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A Visual Comparison of Silent Error Propagation
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Abstract—High-performance computing (HPC) systems play a critical role in facilitating scientific discoveries. Their scale and
complexity (e.g., the number of computational units and software stack) continue to grow as new systems are expected to process
increasingly more data and reduce computing time. However, with more processing elements, the probability that these systems will
experience a random bit-flip error that corrupts a program’s output also increases, which is often recognized as silent data corruption.
Analyzing the resiliency of HPC applications in extreme-scale computing to silent data corruption is crucial but difficult. An HPC
application often contains a large number of computation units that need to be tested, and error propagation caused by error corruption
is complex and difficult to interpret. To accommodate this challenge, we propose an interactive visualization system that helps HPC
researchers understand the resiliency of HPC applications and compare their error propagation. Our system models an application’s
error propagation to study a program’s resiliency by constructing and visualizing its fault tolerance boundary. Coordinating with multiple
interactive designs, our system enables domain experts to efficiently explore the complicated spatial and temporal correlation between
error propagations. At the end, the system integrated a nonmonotonic error propagation analysis with an adjustable graph propagation
visualization to help domain experts examine the details of error propagation and answer such questions as why an error is mitigated
or amplified by program execution.

Index Terms—Fault Tolerance Boundary, Information Visualization, Graph Visualization, Error Propagation, Silent Data Corruption
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1 INTRODUCTION

H IGH-performance computation (HPC) systems are crit-
ical for advancing science. The demand for higher

computation speed and larger data processing will increase
the scale of such systems in the near future. However, this
scale will make the systems vulnerable to different types
of errors. One of the most dangerous errors is the soft
error [1], which is caused by device noise, low voltage,
or cosmic radiation. A soft error is a temporal error that
affects computation for only a short period of time, causes a
random bit-flip event during a program’s computation, and
introduces error into the application’s computation. Such an
event is often recognized as silent data corruption (SDC), in
which a program’s execution is corrupted and generates an
incorrect computation result without notification. Recently,
this computation concern has attracted the attention of the
HPC community [2], [3], [4] and industry [5] 0.

Understanding the influence of silent data corruption
on HPC programs is critical for designing efficient solu-
tions to improve the resiliency of these programs. How-
ever, analyzing SDC can be a difficult task because of the
number of variables that can be corrupted. The classical
solution [6], [7] to study a program’s resiliency to SDC is
through fault-injection experiments, in which a tool injects
an error (e.g., flips a single bit of a variable) during an

• Zhimin Li, and Valerio Pascucci are with the Scientific Comput-
ing and Imaging Institute, University of Utah.E-mail: {zhimin, pas-
cucci}@sci.utah.edu

• Harshitha Menon, Shusen Liu, Kathryn Mohror, and Peer-Timo Bre-
mer are with Lawrence Livermore National Laboratory. E-mail:
{gopalakrishn1, liu42, mohror1, bremer5}@llnl.gov

• Luanzheng Guo is with Pacific Northwest National Laboratory. E-mail:
{lenny.guo}@pnnl.gov
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application’s execution and observes the impact of the error
on the program’s output. One drawback of this approach
is that obtaining a full resiliency profile of an application
can require a large amount of computation resources [8],
and it costs too much time to be practical. Therefore, some
researchers have tried to study the resiliency of a program
through error propagation [9], [10].

Previously, researchers [11], [12] have demonstrated that
using error propagation can significantly reduce the num-
ber of fault injection experiments to understand a pro-
gram’s resiliency. Compared with the classical solution,
error propagation analysis is able cover more computation
components in a single fault injection experiment. Further-
more, understanding the propagation behavior of the errors
that result in SDC or are mitigated during computation
can provide valuable information for reasoning about the
vulnerability of computation units and designing efficient
protection or recovery mechanisms (e.g., which checkpoint
the HPC application will roll back for recovering once an
error is detected). However, most works [13], [14], [15] only
design solutions to detect SDC and improve a program’s
resiliency with a certain heuristic without exploring and
understanding these complex error propagation behaviors.

Currently, understanding the error propagation process
of a program is still a challenging task. A program’s er-
ror propagation process often involves a large amount of
intermediate variables. Observing error propagation [16]
through these variables is tedious and often misses critical
information. Meanwhile, how these variables influence each
other and lead to different corruption outcomes can be
too complex to understand. For example, why does one
error corruption lead to error explosion during program
computation but another is mitigated? Does an error corrupt
the same variable of a program but called by program at a
different time may share the same propagation behavior?
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Fig. 1. View (1) on the left shows a fault tolerance boundary visualization of the conjugate gradient algorithm. An execution interval is selected in the
boundary view, and the related bit-flip outcome over each bit in the interval is displayed in (3). The error propagation that starts from the selected
interval is highlighted in view (2), and similar error propagations are clustered together. Views (4),(5), and (6) on the right coordinate with each other
to demonstrate a nonmonotonic error propagation case in which a large error is injected in the middle of the program but mitigated.

To address the above challenges, we design an interac-
tive visualization system to help HPC researchers under-
stand a program’s error propagation and study its resiliency.
The system engages a program’s fault tolerance bound-
ary [11], which gives the maximum error that each variable
can tolerate without causing silent data corruption. Coordi-
nating with the boundary visualization, it displays a sum-
marized resiliency profile of a program and an overview
of error propagation similarity to jointly study a program’s
resiliency. For a specific error corruption experiment, we
propose a nonmonotonic inference method to locate error
mitigation and amplification during propagation and design
a graph visualization to highlight the error propagation
process. We summarize our main contributions as follows:

• A new interactive visualization system to study HPC
applications’ resiliency to silent error corruption and
propagation (section 6).

• A novel visual design that reveals the complex spa-
tial and temporal correlation between different error
propagation (section 6.1).

• An adjustable graph design that is integrated with
a nonmonotonic error analysis model to study error
propagation and identify error mitigation and ampli-
fication (section 5, 6.5).

• Three use cases and two examples of domain feed-
back to evaluate the usability of the visualization
system (section 7).

2 RELATED WORK

In this section, we discuss the relevant literature and com-
pare our work with current state-of-the art studies in SDC

analysis.

2.1 Fault Tolerance Analysis
The HPC community has been dedicated to addressing the
challenge of silent data corruption for decades [13], [17],
[18], [19]. The classical approach for studying the problem
is to use a fault injection campaign, which repeatedly tests
an application over different locations to get a resiliency sta-
tistical profile [20]. This approach requires numerous fault
injection tests to achieve full coverage of an application, and
that translates to a large amount of computation resources
and time. Many researchers [8], [21] have tried to reduce
the number of fault injection experiments by using methods
such as instruction clustering or selecting representative
instructions to approximate a program’s resiliency. This
approach can significantly reduce the number of tests but
sacrifice the accuracy of the resiliency measurement.

An alternative approach uses static and dynamic pro-
gram analysis to predict a dynamic instruction’s resiliency
[22], [23]. The approach needs only a few fault injection
experiments with the data dependency graph and control
flow graph to approximate the program’s resiliency. How-
ever, achieving high accuracy of the approximation result
using this approach is difficult. Researchers have also tried
to design algorithms to auto-detect the occurrence of an
SDC event during program computation [14]. Berrocal et
al. [15] designed an auto-detection method based on tempo-
ral information. Huang and Jacob [24] developed an error-
correcting matrix multiplication by adding an additional
column and row in the matrix for verification. Di et al. [25]
suggested a solution to auto-detect the occurrence of soft
error based on the assumption that nearby computation
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elements have a natural correlation with each other and
their value ranges are within a certain threshold. These
approaches are often application-specific and cannot apply
to general programs. Meanwhile, all the above approaches
try to reduce or detect the SDC but few try to understand
the error propagation after an error corruption. To fill this
gap, we have designed an interactive visualization to reveal
the dynamic of the inner state behavior of error-corrupted
programs and how the program’s variables interact with
each other. Such information improves domain experts’ un-
derstanding of an error-corrupted program and helps them
design efficient solutions for better detection and protection.

2.2 Performance Visualization
Due to the complexity and large scale of the data log of
an HPC computation, many visualization techniques have
been proposed to debug and improve the performance
of HPC systems. Guo et al. [26] designed the LaVALSE
visualization system to analyze the state log information of
the supercomputer Mira. LaVALSE is targeted to help HPC
researchers debug the potential source of a failure event in
supercomputers but is not specific to a silent data corruption
event. Wongsuphasawat et al. [27] designed a visualization
to show the data flow of the neural network computation
model, which helps machine learning engineers understand
and debug the neural network model. Xie et al. [28] pro-
posed stack2vec, a context-based approach to learning a
vector representation for a call stack of an HPC applica-
tion, and used an active learning approach to identify the
potential anomalous function executions. Significant efforts
in this field have contributed to visualizing the call paths
and computation logs of large parallel systems. For more
detail, refer to the survey by Isaacs et al. [29].

However, none of the above work has focused on the im-
pact of silent data corruption in the HPC system specifically.
In previous research, Li et al. [16] designed a visualization
system to present the impact of every bit-flip error in a
single view and visualize the propagation of the error with-
out variable-dependency information. Observing the error
propagation is time consuming and tedious for domain ex-
perts. They need to spend a great deal of time exploring the
data and figuring out which fault injection experiments are
informative and which potential components can mitigate
or amplify error. In comparison, our system coordinates
multiple views to compare error propagations from different
experiments. The system helps domain experts track down
useful fault injection experiments and provides a nonmono-
tonic error propagation model to locate the computation
units that have the properties to mitigate or amplify error.

2.3 Graph Visual Encoding
Visualizing a program’s data dependency graph is critical
for studying its error propagation. However, visualizing
the dynamic of an error propagating through the data
dependency graph intuitively is still an on-going challenge.
Two classical approaches to visualize graph data are the
node-link diagram and adjacency matrices. The authors of
previous studies [30], [31] have compared user performance
on these visual encodings. Their studies have found that
the node-link diagram is better to visualize small-scale and

sparse data. The adjacency matrix outperforms the node-
link diagram with a dense graph having more than 20
nodes in a few basic user tasks. However, the adjacency
matrix demonstrates poor performance with path tracking,
which makes tracking the path between nodes in the graph
difficult. Different innovative graph encodings have been
proposed to address the scale challenge of visualizing large-
scale gene graph data, such as BioFabric [32] and Quilts [33].
More visual encodings for graph data can be found in the
surveys in [34], [35]. In comparison, we have designed a
hybrid graph visual encoding based on the adjacency matrix
and node-link diagram to visualize a program’s dependency
graph. It keeps the semantics of a program’s execution and
improves the path tracking difficulty in the adjacency matrix
visualization.

2.4 Dimension Reduction and Time Series Analysis

Each error propagation dataset records the error in each
variable during program execution, and error propagation
data can be considered as a multivariate time series. Time se-
ries comparison and visualization [36], [37] is an important
topic. Van Wijk and Van Selow [38] proposed a cluster and
calendar-based visualization that analyzes univariate time
series data. Ruta et al. [39] designed a visualization tool that
enables users to explore large time series data collections
from a global scale to a single observation. Anna et al. [40]
compared the line and color encoding of a time series
visualization for a similarity search task. Because of the
limited screen pixels, visualizing a whole time series with
millions of time steps is difficult. Many algorithms [41], [42],
[43] have proposed to reduce the amount of information
for visualization. To visualize the fault tolerance boundary
and an overview of error propagation detail, we use the
a dimension reduction technique M4 [44], which uses four
selected points of a selected subinterval of the time series
data to present the selected interval with only a minor loss
of information.

Instead of comparing multiple pairs of time series one
by one, we perform the dimension reduction approach
that projects all error propagations into a 2D view and
coordinates it with the temporal and spatial information to
analyze these error propagations. The common dimension
reduction techniques include PCA [45] and MDS [46], which
preserve the maximum variance or distance information.
More techniques can be found in the survey [47]. In this
work, we focus on the dimension reduction techniques that
preserve the neighbor information, such as T-SNE [48] and
UMAP [49].

3 BACKGROUND

Before getting into the detail of the system, we first intro-
duce the necessary background knowledge and key termi-
nologies used in our study. The workflow overview of this
study is summarized in Figure 2.

3.1 Soft Errors

Soft errors are temporal errors that affect a program’s com-
putation for only a short period of time. Soft errors are
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Fig. 2. A workflow of the designed visualization to analyze an HPC application’s resiliency. Domain experts use the fault injection tool to perform
a fault injection campaign, and collect fault injection data and error propagation data. The design system processes the data and visualizes the
results. At the end, domain experts can use the visualization result to perform a program’s resiliency analysis and explore efficient application
protection mechanisms.

caused by cosmic radiation and device noise, and their oc-
currence often leads to bit-flip errors in storage, data trans-
mission, and compute units. These bit-flip errors can bypass
the hardware protection mechanism, further affecting the
application state, and finally corrupting the application out-
come. Soft errors can occur in an unpredictable manner and
influence an application in many different ways. One of the
ways in which they can affect a program is by corrupting
pointer and control variables. This kind of corruption often
shows up as a program crash, which is easy to detect
and can be addressed by rolling back the application to
a previous checkpoint state. Soft errors might be masked
by the hardware or the application, in which case they do
not affect the program’s output. The most challenging case
is when the soft error occurs in a data variable without
obvious symptoms and the error propagates to the final
output.

To clarify concepts, Fig. 3 shows a bit-flip error cor-
rupting variable d and changing its value without warning.
Under this condition, the program continues to execute and
produce an incorrect final output pi. To verify whether the
final output is acceptable despite the errors introduced, we
use a SDC threshold (e.g., 0.00001), which is often defined
by domain experts. If the error in the final output is within
the threshold, we consider that the error is masked. How-
ever, if the final output error is greater than the threshold,
then it is considered as SDC. We summarize the three
different outcomes of soft errors below.

• Silent Data Corruption (SDC): The fault injected
application execution produces a different outcome
from the outcome of fault free runs. Further, the
execution does not pass the result verification phase.

• Masked: The application execution outcome is found
to be the same as the outcome of fault free runs.
It can be different, but the fault injected application
execution passes the result verification phase.

• Interruption (Crash): The fault-injected application
execution does not make it to the end, but is inter-
rupted in the middle of the execution.

3.2 Fault Model
In our analysis, we consider soft errors that occur in regis-
ters, logic circuits, and data transmission. We do not con-
sider soft errors found in system memory components, such

as on-chip cache, because those memory architectures are
typically protected by error correcting code (ECC) or parity
bit from the architecture level. These assumptions are com-
mon in the current fault tolerance analysis literature [50],
[51], [52], [53]. We use the most common single bit-flip error
model [8], [52], [54], [55] instead of the multi-bit-flip error
model as multi bit-flips are highly unlikely in HPC systems.
In a single bit-flip model, a fault injection tool introduces
a single-bit flip in a variable. In our study, we perform the
fault-injection experiment on variables at the source-code
level to provide insights and analysis, which is the most
suitable abstraction for designing resilience techniques.

An example of a fault injection is shown in Fig. 3, where
a single bit of variable d is flipped, which results in an
error that gets propagated to subsequent computations. The
bottom line plot displays the error in each tracked variable
over time. The initial error happens in variable d, and it
propagates to pi and d in the next iteration and continues
until the end of the execution. In this case, the error prop-
agation data can be considered as multidimensional time
series data with 99 elements.

In this study, we conduct a fault injection campaign to
collect the error propagation information of a program. A
fault injection campaign is a collection of fault injection
runs where a fault is injected at a randomly chosen location,
called the fault injection site, for each run. An exhaustive
fault injection campaign is a collection of fault injection
experiments that flip every bit of a program’s fault injection
sites. In the case of Fig. 3, each of three variables over
different times can be considered as a fault injection site.
The exhaustive fault injection campaign will test all three
variables over the entire execution.

We use the SDC ratio to quantify the overall resiliency
of the program. The SDC ratio is defined as nsdc

N , in which
nsdc is the number of times fault injection runs lead to SDC,
and N is the total number fault injection runs. The value
range of SDC ratio is between 1 and 0. The value close to
zero means robust, and close to one vulnerable.

3.3 Data Dependency Graph

An error that corrupts a variable of a computation will
propagate to subsequent computations that depend on the
variable. In this study, we also track the dependency of crit-
ical data variables of a program to study error propagation.
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Fig. 3. A simple program for calculating Pi to demonstrate the process
of fault injection and error propagation tracking. The fault injection
experiment flips a bit of variable d of function getPI and tracks the
function’s three critical data variables a, pi, and d to understand how
errors propagate through a program’s computation. The bottom plot
displays a fault injection experiment’s error in variables a, pi, and d over
time.

For example, in Fig. 3, we track the value of three data
variables in the getPI function to understand the error prop-
agation process. For example, variable a does not depend on
variables pi and d, and an error that corrupts either variable
will not affect variable a in the subsequent computation.
However, pi depends on itself, a, and d. An error corrupting
any of them will propagate to pi, which leads to final output
corruption. A program’s dynamic data dependency graph is
extracted by using an LLVM tool during the program execu-
tion. Extracting an accurate dynamic program dependency
graph is not a trivial task. The dependency graph may be
incomplete as it might be input-dependent; therefore, the
domain expert will still need to be involved in the analysis
process to fix the dependency graph if some dependencies
are found to be missing.

3.4 Fault Tolerance Boundary

Previous work [11] has defined the fault tolerance boundary
of a program as a set that consists of the maximum error
that can be tolerated at each program variable. The formal
definition is given in Definition 1. It is guaranteed that a
threshold, δ, exists for each variable of a program. The worst
case is that δ = 0, and the variable is sensitive to any level
of perturbation (e.g., a pointer variable).

Definition 1. For a variable of a program at a certain time, a
maximum amount of perturbation δ ∈ R+ exists, such that with
∀e ∈ [−δ, δ] error in the variable, the program still generates an
acceptable output. The fault tolerance boundary is a set that has
the δ value of each fault injection site of a program.

Fig. 4 displays a synthetic fault tolerance boundary of
the getPI function. The red and green dots are a set of
fault injection experiments from a fault injection campaign.
The injected error above the threshold will be predicted as
SDC and below as Masked. Researchers can use the fault

1    2     3    4     5      6    7     8     9    10   11   12   13   14    15   
 a   pi  d   a   pi   d   a   pi   d   a   pi   d   a   pi   d    …

error

time

…

Masked SDCFault-tolerance boundary

Fig. 4. A synthetic fault tolerance boundary of the getPI function. A
fault injection experiment with injected error above the fault tolerance
boundary will be predicted as SDC, and below will be predicted as
Masked.

tolerance boundary to study a program’s resiliency to bit-
flip errors. The threshold value in each fault injection site
reveals its SDC ratio. For example, a double type variable
has 64 bits, and if the value of the variable is known, then
all possible 64 bit flip errors can also be calculated through
the floating point representation.

Calculating a program’s fault tolerance boundary is
expensive. The brute-force approach needs to test a pro-
gram’s unit many times to find the fault tolerance threshold
value. Considering the number of units that need to be
tested in a program, calculating a program’s fault tolerance
boundary is difficult. In this work, we use an error prop-
agation method (EPM) [11] to approximate a program’s
fault tolerance boundary. EMP specifically selects the fault
injection experiments with the masked outcome to approx-
imate a program’s fault tolerance boundary. For selected
experiments, the method tracks the maximum error that
propagates through each variable. Once the algorithm goes
through all available experiments, it will output the tracked
maximum value in each variable as the fault tolerance
threshold value. This approach can save up to several orders
of magnitude samples to understand a program’s resiliency,
and the information revealed by the boundary can be used
to directly calculate the SDC ratio of each component of a
program.

4 DOMAIN TASK

It is a common challenge in the HPC domain that having a
complete testing covering all units of a program will require
a significant amount of computation resources. For example,
an exhaustive fault injection campaign, which covers all crit-
ical data variables, on the conjugate gradient algorithm with
a 200x200 input matrix will take a week on a 16G memory
and Intel i7 machine. Instead, domain experts tell us that
it is typical for them to test only 1% or less of locations
and generate a statistical summary resiliency profile based
on that. However, the locations that are not covered by
these tests will not have any resiliency information. Under
this condition, any resiliency feedback on these regions is
valuable.

Meanwhile, the resiliency requirement of applications
changes in different applications. For example, the finance
application has a much higher standard for a program’s
resiliency. An application often shows more resilience if
domain experts are able to accept a small flaw in the final
outcome. On the opposite side, if the final output requires
high output quality, then such an application needs more
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protection. Revealing the resiliency profile update with dif-
ferent error thresholds will help domain experts to properly
consider SDC’s impact in different application scenarios and
to design a customized strategy to improve a program’s
resiliency.

The other key driving force of this new platform is
the difficulty of targeting informative computation units
that mitigate or amplify error. Meanwhile, comparing the
similarity and difference of error propagation can improve
domain experts’ understanding of a program’s resiliency
and give insight into a program’s corrupted behaviors.
During our separate discussions with three domain ex-
perts, we found out that none of them could definitively
answer how to identify an experiment that has valuable
propagation information. They suggested that instead of
analyzing fault injection experiments one by one, having a
visualization system that highlights important propagation
information can save them considerable time. One potential
solution is to compare the similarity of error propagations
starting from different computation units and execution
times. Also, a program execution involves a large number
of intermediate variables; therefore, quickly locating a set
of them that can mitigate or amplify error can speed up the
error propagation analysis process. Overall, we summarized
the following four domain tasks. These tasks are aimed at
providing a better understanding of a program’s resiliency
and improving it by modifying the code, adding protection,
or helping design a better protection strategy.

Task 1: Studying a program’s resiliency with its
fault tolerance boundary. Understanding the fault tolerance
boundary that is approximated by these fault injection ex-
periments can provide further understanding of a program’s
resiliency in addition to the overall statistical summary re-
sult. Displaying the relationship between the fault tolerance
boundary and the fault tolerance requirement can give more
information to improve a program’s resiliency.

Task 2: Revealing the temporal and spatial correlation
between error propagations. When and where an error is
injected will lead to different error corruption behaviors of
a program. This information reveals the diverse corrupted
behaviors of a program.

Task 3: Locating computation units that mitigate or
amplify error for error propagation analysis. Identifying
which fault injection experiment has useful information for
the domain experiment to understand the mitigation and
the explosion behavior is not a trivial task. Showing the
propagation process of these examples will provide use-
ful insights for domain experts to design better protection
strategies.

Task 4: Correlating source code and analysis result.
The data-driven analysis often ends up with a source code’s
modification to improve a program’s resiliency (e.g., instruc-
tion duplication). The domain experts often want to go back
and forth between the source code and the analysis result to
understand the resiliency profile and design strategies that
improve the current program’s resiliency.
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Propagation Region
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Error e1 

A1 B1 C1 D1 S
Error e2 
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Fig. 5. Enumerating the relationships between a masked experiment
and an SDC experiment to infer a program’s mitigation and amplification
behavior. This enumeration is based on an error monotonic assumption
that a large error causes a worse outcome. In the above comparison,
case (1) with outcome (b), case (2) with outcome (b), and case (3) with
outcome (a) break the monotonic assumption. The experiments that
break the monotonic assumption are interesting cases to understand
a program’s mitigation and amplification phenomena.

5 MONOTONIC AND NONMONOTONIC CORRUP-
TION ANALYSIS

Our regular discussions with domain experts revealed that
they are generally interested in analyzing two categories
of error propagation processes: error mitigation and error
amplification. Error mitigation during propagation indicates
that the program computation can eliminate error and re-
cover from the error corruption. Learning from the under-
lying mechanism of a program that leads to such a behav-
ior helps domain experts design robust HPC applications.
Error amplification indicates that the program accelerates
the corruption during execution. Locating the computa-
tion units that amplify the corrupt error and protecting
them can improve a program’s resiliency. The challenge
in performing such an analysis comes from the complex
computation logic of a computation algorithm and the large
amount of tracking variables that need to be examined. For
example, when and where error is mitigated or amplified
is difficult to answer just by observing error propagation
without additional assistance. In this section, we describe a
method that models the error propagation process to help
locate computation units that mitigate or amplify errors and
speeds up the propagation analysis.

Before presenting a solution, we discuss an assumption
called error monotonicity. This assumption can be formu-
lated as more errors often cause a worse outcome. For the
fault tolerance analysis of a program, this assumption can
be rephrased as more errors in a program have a high
probability of leading to a worse computation outcome.
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The monotonic reaction to error leads to more interpretable
program behavior after corruption, since the result always
gets worse. Previous works have used the error mono-
tonicity design protection [56] to improve neural network
models’ resiliency or reduce the number of experiments to
understand a program’s resiliency [11]. Here we integrate
it into our system to speed up the propagation analysis. To
explain the monotonic and nonmonotonic analysis in detail,
let us look at two fault injection experiments with different
amounts of error injection and compare their propagation
processes. In Fig. 5, two fault injection experiments are
compared for three scenarios.

In Fig. 5, case (1) has errors injected into the same
location. For case (1) e1 < e2, errors are injected into
component A1 and propagate to components B1, C1, D1. If
the result is (a), the experiment with e2 error leads to SDC,
and the one with the e1 error generates a masked outcome.
This case follows the monotonic assumption that a location
with a large error will cause a worse outcome. If the result
is (b), a larger error e1 leads to a masked outcome, and a
smaller error e2 results in a worse outcome, which is SDC.
This case breaks the monotonic assumption, and the follow-
up propagation has mitigated/amplified events when they
propagate through B1, C1, and D1.

Whereas case (1) has errors injected at the same location,
case (2) has errors injected at different locations. Here, we
have two experiments. In one experiment, the error e is
injected into component A1, and the error propagates to
component B1, which causes e1 error. The experiment’s final
outcome is Masked. The other experiment injects error into
B1 with error e2 and the final outcome is SDC. If the result
is (a), it follows the monotonic assumption as e1 < e2, and
a small error leads to a masked outcome, and a larger error
leads to an SDC outcome. However, if the result is (b), A1 is
corrupted with error e, and B1 has error e1, which leads to
an SDC final outcome. In comparison, the other experiment
has an error in B1 with e2, and A1 is error free but the final
experiment’s final outcome is masked, which breaks the
monotonic assumption. The follow-up propagation process
has mitigated and amplified events when errors propagate
through C1, D1.

Case (3) also has errors injected into different locations.
Case (3) is similar to case (2), but the initial injected error
is different where e1 > e2. If the final result is (a). This
experiment breaks the monotonic assumption, in which a
larger error leads to a Masked outcome and a smaller error
leads to an SDC outcome. On the other hand, if the final
result is (b), then the experiment follows the monotonic
assumption.

6 SYSTEM DESIGN

The designed system coordinates six views to address tasks
discussed in the previous section: 1) fault tolerance bound-
ary view, 2) bit-flip summary view, 3) propagation similarity
view, 4) propagation tracking view, 5) data log view, and 6)
source code view.

The source code (Fig. 1 (5)) and data log view (Fig. 1
(6)) have a relatively simple and straightforward design,
as they mostly complement other views for inspecting the
correlation to the source code or tracking log (Task 4). Here,

TABLE 1
Composition of visual components to address each domain task.

Visual Components\Tasks T1 T2 T3 T4
Fault Tolerance Boundary View

Bit-Flip Summary View
Propagation Similarity Summary View

Error Propagation Tracking View
Source Code View

Data Log View

we focus the discussion on the design of the other four
views.

6.1 Overview, Interaction, and Tasks

Before getting into each individual view, we discuss the
workflow overview of the visualization system, which is
briefly summarized in Fig. 6. Users can explore the fault
tolerance boundary view and bit-flip summary view to
understand a program’s resiliency (Fig. 6 T1⃝). It helps to
answer questions such as whether a computation variable
appearing during a different time of program computation
has a similar resiliency profile or whether the variables
called by the program nearby during the execution share
a similar resiliency.

Meanwhile, users can coordinate the fault tolerance
boundary view, bit-flip summary view, and propagation
similarity view to study propagations’ spatial and temporal
correlations (Fig. 6 T2⃝). In Fig. 6, a user selects a subset of
experiments in the propagation similarity view ( Fig. 6 (a)),
which shares similar propagation patterns. The fault toler-
ance boundary view highlights the corresponding temporal
regions ( Fig. 6 (b)) in which errors are injected. The bit-
flip summary view clearly shows which components these
errors are injected into and which bit is flipped ( Fig. 6 (c)).
Such a design can help answer questions such as whether
the error injected into the same variable will have similar
propagation, whether similar propagation experiments start
from the same computation units, and whether error prop-
agations starting from the nearby instructions during the
computation are similar. The similar selection operation can
be performed in the fault tolerance boundary view, in which
users can select a sub-time interval, and the relative error
propagation experiments will update in the propagation
view and bit-flip summary view. The same operation can
also be performed in the bit-flip summary view, in which
users can select a component, and the relative temporal
information and propagation similarity will be presented in
the boundary view and propagation view.

After the exploration, users can select a nonmonotonic
sample from the fault tolerance boundary view or an inter-
esting error propagation experiment from the propagation
similarity view to examine the detail error propagation
(Fig. 6 T3⃝). The propagation process can be explored in the
error propagation tracking view. The last piece of the task
is the source code and data correlation (Fig. 6 T4⃝, which is
used to support the previous task. Overall, we summarize
how each task is addressed by corresponding designs in
Table 1.
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(a)

(c)

(b)

T1

T2

T2

T3

T4

Fig. 6. A subset of samples, which share a similar propagation pattern, are selected in the propagation similarity summary view (a). The
corresponding fault injection regions of these error propagation experiments are highlighted in the fault tolerance boundary (b) and indicate when
these errors are injected. Meanwhile, the bit-flip summary view shows where these error are injected and which bits are flipped to cause these
propagations.

6.2 Fault Tolerance Boundary View

In fault tolerance analysis, domain experts often start the
analysis with an overview of a program’s resiliency. The
fault tolerance boundary view (Fig. 7) is designed as a
temporal data visualization that presents domain experts
an overview of a program’s resiliency and highlights non-
monotonic error corruptions. The temporal data visualiza-
tion component consists of two timeline panels to present
a program’s fault tolerance boundary (Task 1). The bottom
panel (Fig. 7 c⃝) shows the entire boundary (blue color) and
SDC ratio (purple color), whereas the top panel shows a
zoomed view (Fig. 7 b⃝) of the selected time duration in the
global timeline. Users can brush the bottom panel and select
a time interval that will be zoomed in for detail analysis. It
reveals a program’s resiliency over execution, and indicates
execution intervals that are robust or vulnerable. This feed-
back can help domain experts examine these intervals and
perform further analysis.

In the zoomed boundary visualization (Fig. 7 b⃝), we use
red circles to highlight the fault injection experiments, in
which nonmonotonic corruption propagation occurs. Each
highlighted sample is an error propagation case that breaks
the monotonic assumption in section 5. The location of a
sample indicates where an error corruption happens and
the value scale of a corruption error. Each sample is use-
ful for understanding the error amplification or mitigation
during error propagation (Task 3) based on the discussion
in section 5. Because the highlighted samples in the bottom
boundary view (Fig. 7 c⃝) can be dense and overlap with
each other, we use a heat-map with the color bar (Fig. 7 d⃝)
to display the nonmonotonic samples density in different

a

b

c

d

Fig. 7. A fault tolerance boundary visualization presents an overview
of a program’s fault tolerance boundary and SDC ratio, and highlights
nonmonotonic error corruption cases.

regions.
Scaling is a common challenge in the fault tolerance anal-

ysis, and the scale capability in the current visualization is
particularly important when analyzing the error boundary
of a program with large amounts of intermediate variables.
Our two-layer boundary visualization design can increase
scalability and flexibility, i.e., it enables users to examine the
global trend as well as to investigate localized concerns. For
the bottom boundary and SDC ratio visualization, we apply
the dimensionality reduction technique [44] to reduce the
number of elements of the fault tolerance boundary.

An important task that the domain experts are interested
in is to adjust the SDC threshold of a program and un-
derstand how the SDC ratio and fault tolerance boundary
change. Interactively adjusting the SDC threshold (Fig. 7
a) will update a program’s fault tolerance boundary and
SDC ratio, and provide domain experts a comprehensive
understanding of a program’s resiliency under different
fault tolerance requirements. As Fig. 8 shows, a user can
adjust the threshold to the maximum and minimum values
to locate the most robust or most vulnerable code region.
The threshold is set to the maximum (e.g., 100000) to tolerate
a large error, but the location (B) still generates an SDC out-
come that indicates these locations are vulnerable to a bit-
flip corruption. Once a domain expert adjusts the threshold

1000000.00001

B B B

A

Fig. 8. Users can manually adjust a program’s SDC threshold and
check the SDC ratio and the fault tolerance boundary to locate spots
that are robust or vulnerable to soft errors. With the highest threshold
value (10000), region B still has SDC output, which indicates that these
regions are vulnerable to soft error. With the lowest SDC threshold
(0.00001), the A regions that have the zero SDC ratio are robust to soft
error.
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Fig. 9. A propagation summary view displays a 2D t-SNE projection,
in which similar error corruption propagation experiments are nearby.
In this dataset, the error propagation experiments that lead to SDC
outcome are different from the majority of the experiments that end up
with Masked outcome. A density heat-map is an option to address the
data-scaling problem.

to the minimum value (e.g., 0.00001), but region (A) does
not generate any SDC outcome indicating that it is robust
to the bit flip corruption. A bit flip in these regions will
not cause the final output quality to change significantly.
Both cases A and B are interesting regions to understand
how an error is amplified or mitigated by the program. An
error propagation starting from region A helps clarify why
an error is mitigated by the program since most bit-flips
here will not lead to an SDC outcome. An error propagation
starting from region B helps domain experts understand
why an error will explode since a bit flip corrupting this
region can lead to a large final error.

6.3 Propagation Similarity View
Each fault injection experiment has its relevant error prop-
agation, and studying the similarity of error propagation
is valuable to understand a program’s behavior after error
corruption. The propagation similarity view is designed to
accomplish such a purpose. A propagation similarity visu-
alization (Fig. 9) is a 2D t-SNE dimension reduction visu-
alization that displays corruption experiments’ propagation
similarities (Task 2) in a single view. t-SNE is a dimension
reduction algorithm [48] that projects high-dimensional data
into a two-dimensional space, and the resulting projection
has the feature that a similar propagation experiment will be
projected to nearby locations. With the design visualization,
domain experts can analyze whether an error that corrupts
different variables of a program will affect a program’s com-
putation in similar or different ways. Users can also brush a
rectangle to select these samples’ properties. A point cluster
in the visualization indicates that these error propagation
experiments share the same propagation pattern. In Fig. 9,
the largest point cluster is the fault injection experiments
in which a bit-flip error corrupts a low mantissa bit of the
variable, and does not cause significant error propagation
during computation.

Scaling is also a concern in this visualization since the
number of fault injection experiments can reach to millions
or billions of experiments. To accommodate this concern, the
system provides a heat-map option to display the sample
density with different corruption outcomes. The number of
variables in each fault injection experiment can also affect
the scalability of this view. It takes a very long time for t-
SNE algorithm to converge if the number of intermediate
variables is thousands, and the number of total experiments

is millions or more (e.g., fast Fourier transform in Section
7.1.1). To address this problem, the system performs princi-
pal component analysis to reduce the number of dimensions
of each propagation experiment to hundreds of dimensions,
before performing the t-SNE algorithm to generate the visu-
alization.

6.4 Bit-Flip Summary View

The bit-flip summary view displays current available bit-
flip experiments in a single view under different levels of
granularities. It is a tree-based visualization that presents
a statistical summary of a bit-flip’s impact in a program.
The view contains two components: a visual tree view
that displays the hierarchical structure of a program and
a statistical fault injection summary view of each program
component. The tree hierarchy (Fig. 11 a⃝) is organized
based on the natural hierarchical structure of a program,
which is a program, a program’s function, a program’s
variable, and a specific line. Any of these component can be
selected for detail analysis in the fault tolerance boundary
view and propagation similarity view.

Each statistical fault injection summary view is a leaf of
the tree (Fig. 11 b⃝) that displays the fault injection summary
of a program component. It contains two views. The left
view is an IEEE floating-point base stacked bar chart that
shows the ratio of different outcomes or the number of
fault injection experiments over each bit (Task 1, 2), and
the right view is a summary of the corruption experiments’
outcome ratio. Above the tree visualization, a visualization
(Fault Injection Summary) displays a summary of all current
selected fault injection experiments’ outcome ratio. Domain
experts can selectively collapse a tree node that aggregates
its child nodes’ data and presents a summary view of the
tree node (e.g., function). Meanwhile, the collapse operation
also helps mitigate the scaling challenge if the diagnosed
application has a large amount of variables or functions.

6.5 Error Propagation Tracking View

After exploration, users need to choose a fault injection
experiment to study its detail error propagation in the error

error

a

b

Fig. 10. The time series visualization ( a⃝) displays an overview of
error in different time steps during propagation. A graph diagram ( b⃝)
displays a program’s function call flow and data dependency graph of
each function. Each function is visualized as an independent matrix-link
visualization and is connected with the function call flow. Each matrix-
link visualization (func C) can also be collapsed to reduce the number
of elements presented in the visualization.
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ba
SDC 
ratio

Bit location

Fig. 11. A bit summary view is constructed as a tree structure a⃝ to display a program’s components in a hierarchical manner, and the view b⃝
displays a statistical summary of each component’s fault injection outcome. The visualization gives domain experts a clear understanding of the
impact of each bit of a variable.

propagation tracking view. This view is a graph-based visu-
alization that shows the dynamic of how an error corruption
propagates through a program’s critical data elements (Task
3) during execution. The view consists of two components:
an overview time series visualization of the error of the
different data variables at different time steps ((Fig. 10 a⃝);
and a graph visualization of a program’s functions and
their data dependency and call flow ((Fig. 10 b⃝). These
two components coordinate with each other to show the
corrupted state of a program during error propagation.

The critical unit of the visualization is a graph visual
encoding (matrix-link) (Fig. 10 func B) that visualizes the
main elements of a function computation. It encodes the ex-
ecution order, the line number of critical data variables, and
the data dependency. A matrix-link is a hybrid of a node-
link diagram and adjacency matrix in which the diagonal
rectangle represents the function line, and the circle between
each rectangle indicates variable dependency. Red indicates
the error scale in a specific line. The gray line represents the
data dependency. Blue represents the function call and in
this case func B line 48 calls func A.

Previous works [30], [31] have performed user studies
to compare the pros and cons between the adjacency ma-
trix and the node-link diagram for graph visualization. A
potential drawback of using the adjacency matrix is that
it performs poorly at the path tracking tasks. To mitigate
the difficulty of path tracking, the matrix-link diagram adds
an additional orthogonal link path between two connected
nodes to emphasize the dependency information. The other
challenge of using an adjacency matrix to visualize the
graph data is the order of nodes. Different orders reveal
different data patterns [57] of a graph. However, in our
context, the execution order is the default order to visualize
a programs’ dependency graph. Following the execution or-
der is important to understand the meaning of the code and
analyze the corruption propagation through it. Meanwhile,
this default execution order is helpful for domain experts to
identify the loop of the code, as the latter execution depends
on the previous execution, which means a loop exists.

Because of the sparsity of a program’s data dependency
graph, we have also considered of using a node-link dia-
gram to visualize this data dependency graph. However,
the standard force-directed graph layout does not consider
the execution order in the layout and will cause difficulties
in tracking the error propagation. Our designed matrix-link
visual encoding follows the execution order of a program,
and is simple and easily implemented. We also perform a

pilot user study to compare the performance among, the
node-link diagram, adjacency matrix, and matrix-link visu-
alization. The result can be found in supplementary material
1. To mitigate the scaling challenge with a large amount of
tracking elements, the visualization also provides a collapse
operation over each matrix-link (Figure 10 func C) graph to
reduce the number of displaying elements. Users also can
adjust each function graph’s location after the initial matrix
layout to better customize graph view.

7 EVALUATION

In this section, we discuss three use cases and domain
experts’ feedback to demonstrate the usability of our design
system. We use the conjugate gradient and fast Fourier
transform benchmarks to evaluate the usability of the sys-
tem. The conjugate gradient has 50 thousand experiments
and the total size of dataset is 1.5 Gigabyte. The fast Fourier
transform benchmark has 1.1 million experiments and the
total size of the dataset is around 200Gigabyte.

7.1 Use Cases
These three use cases show how domain experts use the
design system to understand a program’s resiliency, reveal
complex correlation patterns between error propagations,
and demonstrate how the visualization system helps do-
main experts understand the amplification and mitigation
behavior during the error propagation process. These use
cases are performed in an interactive remote meeting en-
vironment and constructed with the guidance of domain
experts. In the following discussion, we also highlight how
each use case addresses domain tasks proposed in section 5.

(a) (b) (c)

(a)

(b)

(c)

Fig. 12. FFT application shows more resiliency in the later computation
than in an earlier computation under different SDC threshold configura-
tions. Even with a large error tolerance, the later computation can still
produce an SDC outcome with an error corruption.
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(a) (b) (c)

(a) (b) (c)

Fig. 13. Comparing the SDC cases where an error corruption prop-
agates from (a) and (b) with a diverse propagation pattern. An error
corrupting the later execution has a similar and coherent propagation
pattern.

7.1.1 Exploring a Program’s Resiliency Through Fault Tol-
erance Boundary
We start our evaluation by analyzing a fast Fourier trans-
form’s resiliency with the fault tolerance boundary (Task
1). Fig. 12 shows a fast Fourier transform’s fault tolerance
boundary and SDC ratio with three SDC thresholds. From
the visualization, we can tell that the early execution of
the fast Fourier transform has a high SDC ratio, and the
later execution has a low SDC ratio. The later execution is
much less sensitive to the SDC threshold update than the
early execution. These observations indicate that the early
computation is much more vulnerable to the soft error than
the later execution.

The similarity of error propagation that starts from dif-
ferent regions is displayed in Fig 13. The error propagation
experiments that start from regions (a) and (b) are more
complex than an error propagation starting from region (c).
The result also implies that detecting all error corruptions
starting at the beginning of the computation can be more
difficult than error corruptions that occur in region (c).
From the visualization, we also find that nonmonotonic
examples (Task 3) do not exist in the boundary view. The
phenomenon indicates that all fault injection experiments
in the FFT benchmark follow the propagation pattern (1)-
(a), (2)-(a) and (3)-(b) in Fig. 5, and the error corrupts data
variables in FFT following the monotonic assumption that
more errors in the variable will cause a worse computation
outcome.

7.1.2 Understanding a Program’s Corruption Behavior By
Comparing Error Propagation
Comparing a program’s error propagation (Task 2) is im-
portant to understand a program’s behavior after error
corruption. Fig. 14 presents overviews of the error propaga-
tion similarity of the conjugate gradient (Fig. 14 left ) and
fast Fourier transform’s (Fig. 14 right). Both propagation
overviews share a similar pattern: a large of amount fault
injection experiments cluster together and the rest of the
error propagation experiments are distributed into multiple
clusters. By selecting the largest cluster in each view, the bit-
flip summary view gives a detailed summary of the relevant
bits that are corrupted, leading to these propagations. The
visualization reveals that most of these experiments’ error
propagation is caused by a bit flip corrupting the low
bit, and these experiments do not cause significant error
propagation. This observation also implies that a bit flip in
the low bit often does not lead to the SDC outcome, and

Fig. 14. The conjugate gradient (left view) and FFT (right view) in the
visualization shows that a large amount of fault injection experiments
that happen in the low bit of a program do not cause significant error
propagation, and they share a similar error propagation pattern.

error propagation from these experiments provides only
limited value to understand a program’s behavior after error
corruption.

Furthermore, we choose the conjugate gradient and ex-
amine its nearby executions’ error propagation similarity.
Fig. 15 compares the propagation similarity of error prop-
agation over two regions (Fig. 15 (a) and (b)). Previous
discussions have already clarified that error propagations
in region (c) are caused by a bit flip in the low bit and do
not cause significant error propagation. The visualization
shows that an error propagation starting from the nearby
execution in (a) has a similar error propagation pattern. The
same pattern can also be applied to an error propagation
starting from (b).

The above visualization indicates an interesting observa-
tion that error propagations collected from different bench-
marks contain numerous experiments that are corrupted by
a bit-flip error and will not cause significant error prop-
agation. These experiments include error corruption not
only in low mantissa bits but also in some of the exponent
bits. Furthermore, many error propagations share a similar
propagation pattern, and they are redundant to understand
a program’s corruption behavior.

(a) (b)

(c)

(c)

(c)

(c)

Fig. 15. An error corrupts nearby executions that share a similar error
propagation pattern.
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Non-monotonic Case

Propagation 
Overview

Propagation Detail

(B)(B)(B)

(2)

(4) (5)

(3)

Fig. 16. All locations labeled B have a similar propagation pattern, in which a large error corrupts the computation but the error starts to disappear
after the error propagates for a while. The error starts to disappear after the relative error in variable alpha in line 91 becomes 0, which causes the
computation to discard the current iteration and automatically roll back to the previous iteration’s computation state.

7.1.3 Locating Nonmonotonic Propagation Examples and
Studying Mitigation/Amplification Propagation
In the last use case, we demonstrate that a fault injection
experiment injects a large error into a computation, but the
error is mitigated during error propagation (Task 3). We
explain how the error mitigation happens by coordinating
multiple views in the visualization tool (Task 4).

In Fig. 16, we select a fault injection experiment from
location (B). It this experiment, a large error corrupts the
program computation, but the error is mitigated after the
error is propagated for a while. As we can see from Fig. 16
(2), the error propagation summary chart shows that a
large error is injected around 200 time steps and causes a
large vibration in the subsequent execution. These errors
are mitigated after 281 time steps. The orange color in the
figure highlights the location where the error starts to be
mitigated. From the data log (5), we can see that alpha is
set to 0. To simplify the dependency graph, we collapse the
function graphs, which are not used in this current analysis.
The dependency graph (4) on the right shows that line 91 is
used by line 92 and line 93, both of which call the daxpby
function. Previous executions do not depend on line 92,
but the result of line 93 variable r is used by the previous
execution lines 80, 83, and 85. In the source code (3) (Task
4), daxpby(-alpha, Ap, 1, r) is a function that performs the
operation r = −alpha ∗ Ar + r. The variable alpha is zero,
which makes the above equation end as r = r, meaning
the large error causes the program to not do anything in
the current iteration. The large error makes the algorithm
automatically skip a serious error-corrupted result of the
current iteration and automatically roll back to the state of
the previous iteration.

One of the surprising insights we obtained using our
visualization analysis framework is that for some cases
of soft errors, the conjugate gradient algorithm is able to
automatically fix the corrupted computation by discarding
the current iteration result and rolling back to the previous
iteration, recomputing it, and generating a correct output.
The mitigation mechanism we learned from this use case
may be applied to other iterative applications to improve
their computation resiliency.

7.2 Domain Feedback

We also interviewed two domain experts individually to
collect their feedback regarding the final version of the
system. They are also actively involved in the design of the
tool and provide valuable feedback for the early iteration
of the tool. For the final assessment, we go through a few
stereotypical usage scenarios and identify where and how
the tool can improve domain experts’ daily task of analyzing
the fault tolerance of HPC applications.

The summary of the first domain expert response: Overall, the
resilience visualization framework lets us see fine-grained
application resilience of not only the whole application and
specific code regions but also individual instructions. The
error propagation probing modules help us identify the
cause of fault masking and propagation events behind SDCs
at relevant locations, and further determine if a protection
mechanism is needed or not at particular locations (such
as instruction duplication for individual instructions). It
provides us in-depth insights for error propagation that are
not found in existing resilience analytical models.

The summary of the second domain expert response: With this
tool, we can quickly assess the vulnerable regions and also
look at individual fault injection cases to see how the error
propagated and locations that resulted in the amplification
of the errors and mitigation of the errors. This visualization
also captures critical features and enables us to visualize in
a compact form how they are related. It clearly shows that
cases that result in SDCs are spatially co-located. Previously,
identifying vulnerable regions of the code was tedious and
error-prone. To obtain detailed information, we would have
to examine a large number of fault injection runs. With this
tool, we are not only able to instantly obtain an overall
resiliency profile of the application, but also to do so with
very few fault injection runs. We plan to use this information
to apply fault detectors at those locations to detect SDCs.
I also anticipate this tool to be useful for other kinds of
error propagation analysis, including errors due to the loss
of precision or approximations.
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8 LIMITATION AND FUTURE WORKS

In the HPC domain, researchers select a standard input
for the diagnostic application for resiliency analysis, but a
program’s resiliency profile can vary with a different input.
The infinite possible inputs of a program with a different
scale (e.g, 8x8 or 100x100 matrix) are a general challenge
in HPC resiliency analysis [22]. Using the fault tolerance
boundary to analyze a program’s resiliency also faces a
similar problem. In this study, we focused our analysis
on small-scale HPC computation kernels (e.g, conjugate
gradient, FFT). Although the applications run on the HPC
system can be much more complex, their main computation
is comprised of core kernels similar to the ones studied
in this paper. Therefore, the insights obtained from our
study of representative kernels can be applied to a certain
extent in the context of the larger application and differ-
ent inputs. In the HPC community, many researchers [58]
have traded precision for performance. For example, lossy
compression [59] techniques can significantly reduce the
amount of data that needs to be moved and stored in
the HPC system by allowing a small amount of precision
loss. Mixed-precision tuning [60] techniques selectively re-
duce certain computation precision to alleviate the memory
and energy cost for performance benefit. Both approaches
introduce small errors in a trade-off for the performance
improvement. However, how to convince researchers to
use such techniques for scientific discovery is still a chal-
lenge due to the potential for error corruption propagation.
Researchers do not know what information is corrupted
with the introduced error’s propagation and how important
this information is. Understanding the error propagation
of these techniques and presenting it to domain experts is
helpful to address this challenge. In this study, the fault
tolerance boundary giving the maximum threshold value
of each dynamic instruction can be perturbed individually
to assure a program’s final output correctness. This concept
can also be generalized to numerous dynamic instructions
for lossy compression and pruning tuning, in which errors
are introduced in several locations. In this study, the error
propagation to approximate the fault tolerance boundary
single dynamic instruction has shown a promising result.
Understanding how this approach helps to bound the error
in multiple locations such as lossy compression or precision
tuning is interesting and will be explored in future research.

9 CONCLUSION

In this work, we perform a study of a program’s resiliency
through error propagation and design a visualization sys-
tem to explore the error propagation behavior of a program.
The result of our study reveals that using a small portion
of samples to study a program’s resiliency specific to each
bit of the computation is possible. We demonstrate how
our system can coordinate multiple views to present a
program’s fault tolerance boundary, a detail bit-flip sum-
mary, and a propagation summary in a united interface.
This design enables domain experts to examine a program’s
resiliency from multiple perspective and provides valuable
feedback for the domain experts in designing better pro-
tection mechanisms to improve programs’ resiliency. Dur-
ing the exploration, our visualization revealed interesting

insights, such as many error propagation experiments are
redundant, or an error in these experiments does not lead
to significant error propagation. At the same time, the er-
ror propagation visualization with nonmonotonic analysis
shows that the conjugate gradient algorithm can automati-
cally roll back to the previous iteration to fix the error in the
computation. At the end, we evaluate the performance of
our tool with three use cases and domain experts’ feedback.
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