue that our visualization scales significantly better than the output in
the notebook itself (see Fig. 18). The detailed difference visualization of

tabular data shown when comparing a cell also displays the table content
and faces the same constraints as the table output in the notebook. The
pandas library, which we use in our cases to load and manage data,
by default truncates tables to 10 rows and 20 columns when output
in the notebook. Our difference visualization relies on this output, so
only changes within this subset are shown. This has led our users to
express a desire to see a full diff (see Sec. 6). However, this would
require implementations tailored to different programming languages
and environments.

Our difference visualization for images and data visualizations also
has limitations. We opt for a detailed pixel-based approach because
the difference visualization is part of a broader context in the notebook
diff, from which substantial changes in a visualization can already
be anticipated. But the pixel-based difference approach is sensitive
to images of varying sizes or internal shifts. Fig. 6 encodes the title,
grid lines, and x-axis as changed due to a slight shift to the left. To
address these issues, data visualizations could greatly benefit from a
dedicated difference analysis approach, akin to those developed for
fields like historical art [48] or fluid dynamics [46]. Such an approach
would need to be aware of the visualized data, its representation, and
the comparison task to ensure that the differences are meaningful. For
example, during our interviews, one user expressed interest in seeing
differences in styling specifically (see Sec. 6). For other tasks, only
changes that affect the marks may be relevant. Given the multitude of
existing visualization types and design choices, exploring this in depth
is beyond the scope of this paper.

Collaboration. Collaboration and coauthoring of notebooks are
crucial aspects of data analysis [36]. The notebook users we interviewed
rarely collaborate with colleagues on a notebook. And when they do,
they take turns working with them on the notebook. Loops already
effectively supports such asynchronous collaboration by visualizing
contributors to notebook versions and cell changes. For real-time
collaboration, the suitability of our approach to aggregate notebook
provenance varies depending on the collaboration style. In a study
by Wang et al. [63], half of the teams collaborating in real time split
their tasks to explore alternate solutions. Editing and executing code
in different parts of the notebook simultaneously can result in more
notebook versions than the analysts intended.

Reactive Notebooks. Some scholars argue that reactivity is a
prerequisite for real-time collaboration [47]. Reactive notebooks auto-
matically update the output as the data used by these outputs change,
removing concerns about out-of-order executions. We still see advan-
tages in using Loops with reactive notebooks. First, modifying a single
cell can immediately affect multiple outputs, and Loops helps users
recognize and understand these changes. Second, tracking provenance
remains important to understand the evolution of analysis or comparing
alternatives. However, reactive notebooks do not have to follow the
same structure as sequentially executed notebooks (see Sec. 3). Au-
tomatic re-evaluation of cells after a change can generate unintended
versions of the notebook.

8 CONCLUSION

Analysts face challenges and pain points when working with note-
books [9]. With the Loops approach described in this paper, we address
the challenges related to reproducing and comparing notebooks. Loops
tracks the provenance of notebooks to assist analysts during their work.
We visualize the evolution of the notebook over time and highlight dif-
ferences between versions. We have carefully designed visualizations
that consistently visualize changes for the whole notebook and various
types of content present in notebooks. This gives analysts direct feed-
back on their changes and supports them at various stages of the data
science process. Based on the feedback from four notebook users, we
are confident that Loops can effectively support data science processes
in notebooks.

SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF at osf.io/79eyn. In par-
ticular, they include (1) a full version of this paper with all appendices,
(2) a video to demonstrate the workflow and interactions in Loops, and
(3) the source code of our prototype together with the datasets used for
the uses cases and all figures of our presented approach.

ACKNOWLEDGMENTS

We thank Raisa Romanov Geleta, Oleg Lesota, Rubina Waldbauer, and
Mohammed Abbass for their participation in the interviews and their
valuable feedback. We also thank Kai Xu for his feedback on Loops.

This work was supported by the Austrian Science Fund (FWF DFH
23–N), and the Austrian Research Promotion Agency (FFG 881844).
Pro2Future is funded within the Austrian COMET Program under the
auspices of the Austrian Federal Ministry for Climate Action, Envi-
ronment, Energy, Mobility, Innovation and Technology, the Austrian
Federal Ministry for Digital and Economic Affairs, and of the States
of Upper Austria and Styria. COMET is managed by the Austrian
Research Promotion Agency FFG.

The authors acknowledge the American Association for Cancer
Research and its financial and material support in the development of
the AACR Project GENIE registry, and members of the consortium for
their commitment to open data. Interpretations are the responsibility of
the authors.

REFERENCES

[1] AACR Project Genie Consortium. AACR Project GENIE: powering
precision medicine through an international consortium. Cancer discovery,
7(8):818–831, 2017. doi: 10/ggnnrn 7

[2] J. Abello, S. Hadlak, H. Schumann, and H.-J. Schulz. A Modular Degree-
of-Interest Specification for the Visual Analysis of Large Dynamic Net-
works. IEEE Transactions on Visualization and Computer Graphics,
20(3):337–350, 2014. doi: 10.1109/TVCG.2013.109 9

[3] S. Alspaugh, N. Zokaei, A. Liu, C. Jin, and M. A. Hearst. Futzing and
Moseying: Interviews with Professional Data Analysts on Exploration
Practices. IEEE Transactions on Visualization and Computer Graphics,
25(1):22–31, 2019. doi: 10.1109/TVCG.2018.2865040 1, 2, 5, 8

[4] B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and P. Drag-
icevic. Time Curves: Folding Time to Visualize Patterns of Temporal
Evolution in Data. IEEE Transactions on Visualization and Computer
Graphics, 22(1):559–568, 2016. doi: 10.1109/TVCG.2015.2467851 3

[5] F. Bolte and S. Bruckner. Vis-a-Vis: Visual Exploration of Visualization
Source Code Evolution. IEEE Transactions on Visualization and Computer
Graphics, 27(7):3153–3167, 2021. doi: 10.1109/TVCG.2019.2963651 3

[6] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-Driven Documents.
IEEE Transactions on Visualization and Computer Graphics, 17(12):2301–
2309, 2011. doi: 10.1109/TVCG.2011.185 7

[7] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
2000. 7, 14

[8] W. Burger and M. J. Burge. Digital Image Processing: An Algorithmic
Introduction Using Java. Texts in computer science. Springer, 1 ed., 2008.
6

[9] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik. What’s
Wrong with Computational Notebooks? Pain Points, Needs, and Design
Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pp. 1–12. ACM, New York, USA, 2020.
doi: 10.1145/3313831.3376729 2, 3, 4, 5, 8, 9

[10] A. Crisan, B. Fiore-Gartland, and M. Tory. Passing the Data Baton :
A Retrospective Analysis on Data Science Work and Workers. IEEE
Transactions on Visualization and Computer Graphics, 27(2):1860–1870,
2021. doi: 10.1109/TVCG.2020.3030340 1

[11] Z. T. Cutler, K. Gadhave, and A. Lex. Trrack: A Library for Provenance
Tracking in Web-Based Visualizations. In IEEE Visualization Conference
(VIS), pp. 116–120, 2020. doi: 10.1109/VIS47514.2020.00030 7

[12] K. Eckelt, P. Adelberger, M. J. Bauer, T. Zichner, and M. Streit. Kokiri:
Random-Forest-Based Comparison and Characterization of Cohorts. IEEE
VIS Workshop on Visualization in Biomedical AI, 2022. doi: 10.1101/2022
.08.16.503622 7

[13] K. Eckelt, A. Hinterreiter, P. Adelberger, C. Walchshofer, V. Dhanoa,
C. Humer, M. Heckmann, C. Steinparz, and M. Streit. Visual Exploration
of Relationships and Structure in Low-Dimensional Embeddings. IEEE

Transactions on Visualization and Computer Graphics, 29(7):3312–3326,
2023. doi: 10.1109/TVCG.2022.3156760 3

[14] W. Epperson, V. Gorantla, D. Moritz, and A. Perer. Dead or Alive: Con-
tinuous Data Profiling for Interactive Data Science. IEEE Transactions
on Visualization and Computer Graphics, pp. 1–11, 2023. doi: 10.1109/
TVCG.2023.3327367 2

[15] W. Epperson, D. Jung-Lin Lee, L. Wang, K. Agarwal, A. G. Parameswaran,
D. Moritz, and A. Perer. Leveraging Analysis History for Improved In Situ
Visualization Recommendation. Computer Graphics Forum, 41(3):145–
155, 2022. doi: 10.1111/cgf.14529 2

[16] R. Faust, C. Scheidegger, and C. North. Aardvark: Comparative visualiza-
tion of data analysis scripts. In 2023 IEEE Visualization in Data Science
(VDS), pp. 30–38, 2023. doi: 10.1109/VDS60365.2023.00009 2

[17] K. Gadhave, Z. Cutler, and A. Lex. Persist: Persistent and reusable
interactions in computational notebooks. OSF Preprint, 2024. doi: 10.
31219/osf.io/9x8eq 2

[18] M. Gleicher. Considerations for Visualizing Comparison. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):413–423, 2018. doi:
10.1109/TVCG.2017.2744199 3, 6

[19] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C.
Roberts. Visual comparison for information visualization. Information
Visualization, 10(4):289 –309, 2011. doi: 10.1177/1473871611416549 3,
7

[20] R. Gonzalez and R. Woods. Digital Image Processing, Global Edition.
Pearson Education, 2018. 3, 6

[21] S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit. From Visual
Exploration to Storytelling and Back Again. Computer Graphics Forum,
35(3):491–500, 2016. doi: 10.1111/cgf.12925 2

[22] A. Guzharina. We Downloaded 10,000,000 Jupyter Notebooks
From Github – This Is What We Learned | The JetBrains Datalore
Blog. https://blog.jetbrains.com/datalore/2020/12/17/we-
downloaded-10-000-000-jupyter-notebooks-from-github-
this-is-what-we-learned/, 2020. Accessed: 2024-03-31. 1, 2

[23] A. Head, F. Hohman, T. Barik, S. M. Drucker, and R. DeLine. Managing
Messes in Computational Notebooks. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, pp. 1–12. ACM,
New York, USA, 2019. doi: 10.1145/3290605.3300500 1, 2

[24] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala. Graphical Histories
for Visualization: Supporting Analysis, Communication, and Evaluation.
IEEE Transactions on Visualization and Computer Graphics, 14(6):1189–
1196, 2008. doi: 10.1109/TVCG.2008.137 2

[25] F. Hohman, K. Wongsuphasawat, M. B. Kery, and K. Patel. Understanding
and Visualizing Data Iteration in Machine Learning. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13.
ACM, New York, USA, 2020. doi: 10.1145/3313831.3376177 1, 3, 5

[26] B. V. Hollingsworth, S. E. Reichenbach, Q. Tao, and A. Visvanathan.
Comparative visualization for comprehensive two-dimensional gas chro-
matography. Journal of Chromatography A, 1105(1):51–58, 2006. doi: 10.
1016/j.chroma.2005.11.074 3

[27] ImageMagick Studio LLC. Comparing – ImageMagick Examples. https:
//imagemagick.org/Usage/compare/, 2012. Accessed: 2024-03-31.
3

[28] N. Jardine, B. D. Ondov, N. Elmqvist, and S. Franconeri. The Perceptual
Proxies of Visual Comparison. IEEE Transactions on Visualization and
Computer Graphics, 26(1):1012–1021, 2020. doi: 10.1109/TVCG.2019.
2934786 3, 7

[29] Jupyter Development Team. nbdime – diffing and merging of jupyter
notebooks — nbdime 4.0.0a1 documentation. https://nbdime.
readthedocs.io/, 2023. Accessed: 2024-03-31. 2

[30] Jupyter Development Team. jupyterlab-git. https://github.com/
jupyterlab/jupyterlab-git, 2024. Accessed: 2024-03-31. 2

[31] M. B. Kery, B. E. John, P. O’Flaherty, A. Horvath, and B. A. Myers.
Towards Effective Foraging by Data Scientists to Find Past Analysis
Choices. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, pp. 1–13. ACM, New York, USA, 2019. doi: 10.
1145/3290605.3300322 2

[32] M. B. Kery and B. A. Myers. Interactions for Untangling Messy History
in a Computational Notebook. In 2018 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), pp. 147–155, 2018.
doi: 10.1109/VLHCC.2018.8506576 4

[33] D. Kerzel, S. Samuel, and B. König-Ries. Towards Tracking Provenance
from Machine Learning Notebooks. In Proceedings of the 13th Interna-
tional Joint Conference on Knowledge Discovery, Knowledge Engineering

https://osf.io/79eyn/
https://doi.org/10/ggnnrn
https://doi.org/10.1109/TVCG.2013.109
https://doi.org/10.1109/TVCG.2018.2865040
https://doi.org/10.1109/TVCG.2015.2467851
https://doi.org/10.1109/TVCG.2019.2963651
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1109/TVCG.2020.3030340
https://doi.org/10.1109/VIS47514.2020.00030
https://doi.org/10.1101/2022.08.16.503622
https://doi.org/10.1101/2022.08.16.503622
https://doi.org/10.1109/TVCG.2022.3156760
https://doi.org/10.1109/TVCG.2023.3327367
https://doi.org/10.1109/TVCG.2023.3327367
https://doi.org/10.1111/cgf.14529
https://doi.org/10.1109/VDS60365.2023.00009
https://doi.org/10.31219/osf.io/9x8eq
https://doi.org/10.31219/osf.io/9x8eq
https://doi.org/10.1109/TVCG.2017.2744199
https://doi.org/10.1109/TVCG.2017.2744199
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1111/cgf.12925
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1145/3313831.3376177
https://doi.org/10.1016/j.chroma.2005.11.074
https://doi.org/10.1016/j.chroma.2005.11.074
https://imagemagick.org/Usage/compare/
https://imagemagick.org/Usage/compare/
https://doi.org/10.1109/TVCG.2019.2934786
https://doi.org/10.1109/TVCG.2019.2934786
https://nbdime.readthedocs.io/
https://nbdime.readthedocs.io/
https://github.com/jupyterlab/jupyterlab-git
https://github.com/jupyterlab/jupyterlab-git
https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1109/VLHCC.2018.8506576

and Knowledge Management - KDIR,, pp. 274–281. SciTePress, 2021. doi:
10.5220/0010681400003064 2

[34] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Fred-
eric, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila,
S. Abdalla, C. Willing, and Jupyter Development Team. Jupyter Note-
books—a publishing format for reproducible computational workflows.
In Positioning and Power in Academic Publishing: Players, Agents and
Agendas, pp. 87–90. IOS Press, 2016. doi: 10.3233/978-1-61499-649-1-87
1

[35] D. E. Knuth. Literate Programming. The Computer Journal, 27(2):97–111,
1984. doi: 10.1093/comjnl/27.2.97 1

[36] R. Kosara. Notebooks for Data Analysis and Visualization: Moving
Beyond the Data. IEEE Computer Graphics and Applications, 43(1):91–
96, 2023. doi: 10.1109/MCG.2022.3222024 7, 9

[37] S. LYi, J. Jo, and J. Seo. Comparative Layouts Revisited: Design Space,
Guidelines, and Future Directions. IEEE Transactions on Visualization
and Computer Graphics, 27(2):1525–1535, Feb. 2021. Conference Name:
IEEE Transactions on Visualization and Computer Graphics. doi: 10.
1109/TVCG.2020.3030419 7

[38] M. M. Malik, C. Heinzl, and M. E. Groeller. Comparative Visualization for
Parameter Studies of Dataset Series. IEEE Transactions on Visualization
and Computer Graphics, 16(5):829–840, 2010. doi: 10.1109/TVCG.2010.
20 3

[39] Microsoft. Monaco editor - a browser based code editor. https://
github.com/microsoft/monaco-editor, 2024. Accessed: 2024-03-
31. 7

[40] M. Muller, I. Lange, D. Wang, D. Piorkowski, J. Tsay, Q. V. Liao,
C. Dugan, and T. Erickson. How data science workers work with data:
Discovery, capture, curation, design, creation. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, 15 pages, p.
1–15. ACM, New York, USA, 2019. doi: 10.1145/3290605.3300356 5

[41] E. W. Myers. AnO(ND) difference algorithm and its variations. Algorith-
mica, 1(1):251–266, 1986. doi: 10.1007/BF01840446 3, 5

[42] A. H. Nassar, E. Adib, and D. J. Kwiatkowski. Distribution of KRASG12C
Somatic Mutations across Race, Sex, and Cancer Type. New England
Journal of Medicine, 384(2):185–187, 2021. doi: 10/ghvp8t 7

[43] C. Niederer, H. Stitz, R. Hourieh, F. Grassinger, W. Aigner, and M. Streit.
TACO: Visualizing Changes in Tables Over Time. IEEE Transactions
on Visualization and Computer Graphics, 24(1):677–686, 2017. doi: 10.
1109/TVCG.2017.2745298 3, 5, 9

[44] Y. S. Nugroho, H. Hata, and K. Matsumoto. How different are different
diff algorithms in Git? Empirical Software Engineering, 25(1):790–823,
2020. doi: 10.1007/s10664-019-09772-z 3, 5

[45] B. Ondov, N. Jardine, N. Elmqvist, and S. Franconeri. Face to Face:
Evaluating Visual Comparison. IEEE Transactions on Visualization and
Computer Graphics, 25(1):861–871, 2019. doi: 10.1109/TVCG.2018.
2864884 3, 7

[46] H.-G. Pagendarm and F. Post. Comparative visualization - approaches and
examples. In 5th Eurographics Workshop on Visualization in Scientific
Computing Rostock, 1994. 9

[47] J. M. Perkel. Reactive, reproducible, collaborative: computational note-
books evolve. Nature, 593(7857):156–157, 2021. doi: 10.1038/d41586
-021-01174-w 1, 9

[48] H. Pflüger, D. Thom, A. Schütz, D. Bohde, and T. Ertl. VeCHArt: Visually
Enhanced Comparison of Historic Art Using an Automated Line-Based
Synchronization Technique. IEEE Transactions on Visualization and
Computer Graphics, 26(10):3063–3076, Oct. 2020. doi: 10.1109/TVCG.
2019.2908166 9

[49] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire. A Large-Scale
Study About Quality and Reproducibility of Jupyter Notebooks. In 2019
IEEE/ACM 16th International Conference on Mining Software Repos-
itories (MSR), pp. 507–517, 2019. doi: 10.1109/MSR.2019.00077 1,
2

[50] P. Pirolli and S. Card. The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis. In
Proceedings of International Conference on Intelligence Analysis, vol. 5,
pp. 2–4. McLean, VA, USA, 2005. 1

[51] F. Psallidas, Y. Zhu, B. Karlas, J. Henkel, M. Interlandi, S. Krishnan,
B. Kroth, V. Emani, W. Wu, C. Zhang, M. Weimer, A. Floratou, C. Curino,
and K. Karanasos. Data Science Through the Looking Glass: Analysis of
Millions of GitHub Notebooks and ML.NET Pipelines. ACM SIGMOD
Record, 51(2):30–37, 2022. doi: 10.1145/3552490.3552496 1

[52] D. Ramasamy, C. Sarasua, A. Bacchelli, and A. Bernstein. Visualising

data science workflows to support third-party notebook comprehension:
an empirical study. Empirical Software Engineering, 28(3):58, 2023. doi:
10.1007/s10664-023-10289-9 2, 4

[53] Resemble.js. Image Analysis and Comparison. https://github.com/
rsmbl/Resemble.js, 2023. Accessed: 2024-03-31. 3

[54] A. Rule, A. Tabard, and J. D. Hollan. Exploration and Explanation in
Computational Notebooks. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pp. 1–12. ACM, Montreal, Canada,
2018. doi: 10.1145/3173574.3173606 2, 4, 5, 7, 8

[55] S. Samuel and B. König-Ries. ProvBook: Provenance-based Semantic
Enrichment of Interactive Notebooks for Reproducibility. In International
Semantic Web Conference (ISWC) Demo Track 2018, 2018. 2

[56] J. Schmidt, M. E. Gröller, and S. Bruckner. VAICo: Visual Analysis for
Image Comparison. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2090–2099, 2013. doi: 10.1109/TVCG.2013.213 3

[57] H. Stitz, S. Gratzl, H. Piringer, T. Zichner, and M. Streit. Knowledge-
Pearls: Provenance-Based Visualization Retrieval. IEEE Transactions
on Visualization and Computer Graphics, 25(1):120–130, 2019. doi: 10.
1109/TVCG.2018.2865024 2

[58] C. Studholme, D. L. G. Hill, and D. J. Hawkes. An overlap invariant
entropy measure of 3D medical image alignment. Pattern Recognition,
32(1):71–86, 1999. doi: 10.1016/S0031-3203(98)00091-0 7, 14

[59] A. Tang. @armantang/html-diff - generate html content diffs. https:
//github.com/Arman19941113/html-diff, 2023. Accessed: 2024-
03-31. 7

[60] J. D. Team. Jupyter notebook 2015 ux survey results. https:
//github.com/jupyter/surveys/blob/master/surveys/2015-
12-notebook-ux/analysis/report_dashboard.ipynb, 2018.
(Accessed: 2024-03-31). 2

[61] Q. D. Team. Quarto. https://quarto.org/, 2024. (Accessed: 2024-
03-31). 2

[62] A. Y. Wang, W. Epperson, R. A. DeLine, and S. M. Drucker. Diff in the
Loop: Supporting Data Comparison in Exploratory Data Analysis. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems, pp. 1–10. ACM, New York, USA, 2022. doi: 10.1145/3491102.
3502123 3

[63] A. Y. Wang, A. Mittal, C. Brooks, and S. Oney. How Data Scientists Use
Computational Notebooks for Real-Time Collaboration. Proceedings of
the ACM on Human-Computer Interaction, 3(CSCW):39:1–39:30, Nov.
2019. doi: 10.1145/3359141 9

[64] J. Wang, T.-Y. KUO, L. Li, and A. Zeller. Assessing and Restoring Repro-
ducibility of Jupyter Notebooks. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 138–149, 2020.
1

[65] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on
Image Processing, 13(4):600–612, 2004. doi: 10.1109/TIP.2003.819861
7, 14

[66] N. Weinman, S. M. Drucker, T. Barik, and R. DeLine. Fork It: Supporting
Stateful Alternatives in Computational Notebooks. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. ACM,
New York, USA, 2021. doi: 10.1145/3411764.3445527 2

[67] J. Wenskovitch, J. Zhao, S. Carter, M. Cooper, and C. North. Albireo:
An Interactive Tool for Visually Summarizing Computational Notebook
Structure. In 2019 IEEE Visualization in Data Science (VDS), pp. 1–10,
2019. doi: 10.1109/VDS48975.2019.8973385 1

https://doi.org/10.5220/0010681400003064
https://doi.org/10.5220/0010681400003064
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1109/MCG.2022.3222024
https://doi.org/10.1109/TVCG.2020.3030419
https://doi.org/10.1109/TVCG.2020.3030419
https://doi.org/10.1109/TVCG.2010.20
https://doi.org/10.1109/TVCG.2010.20
https://github.com/microsoft/monaco-editor
https://github.com/microsoft/monaco-editor
https://doi.org/10.1145/3290605.3300356
https://doi.org/10.1007/BF01840446
https://doi.org/10/ghvp8t
https://doi.org/10.1109/TVCG.2017.2745298
https://doi.org/10.1109/TVCG.2017.2745298
https://doi.org/10.1007/s10664-019-09772-z
https://doi.org/10.1109/TVCG.2018.2864884
https://doi.org/10.1109/TVCG.2018.2864884
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1109/TVCG.2019.2908166
https://doi.org/10.1109/TVCG.2019.2908166
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1145/3552490.3552496
https://doi.org/10.1007/s10664-023-10289-9
https://doi.org/10.1007/s10664-023-10289-9
https://github.com/rsmbl/Resemble.js
https://github.com/rsmbl/Resemble.js
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1109/TVCG.2013.213
https://doi.org/10.1109/TVCG.2018.2865024
https://doi.org/10.1109/TVCG.2018.2865024
https://doi.org/10.1016/S0031-3203(98)00091-0
https://github.com/Arman19941113/html-diff
https://github.com/Arman19941113/html-diff
https://github.com/jupyter/surveys/blob/master/surveys/2015-12-notebook-ux/analysis/report_dashboard.ipynb
https://github.com/jupyter/surveys/blob/master/surveys/2015-12-notebook-ux/analysis/report_dashboard.ipynb
https://github.com/jupyter/surveys/blob/master/surveys/2015-12-notebook-ux/analysis/report_dashboard.ipynb
https://quarto.org/
https://doi.org/10.1145/3491102.3502123
https://doi.org/10.1145/3491102.3502123
https://doi.org/10.1145/3359141
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1145/3411764.3445527
https://doi.org/10.1109/VDS48975.2019.8973385

A IMAGE DIFFERENCE VISUALIZATION

A.1 Calculating Image Differences
The following figures illustrate the steps of our image difference calculation using the visualizations shown in Fig. 15.

Fig. 7 shows the two compared versions of the visualization and how the differences are determined. Fig. 8 shows the morphological operations
on the differences and the color-coding of the differences. The colored differences are then blended with the visualizations and presented
juxtaposed—as in Fig. 15—or superimposed.

(a) Scatterplot of countries’ gross domestic product (GDP) per capita and life expectancy,
color-coded by continent.

(b) The updated visualization adds a size encoding for the countries’ population, which changes
the marks and expands the legend.

(c) Grayscale image showing the pixels that are different from the updated visualization. (d) Grayscale image showing the pixels that are different from the old image.

(e) The grayscale image is converted to a binary image by thresholding the differences. The
image shows which of the marks became smaller due to the size encoding and that the legend
became longer and wider, removing the previous bottom and right borders.

(f) The grayscale image is converted to a binary image by thresholding the differences. The
image shows which of the marks came larger due to the size encoding and the new legend
entries for the size encoding.

Fig. 7: Calculation of differences between two version of a scatterplot. To determine the differences between the two versions, the images are first
subtracted from each other (c and d), and then converted into a binary image by tresholding (e and f). We then apply morphological operations to the
binary images as shown in Fig. 8.

(a) Dilation is performed to merge small changes, such as in the title of the legend, and to close
gaps, such as in the marks.

(b) Dilation is used to merge small changes, such as the legend’s text, and to close gaps, such
as in the marks.

(c) Erosion reduces the size of the differences again, but changes that were merged by the
previous dilation process remain merged (compare the marks with Fig. 7e, for example).

(d) Erosion reduces the size of the differences again, but changes that were merged by the
previous dilation process remain merged (compare the legend with Fig. 7f, for example).

(e) The differences in Fig. 8c are compared with those in Fig. 8d. Differences (white pixels) that
do not occur in the other are color-coded red (removed), while differences that occur in both
images are color-coded yellow (changed).

(f) The differences inFig. 8d are compared with those in Fig. 8c. Differences (white pixels) that
do not occur in the other are color-coded green (added), while differences that occur in both
images are color-coded yellow (changed).

Fig. 8: After calculating the differences between the two images as shown in Fig. 7, we apply morphological operations on the images. We first dilate
the binary difference images to close gaps and merge adjacent changes (a and b). Dilation is performed twice and in the next step (c and d) the
difference images are eroded again. Erosion does not completely reverse dilatation, as, for example, gaps that have been closed by dilatation are not
reopened to their original size. In the last step (e and f) the images are color-coded, with differences that are only contained in one difference image
being shown in red or green, respectively, while parts that are different in both images are shown in yellow. Since we have applied the dilation twice,
but the erosion only once, the color-coded pixels are slightly larger than the differences and envelope them (see Fig. 15).

A.2 Image Similarity Metrics
We considered multiple image similarity metrics to estimate the amount of change between pairs of images: (i) Mean Squared Error, (ii) Structured
Similarity Index [65], (iii) Normalized Mututal Information [58], and (iv) Oriented FAST and Rotated BRIEF (ORB) [7].

We excluded the Mean Squared Error from further consideration, as its value is unbound and therefore hard to interpret. The Normalized Mutual
Information compares intensities of corresponding pixels in two images and determines whether the images are uncorrelated or correlated [58].
As there is no differentiation between positive or negative correlation we also excluded the NMI from further considerations. The Structured
Similarity Index (SSIM) measures image quality by quantifying the degradation of structural information [65], which is information from
neighboring pixels. Our assumption is that this could be applied to visualizations when marks change position and thus their structure. Oriented
FAST and Rotated BRIEF (ORB) is a feature detector, which we apply to detect and match features in the image pairs and subsequently quantify
how well they match as a similarity metric. We consider matching features between two data visualizations promising for cases where, for
example, the legend changes position but not its content.

In Tab. 1, we provide the results for SSIM, ORB, and our relative pixel similarity for the various image difference figures we present in this
paper. Overall, the results of SSIM, ORB, and relative pixel similarity are very similar overall. We decided to use the relative pixel similarity as it
is computed directly from the explicit difference encoding, ensuring that the visualized differences match the calculated similarity.

Table 1: Comparison of the SSIM and ORB similarity metrics and the relative pixel similarity we use for the image difference visualizations presented
in this paper.

Similarity Score for
Metric Fig. 6 Fig. 9 Fig. 10 Fig. 11 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 12
SSIM 97.9% 99.9% 99.4% 91.9% 92.1% 95.1% 96.8% 99.5% 100%
ORB 92.6% 99.9% 98.6% 85.3% 86.1% 90.0% 92.2% 99.4% 100%

Relative Pixel Similarity 89.3% 99.7% 99.0% 86.3% 84.0% 94.6% 89.8% 97.6% 100%

A.3 Examples

Fig. 9: Heatmap with the concert data from Use Case 1, showing the number of concerts per year in Viennese locations. For the difference
visualization, the heatmap is shown in grayscale, such that only the explicit encoding of differences is colored. The change is clearly highlighted on
top of the new heatmap on the right, showing that between the two versions, the data of 2023 changed, adding additional concerts in the Gasometer
location.

Fig. 10: Box plot with the concert data from Use Case 1, showing the distribution of ticket prices per year. This box plot uses the Solarized theme.
We have disabled the conversion to grayscale to highlight how our difference visualization adapts to non-white background colors. The explicit
difference encoding shows that the length of the lower whiskers was increased for the boxplots of 2018 and 2019 by highlighting the new pixels. For
2023, the box plots upper whisker and quartile shrunk significantly, shown by the removed pixels highlighted in red.

Fig. 11: Box plot with the concert data from Use Case 1, showing the distribution of ticket prices per year. This box plot uses the Solarized theme.
We have disabled the conversion to grayscale to highlight how our difference visualization adapts to non-white background colors. In the new version,
data for 2024 became available, resulting in a denser distribution of labels to accommodate the expanded timeframe. The difference visualization
shows that except for the first year, all boxplots and year labels move slightly upwards.

Fig. 12: Scatterplot with the concert data from Use Case 1, showing the concerts’ ticket price and year. In the new version, one new point is added to
the scatterplot as the data were updated. The difference visualization highlights the point in green and by varying the opacity of the images with the
slider the change between the two versions becomes even more apparent.

(a) Code Difference.

(b) Visualization Difference

Fig. 13: Scatterplot of gross domestic product (GDP) per capita and life expectancy. The new version adds a title for the figure and labels for the
axes, causing the visualization to increase in size and its content to move.

(a) Code Difference.

(b) Visualization Difference

Fig. 14: Scatterplot of gross domestic product (GDP) per capita and life expectancy. The new version adds a color encoding, resulting in changes to
the individual marks and the addition of a legend.

(a) Code Difference.

(b) Visualization Difference

Fig. 15: Scatterplot of gross domestic product (GDP) per capita and life expectancy. The new version adds a size encoding, resulting in an extended
legend and marks getting larger (added pixels in green) or smaller (removed pixels in red).

(a) Code Difference.

(b) Visualization Difference

Fig. 16: Scatterplot of gross domestic product (GDP) per capita and life expectancy. In the updated version, labels are added for the three countries
with the highest GDP per capita and the three countries with the highest life expectancy. The superimposed difference visualization shows how only
the labels and its pointing arrows have been added, while the rest of the scatterplot remained unchanged.

B FULL PAGE SCREENSHOTS OF THE JUPYTERLAB PROTOTYPE

C

A

B

D

Fig. 17: Screenshot of JupyterLab with the Loops extension showing a part of the second use case (Sec. 5.2). The changes to the data substituion
algorithm by analyst only had little impact on the data A . Still, the models accuracy decreased B slightly and its most important features changed.
PIK3CA and KEAP1 are more important with this data and KMT2D is now part of the most important features instead of PTPRB. The histogram of
FGFR4 D shows that FGFR4 mutations are now almost equally distributed across the cohorts.

B

C

A

Fig. 18: Screenshot of JupyterLab with the Loops extension showing a part of the second use case (Sec. 5.2). The large table shown in the
notebook A shows the imputed mutation data of the patient. The table is truncated to 100 of 557 columns and 100 of 13,485 rows. The tabular data
difference visualization B gives an overview over how the table’s content changed through the applied imputation method. The warning below the
difference visualization C highlights that only a subset of the data was output in the notebook and that the visualization is thus incomplete.

C INTERVIEW QUESTIONS

C.1 Initial Questions
General questions on the usage of notebooks:
1. Do you use computational notebooks?

(a) Which notebook environment are you using?
(b) Which programming language are you using?

2. How often are you using notebooks?
3. Can you describe your typical workflow within a computational

notebook? How do you organize your work, and what are the key
steps in your process?

Questions about handling outputs in notebooks:
4. What do you output in notebooks?
5. How do you compare outputs?
6. When making changes to your notebook, how do you keep track

of the modifications you’ve made, especially if you’re working
on complex analyses or data processing tasks?

Questions on how to deal with alternative approaches:
7. Do you try out alternatives in the notebook?

(a) How do you compare these alternatives?
(b) Do you delete the alternatives that turned out to be unsuc-

cessful?
8. Can you share any examples of situations where you tried out

alternative approaches or code in your notebook?
(a) How did you evaluate their effectiveness, and what criteria

did you use to decide whether to keep or discard them?
(b) Were there situations where you would have needed re-

moved code again at a later point?

Questions regarding collaboration with others:
9. Do you collaborate?

(a) In real time?
10. When collaborating with others in your notebook work, how do

you handle version control, conflict resolution, and sharing of
results or insights?

Questions about version control and reproducibility:
11. Do you use version control? For what?
12. What challenges have you encountered related to reproducibility

in your notebook-based work? How do you ensure that your work
remains reproducible over time?

13. Can you describe any specific instances where you’ve faced dif-
ficulties in tracking the evolution of a notebook over time or
understanding the impact of changes on your analyses?

C.2 Post-Demonstration Questions
1. After seeing a demonstration of the tool, can you share your initial

impressions and thoughts on how it might be beneficial in your
day-to-day work with computational notebooks?

2. Are there specific features or functionalities in the tool that you
find particularly promising or valuable for your workflow? Could
you elaborate on why these features stand out to you?

3. Can you envision any scenarios or tasks where this tool could
help you save time, improve the reproducibility of your work,
or enhance your ability to understand the history and changes in
your notebooks?

4. Are there any specific challenges or obstacles you anticipate when
trying to incorporate this tool into your current notebook work-
flow? What aspects of your workflow might be impacted?

5. Do you have any concerns about the learning curve or usability
of the tool?

6. What other tools or extensions are you currently using to manage
and visualize notebook changes, if any? How does this tool com-
pare to those, and do you see potential advantages in switching or
complementing your existing tools with this one?

7. Are there any specific use cases or scenarios in your work where
you think this tool might not be as useful or relevant? What are
the limitations or gaps you perceive?

8. If you were to suggest improvements or additional features for this
tool based on your initial impression, what would you prioritize
as the most valuable enhancements?

9. Is there something that should be highlighted/additionally visually
indicated?

10. For visual outputs, would you prefer to see the previous version
or a diff in the notebook history?

11. How do you see the focus on diffing only things that are visible
in the notebook? I.e., if you show the head() of a dataframe you
only see how the head changed (if at all), and miss that it might
have changed somewhere else.

	Introduction
	Related Work
	Data Science in Computational Notebooks
	Tracking and Visualizing Notebook Provenance
	Visual Comparisons

	Loops Approach
	Tracking and Visualizing the Notebook History
	Compact Notebook Diff
	Detailed Notebook Diff

	Visualizing Cell Content Differences
	Text and Code Comparison
	Tabular Data Comparison
	Comparing Images and Visualizations

	Implementation
	Use Cases
	Use Case 1: Multi-Week Concert Data Analysis
	Use Case 2: What-If Analysis on Cancer Patient Data

	Qualitative User Feedback
	Discussion
	Conclusion
	Image Difference Visualization
	Calculating Image Differences
	Image Similarity Metrics
	Examples

	Full Page Screenshots of the JupyterLab Prototype
	Interview Questions
	Initial Questions
	Post-Demonstration Questions

