Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

SCI Publications

2023


D. Hoang, H. Bhatia, P. Lindstrom, V. Pascucci. “Progressive Tree-Based Compression of Large-Scale Particle Data,” In IEEE Transactions on Visualization and Computer Graphics, IEEE, pp. 1--18. 2023.
DOI: 10.1109/TVCG.2023.3260628

ABSTRACT

Scientific simulations and observations using particles have been creating large datasets that require effective and efficient data reduction to store, transfer, and analyze. However, current approaches either compress only small data well while being inefficient for large data, or handle large data but with insufficient compression. Toward effective and scalable compression/decompression of particle positions, we introduce new kinds of particle hierarchies and corresponding traversal orders that quickly reduce reconstruction error while being fast and low in memory footprint. Our solution to compression of large-scale particle data is a flexible block-based hierarchy that supports progressive, random-access, and error-driven decoding, where error estimation heuristics can be supplied by the user. For low-level node encoding, we introduce new schemes that effectively compress both uniform and densely structured particle distributions.



S. Leventhal, A. Gyulassy, M. Heimann, V. Pascucci. “Exploring Classification of Topological Priors with Machine Learning for Feature Extraction,” In IEEE Transactions on Visualization and Computer Graphics, pp. 1--12. 2023.

ABSTRACT

In many scientific endeavors, increasingly abstract representations of data allow for new interpretive methodologies and conceptualization of phenomena. For example, moving from raw imaged pixels to segmented and reconstructed objects allows researchers new insights and means to direct their studies toward relevant areas. Thus, the development of new and improved methods for segmentation remains an active area of research. With advances in machine learning and neural networks, scientists have been focused on employing deep neural networks such as U-Net to obtain pixel-level segmentations, namely, defining associations between pixels and corresponding/referent objects and gathering those objects afterward. Topological analysis, such as the use of the Morse-Smale complex to encode regions of uniform gradient flow behavior, offers an alternative approach: first, create geometric priors, and then apply machine learning to classify. This approach is empirically motivated since phenomena of interest often appear as subsets of topological priors in many applications. Using topological elements not only reduces the learning space but also introduces the ability to use learnable geometries and connectivity to aid the classification of the segmentation target. In this paper, we describe an approach to creating learnable topological elements, explore the application of ML techniques to classification tasks in a number of areas, and demonstrate this approach as a viable alternative to pixel-level classification, with similar accuracy, improved execution time, and requiring marginal training data.



Z. Li, S. Liu, K. Bhavya, T. Bremer, V. Pascucci. “Instance-wise Linearization of Neural Network for Model Interpretation,” Subtitled “arXiv:2310.16295v1,” 2023.

ABSTRACT

Neural network have achieved remarkable successes in many scientific fields. However, the interpretability of the neural network model is still a major bottlenecks to deploy such technique into our daily life. The challenge can dive into the non-linear behavior of the neural network, which rises a critical question that how a model use input feature to make a decision. The classical approach to address this challenge is feature attribution, which assigns an important score to each input feature and reveal its importance of current prediction. However, current feature attribution approaches often indicate the importance of each input feature without detail of how they are actually processed by a model internally. These attribution approaches often raise a concern that whether they highlight correct features for a model prediction.

For a neural network model, the non-linear behavior is often caused by non-linear activation units of a model. However, the computation behavior of a prediction from a neural network model is locally linear, because one prediction has only one activation pattern. Base on the observation, we propose an instance-wise linearization approach to reformulates the forward computation process of a neural network prediction. This approach reformulates different layers of convolution neural networks into linear matrix multiplication. Aggregating all layers' computation, a prediction complex convolution neural network operations can be described as a linear matrix multiplication F(x)=Wx+b. This equation can not only provides a feature attribution map that highlights the important of the input features but also tells how each input feature contributes to a prediction exactly. Furthermore, we discuss the application of this technique in both supervise classification and unsupervised neural network learning parametric t-SNE dimension reduction.



J. Luettgau, G. Scorzelli, V. Pascucci, M. Taufer. “Development of Large-Scale Scientific Cyberinfrastructure and the Growing Opportunity to Democratize Access to Platforms and Data,” In Distributed, Ambient and Pervasive Interactions, Springer Nature Switzerland, pp. 378--389. 2023.
ISBN: 978-3-031-34668-2
DOI: 10.1007/978-3-031-34668-2_25

ABSTRACT

As researchers across scientific domains rapidly adopt advanced scientific computing methodologies, access to advanced cyberinfrastructure (CI) becomes a critical requirement in scientific discovery. Lowering the entry barriers to CI is a crucial challenge in interdisciplinary sciences requiring frictionless software integration, data sharing from many distributed sites, and access to heterogeneous computing platforms. In this paper, we explore how the challenge is not merely a factor of availability and affordability of computing, network, and storage technologies but rather the result of insufficient interfaces with an increasingly heterogeneous mix of computing technologies and data sources. With more distributed computation and data, scientists, educators, and students must invest their time and effort in coordinating data access and movements, often penalizing their scientific research. Investments in the interfaces’ software stack are necessary to help scientists, educators, and students across domains take advantage of advanced computational methods. To this end, we propose developing a science data fabric as the standard scientific discovery interface that seamlessly manages data dependencies within scientific workflows and CI.



J. Luettgau, H. Martinez, G. Tarcea, G. Scorzelli, V. Pascucci, M. Taufer. “Studying Latency and Throughput Constraints for Geo-Distributed Data in the National Science Data Fabric,” In Proceedings of the 32nd International Symposium on High-Performance Parallel and Distributed Computing, ACM, pp. 325–326. 2023.
DOI: 10.1145/3588195.3595948

ABSTRACT

The National Science Data Fabric (NSDF) is our solution to the problem of addressing the data-sharing needs of the growing data science community. NSDF is designed to make sharing data across geographically distributed sites easier for users who lack technical expertise and infrastructure. By developing an easy-to-install software stack, we promote the FAIR data-sharing principles in NSDF while leveraging existing high-speed data transfer infrastructures such as Globus and XRootD. This work shows how we leverage latency and throughput information between geo-distributed NSDF sites with NSDF entry points to optimize the automatic coordination of data placement and transfer across the data fabric, which can further improve the efficiency of data sharing.



N. Morrical, S. Zellmann, A. Sahistan, P. Shriwise, V. Pascucci. “Attribute-Aware RBFs: Interactive Visualization of Time Series Particle Volumes Using RT Core Range Queries,” In IEEE Trans Vis Comput Graph, IEEE, 2023.
DOI: 10.1109/TVCG.2023.3327366

ABSTRACT

Supplemental material

Smoothed-particle hydrodynamics (SPH) is a mesh-free method used to simulate volumetric media in fluids, astrophysics, and solid mechanics. Visualizing these simulations is problematic because these datasets often contain millions, if not billions of particles carrying physical attributes and moving over time. Radial basis functions (RBFs) are used to model particles, and overlapping particles are interpolated to reconstruct a high-quality volumetric field; however, this interpolation process is expensive and makes interactive visualization difficult. Existing RBF interpolation schemes do not account for color-mapped attributes and are instead constrained to visualizing just the density field. To address these challenges, we exploit ray tracing cores in modern GPU architectures to accelerate scalar field reconstruction. We use a novel RBF interpolation scheme to integrate per-particle colors and densities, and leverage GPU-parallel tree construction and refitting to quickly update the tree as the simulation animates over time or when the user manipulates particle radii. We also propose a Hilbert reordering scheme to cluster particles together at the leaves of the tree to reduce tree memory consumption. Finally, we reduce the noise of volumetric shadows by adopting a spatially temporal blue noise sampling scheme. Our method can provide a more detailed and interactive view of these large, volumetric, time-series particle datasets than traditional methods, leading to new insights into these physics simulations.



N. Zhou, G. Scorzelli, J. Luettgau, R.R. Kancharla, J. Kane, R. Wheeler, B. Croom, B. Newell, V. Pascucci, M. Taufer. “Orchestration of materials science workflows for heterogeneous resources at large scale,” In The International Journal of High Performance Computing Applications, Sage, 2023.

ABSTRACT

In the era of big data, materials science workflows need to handle large-scale data distribution, storage, and computation. Any of these areas can become a performance bottleneck. We present a framework for analyzing internal material structures (e.g., cracks) to mitigate these bottlenecks. We demonstrate the effectiveness of our framework for a workflow performing synchrotron X-ray computed tomography reconstruction and segmentation of a silica-based structure. Our framework provides a cloud-based, cutting-edge solution to challenges such as growing intermediate and output data and heavy resource demands during image reconstruction and segmentation. Specifically, our framework efficiently manages data storage, scaling up compute resources on the cloud. The multi-layer software structure of our framework includes three layers. A top layer uses Jupyter notebooks and serves as the user interface. A middle layer uses Ansible for resource deployment and managing the execution environment. A low layer is dedicated to resource management and provides resource management and job scheduling on heterogeneous nodes (i.e., GPU and CPU). At the core of this layer, Kubernetes supports resource management, and Dask enables large-scale job scheduling for heterogeneous resources. The broader impact of our work is four-fold: through our framework, we hide the complexity of the cloud’s software stack to the user who otherwise is required to have expertise in cloud technologies; we manage job scheduling efficiently and in a scalable manner; we enable resource elasticity and workflow orchestration at a large scale; and we facilitate moving the study of nonporous structures, which has wide applications in engineering and scientific fields, to the cloud. While we demonstrate the capability of our framework for a specific materials science application, it can be adapted for other applications and domains because of its modular, multi-layer architecture.


2022


T. M. Athawale, D. Maljovec. L. Yan, C. R. Johnson, V. Pascucci, B. Wang. “Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 28, No. 4, pp. 1955-1966. April, 2022.
ISSN: 1077-2626
DOI: 10.1109/TVCG.2020.3022359

ABSTRACT

Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps – the probabilistic map , the significance map , and the survival map – to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.



Z. Li, S. Liu, X. Yu, K. Bhavya, J. Cao, J. Diffenderfer, P.T. Bremer, V. Pascucci. ““Understanding Robustness Lottery”: A Comparative Visual Analysis of Neural Network Pruning Approaches,” Subtitled “arXiv preprint arXiv:2206.07918,” 2022.

ABSTRACT

Deep learning approaches have provided state-of-the-art performance in many applications by relying on extremely large and heavily overparameterized neural networks. However, such networks have been shown to be very brittle, not generalize well to new uses cases, and are often difficult if not impossible to deploy on resources limited platforms. Model pruning, i.e., reducing the size of the network, is a widely adopted strategy that can lead to more robust and generalizable network -- usually orders of magnitude smaller with the same or even improved performance. While there exist many heuristics for model pruning, our understanding of the pruning process remains limited. Empirical studies show that some heuristics improve performance while others can make models more brittle or have other side effects. This work aims to shed light on how different pruning methods alter the network's internal feature representation, and the corresponding impact on model performance. To provide a meaningful comparison and characterization of model feature space, we use three geometric metrics that are decomposed from the common adopted classification loss. With these metrics, we design a visualization system to highlight the impact of pruning on model prediction as well as the latent feature embedding. The proposed tool provides an environment for exploring and studying differences among pruning methods and between pruned and original model. By leveraging our visualization, the ML researchers can not only identify samples that are fragile to model pruning and data corruption but also obtain insights and explanations on how some pruned …



Z. Li, H. Menon, K. Mohror, S. Liu, L. Guo, P.T. Bremer, V. Pascucci. “A Visual Comparison of Silent Error Propagation,” In IEEE Transactions on Visualization and Computer Graphics, IEEE, 2022.
DOI: 10.1109/TVCG.2022.3230636

ABSTRACT

High-performance computing (HPC) systems play a critical role in facilitating scientific discoveries. Their scale and complexity (e.g., the number of computational units and software stack) continue to grow as new systems are expected to process increasingly more data and reduce computing time. However, with more processing elements, the probability that these systems will experience a random bit-flip error that corrupts a program's output also increases, which is often recognized as silent data corruption. Analyzing the resiliency of HPC applications in extreme-scale computing to silent data corruption is crucial but difficult. An HPC application often contains a large number of computation units that need to be tested, and error propagation caused by error corruption is complex and difficult to interpret. To accommodate this challenge, we propose an interactive visualization system that helps HPC researchers understand the resiliency of HPC applications and compare their error propagation. Our system models an application's error propagation to study a program's resiliency by constructing and visualizing its fault tolerance boundary. Coordinating with multiple interactive designs, our system enables domain experts to efficiently explore the complicated spatial and temporal correlation between error propagations. At the end, the system integrated a nonmonotonic error propagation analysis with an adjustable graph propagation visualization to help domain experts examine the details of error propagation and answer such questions as why an error is mitigated or amplified by program execution.



Y. Livnat, D. Maljovec, A. Gyulassy, B. Mouginot, V. Pascucci. “A Novel Tree Visualization to Guide Interactive Exploration of Multi-dimensional Topological Hierarchies,” Subtitled “arXiv preprint arXiv:2208.06952,” 2022.

ABSTRACT

Understanding the response of an output variable to multi-dimensional inputs lies at the heart of many data exploration endeavours. Topology-based methods, in particular Morse theory and persistent homology, provide a useful framework for studying this relationship, as phenomena of interest often appear naturally as fundamental features. The Morse-Smale complex captures a wide range of features by partitioning the domain of a scalar function into piecewise monotonic regions, while persistent homology provides a means to study these features at different scales of simplification. Previous works demonstrated how to compute such a representation and its usefulness to gain insight into multi-dimensional data. However, exploration of the multi-scale nature of the data was limited to selecting a single simplification threshold from a plot of region count. In this paper, we present a novel tree visualization that provides a concise overview of the entire hierarchy of topological features. The structure of the tree provides initial insights in terms of the distribution, size, and stability of all partitions. We use regression analysis to fit linear models in each partition, and develop local and relative measures to further assess uniqueness and the importance of each partition, especially with respect parents/children in the feature hierarchy. The expressiveness of the tree visualization becomes apparent when we encode such measures using colors, and the layout allows an unprecedented level of control over feature selection during exploration. For instance, selecting features from multiple scales of the hierarchy enables a more nuanced exploration. Finally, we …



J. Luettgau, C.R. Kirkpatrick, G. Scorzelli, V. Pascucci, G. Tarcea, M. Taufer. “NSDF-Catalog: Lightweight Indexing Service for Democratizing Data Delivering,” 2022.

ABSTRACT

Across domains massive amounts of scientific data are generated. Because of the large volume of information, data discoverability is often hard if not impossible, especially for scientists who have not generated the data or are from other domains. As part of the NSF-funded National Science Data Fabric (NSDF) initiative, we develop a testbed to demonstrate that these boundaries to data discoverability can be overcome. In support of this effort, we identify the need for indexing large-amounts of scientific data across scientific domains. We propose NSDF-Catalog, a lightweight indexing service with minimal metadata that complements existing domain-specific and rich-metadata collections. NSDF-Catalog is designed to facilitate multiple related objectives within a flexible microservice to: (i) coordinate data movements and replication of data from origin repositories within the NSDF federation; (ii) build an inventory of existing scientific data to inform the design of next-generation cyberinfrastructure; and (iii) provide a suite of tools for discovery of datasets for cross-disciplinary research. Our service indexes scientific data at a fine-granularity at the file or object level to inform data distribution strategies and to improve the experience for users from the consumer perspective, with the goal of allowing end-to-end dataflow optimizations



N. Morrical, A. Sahistan, U. Güdükbay, I. Wald, V. Pascucci. “Quick Clusters: A GPU-Parallel Partitioning for Efficient Path Tracing of Unstructured Volumetric Grids,” 2022.
DOI: 10.13140/RG.2.2.34351.20648

ABSTRACT

We propose a simple, yet effective method for clustering finite elements in order to improve preprocessing times and rendering performance of unstructured volumetric grids. Rather than building bounding volume hierarchies (BVHs) over individual elements, we sort elements along a Hilbert curve and aggregate neighboring elements together, significantly improving BVH memory consumption. Then to further reduce memory consumption, we cluster the mesh on the fly into sub-meshes with smaller indices using series of efficient parallel mesh re-indexing operations. These clusters are then passed to a highly optimized ray tracing API for both point containment queries and ray-cluster intersection testing. Each cluster is assigned a maximum extinction value for adaptive sampling, which we rasterize into non-overlapping view-aligned bins allocated along the ray. These maximum extinction bins are then used to guide the placement of samples along the ray during visualization, significantly reducing the number of samples required and greatly improving overall visualization interactivity. Using our approach, we improve rendering performance over a competitive baseline on the NASA Mars Lander dataset by 6×(1FPS up to 6FPS including volumetric shadows) while simultaneously reducing memory consumption by 3×(33GB down to 11GB) and avoiding any offline preprocessing steps, enabling high quality interactive visualization on consumer graphics cards. By utilizing the full 48 GB of an RTX 8000, we improve performance of Lander by 17×(1FPS up to 17FPS), enabling new possibilities for large data exploration.



P. Olaya, J. Luettgau, N. Zhou, J. Lofstead, G. Scorzelli, V. Pascucci, M. Taufer. “NSDF-FUSE: A Testbed for Studying Object Storage via FUSE File Systems,” In Proceedings of the 31st International Symposium on High-Performance Parallel and Distributed Computing, Association for Computing Machinery, pp. 277–278. 2022.
ISBN: 9781450391993
DOI: 10.1145/3502181.3533709

ABSTRACT

This work presents NSDF-FUSE, a testbed for evaluating settings and performance of FUSE-based file systems on top of S3-compatible object storage; the testbed is part of a suite of services from the National Science Data Fabric (NSDF) project (an NSF-funded project that is delivering cyberinfrastructures for data scientists). We demonstrate how NSDF-FUSE can be deployed to evaluate eight different mapping packages that mount S3-compatible object storage to a file system, as well as six data patterns representing different I/O operations on two cloud platforms. NSDF-FUSE is open-source and can be easily extended to run with other software mapping packages and different cloud platforms.



G. Tarcea, B. Puchala, T. Berman, G. Scorzelli, V. Pascucci, M, Taufer, J. Allison. “The Materials Commons Data Repository,” In 2022 IEEE 18th International Conference on e-Science (e-Science), pp. 405--406. 2022.
DOI: 10.1109/eScience55777.2022.00060

ABSTRACT

Repositories are increasingly used for publishing and sharing scientific data. The Materials Commons is a data repository that follows the FAIR (Findable, Accessible, Inter-operable, Reusable) principles. We demonstrate the challenges with FAIR and how Materials Commons solves them. We also discuss the Nationals Science Data Fabric (NSDF) [1], a project that is democratizing data access, and show how Materials Commons with the NSDF software stack accelerates data access and scientific research.



W. Usher, J. Amstutz, J. Günther, A. Knoll, G. P. Johnson, C. Brownlee, A. Hota, B. Cherniak, T. Rowley, J. Jeffers, V. Pascucci . “Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay,” In In Situ Visualization for Computational Science, Springer International Publishing, pp. 353--374. 2022.
ISBN: 978-3-030-81627-8

ABSTRACT

In situ visualization increasingly involves rendering large numbers of images for post hoc exploration. As both the number of images to be rendered and the data being rendered are large, the scalability of the rendering component is of key concern. Furthermore, the renderer must be able to support a wide range of data distributions, simulation configurations, and HPC systems to provide the flexibility required for a portable, general purpose in situ rendering package. In this chapter, we discuss recent developments in OSPRay’s support for MPI-parallel applications to provide a flexible and scalable rendering API, with a focus on how these developments can be applied to enable scalable, high-quality in situ visualization.



A. Venkat, D. Hoang, A. Gyulassy, P.T. Bremer, F. Federer, V. Pascucci. “High-Quality Progressive Alignment of Large 3D Microscopy Data,” In 2022 IEEE 12th Symposium on Large Data Analysis and Visualization (LDAV), pp. 1--10. 2022.
DOI: 10.1109/LDAV57265.2022.9966406

ABSTRACT

Large-scale three-dimensional (3D) microscopy acquisitions fre-quently create terabytes of image data at high resolution and magni-fication. Imaging large specimens at high magnifications requires acquiring 3D overlapping image stacks as tiles arranged on a two-dimensional (2D) grid that must subsequently be aligned and fused into a single 3D volume. Due to their sheer size, aligning many overlapping gigabyte-sized 3D tiles in parallel and at full resolution is memory intensive and often I/O bound. Current techniques trade accuracy for scalability, perform alignment on subsampled images, and require additional postprocess algorithms to refine the alignment quality, usually with high computational requirements. One common solution to the memory problem is to subdivide the overlap region into smaller chunks (sub-blocks) and align the sub-block pairs in parallel, choosing the pair with the most reliable alignment to determine the global transformation. Yet aligning all sub-block pairs at full resolution remains computationally expensive. The key to quickly developing a fast, high-quality, low-memory solution is to identify a single or a small set of sub-blocks that give good alignment at full resolution without touching all the overlapping data. In this paper, we present a new iterative approach that leverages coarse resolution alignments to progressively refine and align only the promising candidates at finer resolutions, thereby aligning only a small user-defined number of sub-blocks at full resolution to determine the lowest error transformation between pairwise overlapping tiles. Our progressive approach is 2.6x faster than the state of the art, requires less than 450MB of peak RAM (per parallel thread), and offers a higher quality alignment without the need for additional postprocessing refinement steps to correct for alignment errors.


2021


H. Bhatia, S. N. Petruzza, R. Anirudh, A. G. Gyulassy, R. M. Kirby, V. Pascucci, P. T. Bremer. “Data-Driven Estimation of Temporal-Sampling Errors in Unsteady Flows,” 2021.

ABSTRACT

While computer simulations typically store data at the highest available spatial resolution, it is often infeasible to do so for the temporal dimension. Instead, the common practice is to store data at regular intervals, the frequency of which is strictly limited by the available storage and I/O bandwidth. However, this manner of temporal subsampling can cause significant errors in subsequent analysis steps. More importantly, since the intermediate data is lost, there is no direct way of measuring this error after the fact. One particularly important use case that is affected is the analysis of unsteady flows using pathlines, as it depends on an accurate interpolation across time. Although the potential problem with temporal undersampling is widely acknowledged, there currently does not exist a practical way to estimate the potential impact. This paper presents a simple-to-implement yet powerful technique to estimate the error in pathlines due to temporal subsampling. Given an unsteady flow, we compute pathlines at the given temporal resolution as well as subsamples thereof. We then compute the error induced due to various levels of subsampling and use it to estimate the error between the given resolution and the unknown ground truth. Using two turbulent flows, we demonstrate that our approach, for the first time, provides an accurate, a posteriori error estimate for pathline computations. This estimate will enable scientists to better understand the uncertainties involved in pathline-based analysis techniques and can lead to new uncertainty visualization approaches using the predicted errors.



H. Bhatia, D. Hoang, N. Morrical, V. Pascucci, P.T. Bremer, P. Lindstrom. “AMM: Adaptive Multilinear Meshes,” Subtitled “arXiv:2007.15219,” 2021.

ABSTRACT

Adaptive representations are increasingly indispensable for reducing the in-memory and on-disk footprints of large-scale data. Usual solutions are designed broadly along two themes: reducing data precision, e.g., through compression, or adapting data resolution, e.g., using spatial hierarchies. Recent research suggests that combining the two approaches, i.e., adapting both resolution and precision simultaneously, can offer significant gains over using them individually. However, there currently exist no practical solutions to creating and evaluating such representations at scale. In this work, we present a new resolution-precision-adaptive representation to support hybrid data reduction schemes and offer an interface to existing tools and algorithms. Through novelties in spatial hierarchy, our representation, Adaptive Multilinear Meshes (AMM), provides considerable reduction in the mesh size. AMM creates a piecewise multilinear representation of uniformly sampled scalar data and can selectively relax or enforce constraints on conformity, continuity, and coverage, delivering a flexible adaptive representation. AMM also supports representing the function using mixed-precision values to further the achievable gains in data reduction. We describe a practical approach to creating AMM incrementally using arbitrary orderings of data and demonstrate AMM on six types of resolution and precision datastreams. By interfacing with state-of-the-art rendering tools through VTK, we demonstrate the practical and computational advantages of our representation for visualization techniques. With an open-source release of our tool to create AMM, we make such evaluation of data reduction accessible to the community, which we hope will foster new opportunities and future data reduction schemes



E. Deelman, A. Mandal, A. P. Murillo, J. Nabrzyski, V. Pascucci, R. Ricci, I. Baldin, S. Sons, L. Christopherson, C. Vardeman, R. F. da Silva, J. Wyngaard, S. Petruzza, M. Rynge, K. Vahi, W. R. Whitcup, J. Drake, E. Scott. “Blueprint: Cyberinfrastructure Center of Excellence,” Subtitled “arXiv,” 2021.

ABSTRACT

In 2018, NSF funded an effort to pilot a Cyberinfrastructure Center of Excellence (CI CoE or Center) that would serve the cyberinfrastructure (CI) needs of the NSF Major Facilities (MFs) and large projects with advanced CI architectures. The goal of the CI CoE Pilot project (Pilot) effort was to develop a model and a blueprint for such a CoE by engaging with the MFs, understanding their CI needs, understanding the contributions the MFs are making to the CI community, and exploring opportunities for building a broader CI community. This document summarizes the results of community engagements conducted during the first two years of the project and describes the identified CI needs of the MFs. To better understand MFs' CI, the Pilot has developed and validated a model of the MF data lifecycle that follows the data generation and management within a facility and gained an understanding of how this model captures the fundamental stages that the facilities' data passes through from the scientific instruments to the principal investigators and their teams, to the broader collaborations and the public. The Pilot also aimed to understand what CI workforce development challenges the MFs face while designing, constructing, and operating their CI and what solutions they are exploring and adopting within their projects. Based on the needs of the MFs in the data lifecycle and workforce development areas, this document outlines a blueprint for a CI CoE that will learn about and share the CI solutions designed, developed, and/or adopted by the MFs, provide expertise to the largest NSF projects with advanced and complex CI architectures, and foster a …