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ABSTRACT

Uncertainty visualization is an emerging research topic in data vi-
sualization because neglecting uncertainty in visualization can lead
to inaccurate assessments. In this paper, we study the propagation
of multivariate data uncertainty in visualization. Although there
have been a few advancements in probabilistic uncertainty visual-
ization of multivariate data, three critical challenges remain to be
addressed. First, the state-of-the-art probabilistic uncertainty vi-
sualization framework is limited to bivariate data (two variables).
Second, existing uncertainty visualization algorithms use compu-
tationally intensive techniques and lack support for cross-platform
portability. Third, as a consequence of the computational expense,
integration into production visualization tools is impractical. In this
work, we address all three issues and make a threefold contribution.
First, we take a step to generalize the state-of-the-art probabilis-
tic framework for bivariate data to multivariate data with an arbi-
trary number of variables. Second, through utilization of VTK-m’s
shared-memory parallelism and cross-platform compatibility fea-
tures, we demonstrate acceleration of multivariate uncertainty visu-
alization on different many-core architectures, including OpenMP
and AMD GPUs. Third, we demonstrate the integration of our al-
gorithms with the ParaView software. We demonstrate the utility
of our algorithms through experiments on multivariate simulation
data with three and four variables.

Index Terms: Uncertainty, multivariate visualization.

1 INTRODUCTION

Visualizations play a vital role in large-scale data analysis and
enable scientists to make informed decisions effectively and ef-
ficiently. All scientific data contains varying degrees of uncer-
tainty due to instrument limitations, approximations in numerical
and physical models, and data processing techniques [6]. Ignoring
the data uncertainty in visualization can result in misleading anal-
ysis. Thus, visualizing data uncertainty has been an active area of
research that has resulted in numerous breakthroughs [5, 11, 18].
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The fiber surface [7] and feature level-set [10] techniques have
proven to be powerful tools for the analysis of complex multivari-
ate data from a large number of domains, including molecular dy-
namics, astrophysics, and fluid dynamics. State-of-the-art work by
Zheng and Sadlo [24], Sane et al. [20], and Athawale et al. [3] have
given scientists previously unattainable insight into the impact of
uncertainty on the analysis of multivariate data. In this work, we
identify and address three limitations in the state of the art.

First, the probabilistic frameworks proposed by Zheng and
Sadlo [24] and Athawale et al. [3] are currently limited to bivariate
data. Simulation or experimental data are often multivariate with
more than two variables. Thus, in our first contribution, we take
a step to extend the probabilistic framework for bivariate data to
multivariate data with more than two variables. Although the previ-
ous work by Sane et al. [20] studied uncertainty in multivariate data
with more than two variables, their work derived confidence inter-
vals for depicting data uncertainty. Our work significantly differs
from Sane et al.’s work in that we compute spatial probabilities of
multivariate data features, similar to the prior work [3, 24].

Second, although the acceleration of uncertainty visualization
has been previously demonstrated on GPUs for univariate data [22]
and bivariate data [3], it has not been studied and evaluated yet for
multivariate data with more than two variables. Thus, in our second
contribution, we present platform-portable and GPU-accelerated
implementation for uncertainty visualization of multivariate data
with more than two variables using VTK-m [15]. We refer to our
filter as FunM2C (filter for uncertainty visualization of multivariate
data on multi-core devices), given many similarities of our ap-
proach compared to the one by Wang et al. [22].

Third, partly due to the high computational costs, uncertainty
visualization is often not available for use in production visualiza-
tion tools such as VisIt [8] and ParaView [1]. Wang et al. [22]
previously demonstrated how their VTK-m uncertainty visualiza-
tion algorithms for univariate data integrate well with the ParaView
software for wider accessibility. Motivated from the work by Wang
et al., in our third contribution, we demonstrate the integration of
our VTK-m multivariate uncertainty visualization algorithms in the
ParaView software for accessibility to a wide audience.

2 BACKGROUND AND RELATED WORK

Here, we present an overview of fiber uncertainty visualization al-
gorithm for bivariate data proposed by Zheng and Sadlo [24] since
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we extend their work to data with more than two variables. For a bi-
variate function f :Rn →R2, the spatial domain D ⊂Rn is mapped
to an attribute space A ⊂ R2. A fiber is then defined as the preim-
age of a point a = (a1,a2) ∈ A , which represents an intersection
of isosurfaces [13] for isovalues A1 = a1 and A2 = a2. A contin-
uum of points (i.e., a curve) in A corresponds to a continuum of
fibers in D , which forms a fiber surface. A polygon is generally
used to specify the values of user interest for the extraction of fiber
surfaces. Such a polygon is referred to as a trait T .

Figure 1: Illustration of fiber probability computation at a single
grid vertex for uncertain bivariate data. The fiber probability is
computed as the intersection area of a trait T and a blue rectan-
gle representing uncertain data U (with intersection shown by the
dotted orange border) divided by the area of U at a vertex. In Lay-
man’s terms, the fiber probability corresponds to a fraction of un-
certain data at a grid vertex residing inside the user-specified trait.

Fig. 1 summarizes the process for computing fiber probability or
uncertainty [3, 24] at each grid vertex of domain. The fiber proba-
bility essentially denotes the probability of uncertain data at a grid
vertex to lie inside a user-defined trait T . Our work is currently
limited to the uniformly-distributed data uncertainty with indepen-
dence assumption between variables, but we discuss the ramifi-
cations of the uniform noise and independence assumptions later
in Sec. 5. As represented in Fig. 1, the blue rectangle represents
uniformly-distributed data uncertainty (denoted by U with bounds
[a1,b1]⊂A1 and [a2,b2]⊂A2) at a single grid vertex. In a closed-
form method, the fiber probability is computed as the ratio of the
area of intersection between trait T (with bounds [l1,h1]⊂ A1 and
[l2,h2]⊂ A2) and uncertain data support U (i.e., the area of a rect-
angle enclosed by dotted orange lines in Fig. 1) and the total area
of uncertain data support. This work expands the previous work on
bivariate data [24] to general multivariate data f : Rn → Rm with
m-dimensional attribute space. Further, we implement our multi-
variate uncertainty algorithms using the VTK-m library for faster
performance using GPUs and seamless integration with ParaView,
similar to the prior work for univariate [22] and bivariate [3] data.

3 METHODS

In this section, we describe our algorithm for visualizing uncer-
tainty in multivariate data with more than two variables (Sec. 3.1)
and its VTK-m implementation (Sec. 3.2).

3.1 Generalizing Bivariate Fiber Uncertainty to Data
with More than Two Variables

We generalize the fiber uncertainty visualization framework origi-
nally designed for two variables [3] to m variables (m ≥ 2) assum-
ing uniform-distributed uncertainty per variable. Mathematically,
each variable Xi representing uncertainty, where i ∈ {1, . . . ,m}, is
assumed to follow a uniform distribution Xi ∼ U [ai,bi]. For each
variable Xi, [ai,bi] ⊂ Ai. Because of our data independence as-
sumption, the joint distribution of all random variables Xi is given
by the product of individual distributions. Thus, the joint distri-
bution is also a uniform distribution over m-dimensional hyper-
rectangular support (U ) with bounds given by the ranges U =
[[a1,b1], . . . , [am,bm]]. The m-dimensional trait T is characterized
by user-defined limits [li,hi] for each dimension i ∈ {1, . . . ,m},
which corresponds to a m-dimensional hyperrectangle.

To compute the probability of trait satisfaction at each grid point,
we calculate the intersection between the m-dimensional hyper-
rectangles corresponding to the uncertain data distribution support
U and trait T . Let I denote the hyperrectangle corresponding
to the intersection of U and T . The lowest and highest limits
of I then correspond to m-dimensional vectors [max(a1, l1), . . . ,
max(am, lm)] and [min(b1,h1), . . . , min(bm,hm)], respectively. The
logic underneath the computation of the lowest and highest limits
of I is directly derived from a 2-dimensional case shown in Fig. 1.
The volume of the hyperectangle I is then computed using a prod-
uct P = ∏

i=m
i=1 [min(bi,hi)−max(ai, li)]. Finally, the probability of

trait satisfaction at a grid vertex is computed as the ratio of the vol-
ume of hyperrectangle I (i.e., P) and the volume of hyperrectangle
U [i.e., ∏

i=m
i=1 (bi −ai) ].

Figure 2: Illustration of uncertainty analysis for trivariate data at a
single grid point. The red box represents bounds indicating uncer-
tain data, while the green box highlights a user-specified trait. The
orange shading illustrates the intersection volume, showing how
much uncertain data coincides with the specified traits.

Figure 2 demonstrates our approach for a three variable case.
The green box in the figure represents the user-selected trait (T )
corresponding to the ranges [li,hi] with i ∈ {1,2,3}. Each variable
Xi follows a uniform distribution Xi ∼ U [ai,bi] with i ∈ {1,2,3},
creating a joint uniform distribution over the support (U ) depicted
in red. The intersection volume (I ) illustrated in orange has the
lowest limits as max(ai, li) and the highest limits as min(hi,bi) in
the i’th dimension. Thus, the probability of trait satisfaction at a
grid point can be computed as Volume(I )

Volume(U )
.

3.2 Integration Into VTK-m and Paraview Software
In a prior work by Wang et al. [22], an isosurface algorithm for
uncertain data (FunMC2) was implemented in VTK-m [15] and in-
tegrated into ParaView. Our approach extends the capabilities of
univariate uncertainty visualization proposed by Wang et al. to
multivariate data with more than two variables through the develop-
ment of a specialized worklet within VTK-m called Multivariate-
UncertaintyClosedForm. The MultivariateUncertaintyClosedForm
worklet leverages a deterministic, closed-form solution proposed
in Sec. 3.1, which calculates probabilities based on analytical ex-
pressions derived from the distribution parameters. The worklet

Figure 3: Illustration of VTK-m’s multi-threading process that re-
duces the algorithm’s execution period. Each parallelogram above
corresponds to a grid vertex and indicates data uncertainty (U ) with
respect to a trait (T ). The process generalizes to multivariate data
with an arbitrary number of dimensions.
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(a) Original Deep Water Im-
pact Dataset

(b) Downscaled Deep Water
Impact Dataset with Mean

(c) Downscaled Deep Water
Impact Dataset with Uncer-
tainty

(d) Downscaled Deep Wa-
ter Impact Dataset with High
Probability

(e) Downscaled Deep
Water Impact Dataset with
Low Probability

(f) Red Sea Dataset with
Mean

(g) Red Sea Dataset with
Uncertainty

(h) Red Sea Dataset with
High Probability

(i) Red Sea Dataset with
Low Probability

Figure 4: The top row visualizes the Deep Water Impact dataset with three variables for the trait (T ) v2:(0.1, 0.5), tev:(0.2, 0.25), and
prs:(30000, 400000). Fig.(a) visualizes the original resolution (460×280×120) dataset, which is treated as the reference. Fig.(b) shows the
mean-field surface, and Fig.(c) shows our probabilistic visualization. The probabilistic visualization recovers important topological structures
(e.g., rib-like structure in the inset views) that appears to be broken in the mean-field visualization. The bottom row depicts results for the Red
Sea dataset with four variables for the trait curlZ:(−15.0, −0.1), Vorticity:(0.0, 15.0), Velocity:(0.0, 0.4), and Temperature:(10.0, 29.0). The
results for the Red Sea are similar to the Deep Water Impact dataset, however, the reference is not known in the Red Sea dataset. The Green
rectangles point out feature inconsistencies between the mean-field in Fig.(f) and our probabilistic visualization in Fig.(g). Both Fig.(d) and
Fig.(h) illustrate the regions with probability greater than 0.5, and Fig. (e) and Fig. (i) show the regions with probability smaller than 0.5.

inherits from VTK-m’s foundational class, WorkletMapField [14],
which facilitates the systematic application of computations across
multi-dimensional datasets. At each grid point, these worklets oper-
ate in conjunction with uncertain multivariate data representations.
Figure 3 visually illustrates the execution process within VTK-
m, showcasing its capability to manage computations concurrently
across multiple grid points. The figure shows bivariate data being
parallelized but the same process still applies to multivariate data
with more than two variables (described in Sec. 3.1).

Moreover, the integration of MultivariateUncertaintyClosed-
Form worklet into VTK-m extends beyond mere algorithmic im-
plementation. Utilizing VTK-m’s plugin architecture, this worklet
seamlessly integrates into ParaView [1], a widely-used visualiza-
tion tool. Within ParaView, users gain access to new filters that
execute our multivariate uncertainty visualization algorithms. The
graphical user interface (GUI) of ParaView enables users to have
direct control over algorithmic parameters, facilitating interactive
exploration, and refinement of visualization results.

4 RESULTS

Evaluation results are presented in three parts. Sec. 4.1 describes
the platforms and datasets used for evaluation. Sec. 4.2 presents
uncertainty visualization results for multivariate data obtained with
the proposed FunM2C filter. Sec. 4.3 validates the correctness
and demonstrates the enhanced performance of our closed-form ap-
proach (Sec. 3.1) using OpenMP and AMD GPUs.

4.1 Platform and Datasets
Implementing multivariate uncertainty visualization algorithms us-
ing VTK-m provides flexibility to run the algorithms on differ-
ent backends based on various multi-core devices. The Serial,
OpenMP, and HIP backends are evaluated on the “Frontier” super-
computing system [2]. The details of Datasets are listed as follows:

Deep Water Impact is created by a cosmology simulation [16]
that simulates the Impact of an asteroid. The original data reso-
lution is 460× 280× 240. The data is partitioned into blocks of

size 2× 2× 2, and uncertainty in each block is modeled with the
uniform distribution using the hixel idea [21]. We assess the visu-
alizations for three fields, including “v02” representing the volume
of water fraction, “tev” representing the temperature in electron-
volt (eV), and the field “prs” representing the pressure in microbars
(µbar).

Red Sea dataset [23] is publicly accessible through IEEE SciVis
contest 2020. The size of each ensemble member is 500×500×50
in a uniform grid, and there are 20 ensemble members in total. We
assess the four attributes representing vorticity, curl, velocity, and
temperature [20] for visualization of flow simulations.

Supernova is created by a cosmology simulation [19] that sim-
ulates the core-collapse of a supernova. The size of each ensem-
ble member is resampled to 100 × 100 × 100 in a uniform grid,
and there are 64 ensemble members in total. We assess the fields
“Nickel” and “Iron” in the dataset.

4.2 Visualization of Multivariate Probability
Fig. 4 visualizes the results of the application of our multivariate
uncertainty filter (FunM2C) to the Deep Water Impact (top row)
and Red Sea (bottom row) datasets. The uncertainty visualizations
shown are of volume renderings [9] of probability volumes derived
using techniques proposed in Sec. 3 with the inferno color map. In
particular, transparent deep purple regions indicate the positions of
lower probability, whereas a less transparent bright yellow regions
indicate the positions of higher probabilities.

In the case of the Deep Water Impact dataset, the high-resolution
dataset (460×280×240) is visualized in Fig. 4(a), which is treated
as the reference. Fig. 4(b) visualizes the results for the mean field,
which is computed per data block of size 2×2×2. Fig. 4(c) visual-
izes probabilistic field computed with our algorithms by modeling
uncertainty with uniform distribution over block for each variable.
In visualizing of the probabilistic field, low-probability regions are
dark purple, and high-probability regions are yellow.

For the Deep Water Impact dataset, the mean-field visualization
(Fig. 4(b)) produces a significant number of cracks and loses im-
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portant features compared to the reference (Fig. 4(a)). In contrast,
the probabilistic field computed with our methods (Fig. 4(c)) recov-
ers important topological features (e.g., rib-like features shown in
the inset views) that are lost in the mean field when compared to
the reference. Fig. 4(d) and Fig. 4(e) visualize the high probability
(probability ≥ 0.5) and low probability (probability < 0.5) features,
respectively. The results for the Red Sea dataset in Fig. 4 are sim-
ilar to those for the asteroid dataset. In the Red Sea dataset, we do
not know the reference. However, we could see prominent feature
differences between the mean-field (Fig. 4(f)) and our probabilistic
visualizations (Fig. 4(g)), as indicated by the green boxes.

Figure 5: Uncertainty visualization of bivariate Supernova [19] us-
ing the proposed FunM2C filter as a ParaView plugin. Scatter plots
associated with each render view are added through post image pro-
cessing, which is not the capability of the plugin.

We export our FunM2C filter as a plugin to showcase its usage
inside ParaView and its potential utility to the broader scientific
community. Fig. 5 illustrates the ParaView GUI interface utilizing
FunM2C filter as a backend through the plugin. Users can conve-
niently explore different regions of the data by specifying bounds
denoting traits through one interface and study respective proba-
bilistic multivariate visualization.
4.3 Validation and Performance of FunM2C Filter
In this experiment, we initially validate the correctness of the
FunM2C implementation by comparing results from the proposed
closed-form framework (Sec. 3.1) with the Monte Carlo technique.
The Monte Carlo technique involves generating uniformly dis-
tributed random samples within an m-dimensional hyperrectan-
gle representing uncertain data ranges (U = [[a1,b1], . . . [am,bm]])
and computing the ratio of samples that fall within a m-
dimensional hyperrectangle corresponding to a user-defined trait
(T = [[l1,h1], . . . [lm,hm]]), providing a statistical estimate of like-
lihood of trait satisfaction at a grid point. Due to the simplicity of
the Monte Carlo approach, it serves as a benchmark to verify the
correctness of closed-form implementation.

To validate our closed-form implementation, we ensure that the
Monte Carlo solution converges to the results from the closed-form
filter as the number of samples increases. In particular, increasing
the number of Monte Carlo samples from 100 to 1000 reduces the
mean squared difference between our closed-form and Monte Carlo
solutions from 2.26×10−4 to 1.60×10−4 for the Red Sea dataset,
and from 0.03 to 0.017 for the Deep Sea Impact dataset with four
variables. The maximum error between any given grid point also
decreases to negligible numbers, which can be attributed to the ran-
domness of the sampling. These findings confirm that as the sample
size grows, the Monte Carlo solution converges toward our closed-
form solutions, validating our implementation’s accuracy.

We assessed the performance of our VTK-m algorithms for both
the Deep Water Impact and the Red Sea datasets with three and four
variables, respectively, utilizing a single node of the Frontier Super-
computer. For the OpenMP benchmarks, we tested the performance
with 32 threads, while for the HIP benchmarks, the performance
was evaluated on a single AMD GPU. The performance results are
depicted in Fig. 6.

(a) Deep Water Impact Dataset (b) Red Sea Dataset

Figure 6: The speedup for the proposed closed-form solu-
tions Sec. 3.1 for the evaluated datasets using different acceleration
backends for probabilistic computations.

Our algorithms scale well with increase in the number of vari-
ables. On the Deep Water Impact dataset with three variables, exe-
cution times improved significantly: serial execution took approxi-
mately 13.64ms, reducing to 4.99ms with OpenMP (a 3× improve-
ment), and further to 0.37ms with HIP (a 37× improvement). Per-
formance gains were even more pronounced with four variables,
with serial times of 29.17ms decreasing to 4.91ms with OpenMP
(a 6× improvement), and to 0.50ms with HIP (a 58× improve-
ment). These speedup results are depicted in Fig. 6(a). Addition-
ally, our algorithms show better scalability with an increase in the
data size. Particularly, performance improvements are greater for
the Red Sea dataset (Fig. 6(b)) compared to the Deep Water Impact
dataset (Fig. 6(a)) because of its larger data size.

Utilizing accelerators enables FunM2C to produce results in
near-real-time, minimizing disruption during interactive result anal-
ysis. The speedup figures vary across datasets and backend archi-
tectures, highlighting the importance of systematically evaluating
different datasets and workloads. Comparing acceleration architec-
tures requires such systematic evaluation [12], which lies beyond
the scope of this paper.

5 CONCLUSION & FUTURE WORK

This paper presented the design, implementation, and evaluation
for efficiently computing multivariate data uncertainty using multi-
core devices. We propose generalization of the previous work on
bivariate uncertainty visualization [24] to multivariate data with ar-
bitrary number of variables. Specifically, we showcase the results of
our generalized framework for the Deep Water Impact dataset with
three variables and the Red Sea dataset with four variables. Our re-
sults demonstrate a significant performance increase on multi-core
CPUs and AMD GPUs compared to the serial implementation. Our
implementation and integration with the VTK-m software makes it
platform-portable and can be used on additional types (both current
and future) architectures. Further, we demonstrate the seamless in-
tegration of our work with the ParaView software using the plugin
mechanism. The integration into a production visualization tool
provides access to uncertainty visualization techniques to a wider
scientific community for data analysis.

There are few important limitations of our work, which we plan
to address in the future. Our current implementation is limited to the
uniform noise models and assumes independence among variables.
Most real datasets often exhibit distributions that may significantly
deviate from the uniform distribution. Thus, we plan to expand
our generalized framework for Gaussian and histogram models in
the future for more accurate quantification of probabilities. Also,
variables often exhibit correlation in real datasets. Thus, our inde-
pendent uniform assumption can lead to overestimation of proba-
bilities compared to the correlated models with different probabil-
ity distributions (as shown in the previous studies [4, 17]). Thus,
we would like to account for correlations in our generalized frame-
work. Lastly, our work currently assumes hyperrectangular traits
for analysis of multivariate data, but we plan to investigate en-
hanced representation of traits based on scatterplots and extend our
work to improve uncertainty analysis using flexible trait shapes.
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