Center for Integrative Biomedical Computing

SCI Publications


X. Jiang, J. C. Font, J. A. Bergquist, B. Zenger, W. W. Good, D. H. Brooks, R. S. MacLeod, L. Wang. “Deep Adaptive Electrocardiographic Imaging with Generative Forward Model for Error Reduction,” In Functional Imaging and Modeling of the Heart: 11th International Conference, In Functional Imaging and Modeling of the Heart: 11th International Conference, Vol. 12738, Springer Nature, pp. 471. 2021.


Accuracy of estimating the heart’s electrical activity with Electrocardiographic Imaging (ECGI) is challenging due to using an error-prone physics-based model (forward model). While getting better results than the traditional numerical methods following the underlying physics, modern deep learning approaches ignore the physics behind the electrical propagation in the body and do not allow the use of patientspecific geometry. We introduce a deep-learning-based ECGI framework capable of understanding the underlying physics, aware of geometry, and adjustable to patient-specific data. Using a variational autoencoder (VAE), we uncover the forward model’s parameter space, and when solving the inverse problem, these parameters will be optimized to reduce the errors in the forward model. In both simulation and real data experiments, we demonstrated the ability of the presented framework to provide accurate reconstruction of the heart’s electrical potentials and localization of the earliest activation sites.

A. Junn, J. Dinis, S. C. Hauc, M. K. Bruce, K. E. Park, W. Tao, C. Christensen, R. Whitaker, J. A. Goldstein, M. Alperovich. “Validation of Artificial Intelligence Severity Assessment in Metopic Craniosynostosis,” In The Cleft Palate-Craniofacial Journal, SAGE Publications, 2021.


Several severity metrics have been developed for metopic craniosynostosis, including a recent machine learning-derived algorithm. This study assessed the diagnostic concordance between machine learning and previously published severity indices.

Preoperative computed tomography (CT) scans of patients who underwent surgical correction of metopic craniosynostosis were quantitatively analyzed for severity. Each scan was manually measured to derive manual severity scores and also received a scaled metopic severity score (MSS) assigned by the machine learning algorithm. Regression analysis was used to correlate manually captured measurements to MSS. ROC analysis was performed for each severity metric and were compared to how accurately they distinguished cases of metopic synostosis from controls.
In total, 194 CT scans were analyzed, 167 with metopic synostosis and 27 controls. The mean scaled MSS for the patients with metopic was 6.18 ± 2.53 compared to 0.60 ± 1.25 for controls. Multivariable regression analyses yielded an R-square of 0.66, with significant manual measurements of endocranial bifrontal angle (EBA) (P = 0.023), posterior angle of the anterior cranial fossa (p < 0.001), temporal depression angle (P = 0.042), age (P < 0.001), biparietal distance (P < 0.001), interdacryon distance (P = 0.033), and orbital width (P < 0.001). ROC analysis demonstrated a high diagnostic value of the MSS (AUC = 0.96, P < 0.001), which was comparable to other validated indices including the adjusted EBA (AUC = 0.98), EBA (AUC = 0.97), and biparietal/bitemporal ratio (AUC = 0.95).
The machine learning algorithm offers an objective assessment of morphologic severity that provides a reliable composite impression of severity. The generated score is comparable to other severity indices in ability to distinguish cases of metopic synostosis from controls.

R. Kamali, J. Kump, E. Ghafoori, M. Lange, N. Hu, T. J. Bunch, D. J. Dosdall, R. S. Macleod, R. Ranjan. “Area Available for Atrial Fibrillation to Propagate Is an Important Determinant of Recurrence After Ablation,” In JACC: Clinical Electrophysiology, Elsevier, 2021.


This study sought to evaluate atrial fibrillation (AF) ablation outcomes based on scar patterns and contiguous area available for AF wavefronts to propagate.

A.S. Rababah, L.R. Bear, Y.S. Dogrusoz, W. Good, J. Bergquist, J. Stoks, R. MacLeod, K. Rjoob, M. Jennings, J. Mclaughlin, D. D. Finlay. “Reducing Line-of-block Artifacts in Cardiac Activation Maps Estimated Using ECG Imaging: A Comparison of Source Models and Estimation Methods,” In Computers in Biology and Medicine, Vol. 136, pp. 104666. 2021.


Electrocardiographic imaging is an imaging modality that has been introduced recently to help in visualizing the electrical activity of the heart and consequently guide the ablation therapy for ventricular arrhythmias. One of the main challenges of this modality is that the electrocardiographic signals recorded at the torso surface are contaminated with noise from different sources. Low amplitude leads are more affected by noise due to their low peak-to-peak amplitude. In this paper, we have studied 6 datasets from two torso tank experiments (Bordeaux and Utah experiments) to investigate the impact of removing or interpolating these low amplitude leads on the inverse reconstruction of cardiac electrical activity. Body surface potential maps used were calculated by using the full set of recorded leads, removing 1, 6, 11, 16, or 21 low amplitude leads, or interpolating 1, 6, 11, 16, or 21 low amplitude leads using one of the three interpolation methods – Laplacian interpolation, hybrid interpolation, or the inverse-forward interpolation. The epicardial potential maps and activation time maps were computed from these body surface potential maps and compared with those recorded directly from the heart surface in the torso tank experiments. There was no significant change in the potential maps and activation time maps after the removal of up to 11 low amplitude leads. Laplacian interpolation and hybrid interpolation improved the inverse reconstruction in some datasets and worsened it in the rest. The inverse forward interpolation of low amplitude leads improved it in two out of 6 datasets and at least remained the same in the other datasets. It was noticed that after doing the inverse-forward interpolation, the selected lambda value was closer to the optimum lambda value that gives the inverse solution best correlated with the recorded one.

J. Salinet, R. Molero, F. S. Schlindwein, J. Karel, M. Rodrigo, J. L. Rojo-Álvarez, O. Berenfeld, A. M. Climent, B. Zenger, F. Vanheusden, J. G. S. Paredes, R. MacLeod, F. Atienza, M. S. Guillem, M. Cluitmans, P. Bonizzi. “Electrocardiographic imaging for atrial fibrillation: a perspective from computer models and animal experiments to clinical value,” In Frontiers in Physiology, Vol. 12, Frontiers Media, April, 2021.
DOI: 10.3389/fphys.2021.653013


Salinet et al. Electrocardiographic Imaging for Atrial Fibrillation treatment guidance (for example, localization of AF triggers and sustaining mechanisms), and we discuss the technological requirements and validation. We address experimental and clinical results, limitations, and future challenges for fruitful application of ECGI for AF understanding and management. We pay attention to existing techniques and clinical application, to computer models and (animal or human) experiments, to challenges of methodological and clinical validation. The overall objective of the study is to provide a consensus on valuable directions that ECGI research may take to provide future improvements in AF characterization and treatment guidance.

S. Sane, A. Yenpure, R. Bujack, M. Larsen, K. Moreland, C. Garth, C. R. Johnson,, H. Childs. “Scalable In Situ Computation of Lagrangian Representations via Local Flow Maps,” In Eurographics Symposium on Parallel Graphics and Visualization, The Eurographics Association, 2021.
DOI: 10.2312/pgv.20211040


In situ computation of Lagrangian flow maps to enable post hoc time-varying vector field analysis has recently become an active area of research. However, the current literature is largely limited to theoretical settings and lacks a solution to address scalability of the technique in distributed memory. To improve scalability, we propose and evaluate the benefits and limitations of a simple, yet novel, performance optimization. Our proposed optimization is a communication-free model resulting in local Lagrangian flow maps, requiring no message passing or synchronization between processes, intrinsically improving scalability, and thereby reducing overall execution time and alleviating the encumbrance placed on simulation codes from communication overheads. To evaluate our approach, we computed Lagrangian flow maps for four time-varying simulation vector fields and investigated how execution time and reconstruction accuracy are impacted by the number of GPUs per compute node, the total number of compute nodes, particles per rank, and storage intervals. Our study consisted of experiments computing Lagrangian flow maps with up to 67M particle trajectories over 500 cycles and used as many as 2048 GPUs across 512 compute nodes. In all, our study contributes an evaluation of a communication-free model as well as a scalability study of computing distributed Lagrangian flow maps at scale using in situ infrastructure on a modern supercomputer.

J. D. Tate, W. W. Good, N. Zemzemi, M. Boonstra, P. van Dam, D. H. Brooks, A. Narayan, R. S. MacLeod. “Uncertainty Quantification of the Effects of Segmentation Variability in ECGI,” In Functional Imaging and Modeling of the Heart, Springer International Publishing, pp. 515--522. 2021.
DOI: 10.1007/978-3-030-78710-3_49


Despite advances in many of the techniques used in Electrocardiographic Imaging (ECGI), uncertainty remains insufficiently quantified for many aspects of the pipeline. The effect of geometric uncertainty, particularly due to segmentation variability, may be the least explored to date. We use statistical shape modeling and uncertainty quantification (UQ) to compute the effect of segmentation variability on ECGI solutions. The shape model was made with Shapeworks from nine segmentations of the same patient and incorporated into an ECGI pipeline. We computed uncertainty of the pericardial potentials and local activation times (LATs) using polynomial chaos expansion (PCE) implemented in UncertainSCI. Uncertainty in pericardial potentials from segmentation variation mirrored areas of high variability in the shape model, near the base of the heart and the right ventricular outflow tract, and that ECGI was less sensitive to uncertainty in the posterior region of the heart. Subsequently LAT calculations could vary dramatically due to segmentation variability, with a standard deviation as high as 126ms, yet mainly in regions with low conduction velocity. Our shape modeling and UQ pipeline presented possible uncertainty in ECGI due to segmentation variability and can be used by researchers to reduce said uncertainty or mitigate its effects. The demonstrated use of statistical shape modeling and UQ can also be extended to other types of modeling pipelines.

J. Tate, S. Rampersad, C. Charlebois, Z. Liu, J. Bergquist, D. White, L. Rupp, D. Brooks, A. Narayan, R. MacLeod. “Uncertainty Quantification in Brain Stimulation using UncertainSCI,” In Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, Vol. 14, No. 6, Elsevier, pp. 1659-1660. 2021.


Predicting the effects of brain stimulation with computer models presents many challenges, including estimating the possible error from the propagation of uncertain input parameters through the model. Quantification and control of these errors through uncertainty quantification (UQ) provide statistics on the likely impact of parameter variation on solution accuracy, including total variance and sensitivity associated to each parameter. While the need and importance of UQ in clinical modeling is generally accepted, tools for implementing UQ techniques remain limited or inaccessible for many researchers.

V. Vedam-Mai, K. Deisseroth, J. Giordano, G. Lazaro-Munoz, W. Chiong, N. Suthana, J. Langevin, J. Gill, W. Goodman, N. R. Provenza, C. H. Halpern, R. S. Shivacharan, T. N. Cunningham, S. A. Sheth, N. Pouratian, K. W. Scangos, H. S. Mayberg, A. Horn, K. A. Johnson, C. R. Butson, R. Gilron, C. de Hemptinne, R. Wilt, M. Yaroshinsky, S. Little, P. Starr, G. Worrell, P. Shirvalkar, E. Chang, J. Volkmann, M. Muthuraman, S. Groppa, A. A. Kühn, L. Li, M. Johnson, K. J. Otto, R. Raike, S. Goetz, C. Wu, P. Silburn, B. Cheeran, Y. J. Pathak, M. Malekmohammadi, A. Gunduz, J. K. Wong, S. Cernera, A. W. Shukla, A. Ramirez-Zamora, W. Deeb, A. Patterson, K. D. Foote, M. S. Okun. “Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: Advances in Optogenetics, Ethical Issues Affecting DBS Research, Neuromodulatory Approaches for Depression, Adaptive Neurostimulation, and Emerging DBS Technologies,” In Frontiers in Human Neuroscience, Vol. 15, pp. 169. 2021.
ISSN: 1662-5161
DOI: 10.3389/fnhum.2021.644593


We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer’s disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.

Y. Wan, H.A. Holman, C. Hansen. “Interactive Analysis for Large Volume Data from Fluorescence Microscopy at Cellular Precision,” In Computers & Graphics, Vol. 98, Pergamon, pp. 138-149. 2021.


The main objective for understanding fluorescence microscopy data is to investigate and evaluate the fluorescent signal intensity distributions as well as their spatial relationships across multiple channels. The quantitative analysis of 3D fluorescence microscopy data needs interactive tools for researchers to select and focus on relevant biological structures. We developed an interactive tool based on volume visualization techniques and GPU computing for streamlining rapid data analysis. Our main contribution is the implementation of common data quantification functions on streamed volumes, providing interactive analyses on large data without lengthy preprocessing. Data segmentation and quantification are coupled with brushing and executed at an interactive speed. A large volume is partitioned into data bricks, and only user-selected structures are analyzed to constrain the computational load. We designed a framework to assemble a sequence of GPU programs to handle brick borders and stitch analysis results. Our tool was developed in collaboration with domain experts and has been used to identify cell types. We demonstrate a workflow to analyze cells in vestibular epithelia of transgenic mice.

B. Zenger, W. W. Good, J. A. Bergquist, L. C. Rupp, M. Perez, G. J. Stoddard, V. Sharma, R. S. MacLeod. “Transient recovery of epicardial and torso ST-segment ischemic signals during cardiac stress tests: A possible physiological mechanism,” In Journal of Electrocardiology, Churchill Livingstone, 2021.



Acute myocardial ischemia has several characteristic ECG findings, including clinically detectable ST-segment deviations. However, the sensitivity and specificity of diagnosis based on ST-segment changes are low. Furthermore, ST-segment deviations have been shown to be transient and spontaneously recover without any indication the ischemic event has subsided.


Assess the transient recovery of ST-segment deviations on remote recording electrodes during a partial occlusion cardiac stress test and compare them to intramyocardial ST-segment deviations.


We used a previously validated porcineBZ experimental model of acute myocardial ischemia with controllable ischemic load and simultaneous electrical measurements within the heart wall, on the epicardial surface, and on the torso surface. Simulated cardiac stress tests were induced by occluding a coronary artery while simultaneously pacing rapidly or infusing dobutamine to stimulate cardiac function. Postexperimental imaging created anatomical models for data visualization and quantification. Markers of ischemia were identified as deviations in the potentials measured at 40% of the ST-segment. Intramural cardiac conduction speed was also determined using the inverse gradient method. We assessed changes in intramyocardial ischemic volume proportion, conduction speed, clinical presence of ischemia on remote recording arrays, and regional changes to intramyocardial ischemia. We defined the peak deviation response time as the time interval after onset of ischemia at which maximum ST-segment deviation was achieved, and ST-recovery time was the interval when ST deviation returned to below thresholded of ST elevation.


In both epicardial and torso recordings, the peak ST-segment deviation response time was 4.9±1.1 min and the ST-recovery time was approximately 7.9±2.5 min, both well before the termination of the ischemic stress. At peak response time, conduction speed was reduced by 50% and returned to near baseline at ST-recovery. The overall ischemic volume proportion initially increased, on average, to 37% at peak response time; however, it recovered only to 30% at the ST-recovery time. By contrast, the subepicardial region of the myocardial wall showed 40% ischemic volume at peak response time and recovered much more strongly to 25% as epicardial ST-segment deviations returned to baseline.


Our data show that remote ischemic signal recovery correlates with a recovery of the subepicardial myocardium, while subendocardial ischemic development persists.

L. Zhou, C. R. Johnson, D. Weiskopf. “Data-Driven Space-Filling Curves,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 27, No. 2, IEEE, pp. 1591-1600. 2021.
DOI: 10.1109/TVCG.2020.3030473


We propose a data-driven space-filling curve method for 2D and 3D visualization. Our flexible curve traverses the data elements in the spatial domain in a way that the resulting linearization better preserves features in space compared to existing methods. We achieve such data coherency by calculating a Hamiltonian path that approximately minimizes an objective function that describes the similarity of data values and location coherency in a neighborhood. Our extended variant even supports multiscale data via quadtrees and octrees. Our method is useful in many areas of visualization, including multivariate or comparative visualization,ensemble visualization of 2D and 3D data on regular grids, or multiscale visual analysis of particle simulations. The effectiveness of our method is evaluated with numerical comparisons to existing techniques and through examples of ensemble and multivariate datasets.


T. M. Athawale, D. Maljovec, L. Yan, C. R. Johnson, V. Pascucci,, B. Wang. “Uncertainty Visualization of 2D Morse Complex Ensembles using Statistical Summary Maps,” In IEEE Transactions on Visualization and Computer Graphics, 2020.
DOI: 10.1109/TVCG.2020.3022359


Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Noise inherent to scalar field data due to acquisitions and processing, however, limits our understanding of the Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arise from scalar fields coupled with data uncertainty. We propose statistical summary maps as new entities for capturing structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce two types of statistical summary maps -- the Probabilistic Map and the Survival Map -- to characterize the uncertain behaviors of local extrema and local gradient flows, respectively. We demonstrate the utility of our proposed approach using synthetic and real-world datasets.

M. Han, I. Wald, W. Usher, N. Morrical, A. Knoll, V. Pascucci, C.R. Johnson. “A virtual frame buffer abstraction for parallel rendering of large tiled display walls,” In 2020 IEEE Visualization Conference (VIS), pp. 11--15. 2020.
DOI: 10.1109/VIS47514.2020.00009


We present dw2, a flexible and easy-to-use software infrastructure for interactive rendering of large tiled display walls. Our library represents the tiled display wall as a single virtual screen through a display "service", which renderers connect to and send image tiles to be displayed, either from an on-site or remote cluster. The display service can be easily configured to support a range of typical network and display hardware configurations; the client library provides a straightforward interface for easy integration into existing renderers. We evaluate the performance of our display wall service in different configurations using a CPU and GPU ray tracer, in both on-site and remote rendering scenarios using multiple display walls.

A. P. Janson, D. N. Anderson, C. R. Butson. “Activation robustness with directional leads and multi-lead configurations in deep brain stimulation,” In Journal of Neural Engineering, Vol. 17, No. 2, IOP Publishing, pp. 026012. March, 2020.
DOI: 10.1088/1741-2552/ab7b1d


Objective: Clinical outcomes from deep brain stimulation (DBS) can be highly variable, and two critical factors underlying this variability are the location and type of stimulation. In this study we quantified how robustly DBS activates a target region when taking into account a range of different lead designs and realistic variations in placement. The objective of the study is to assess the likelihood of achieving target activation.

Approach: We performed finite element computational modeling and established a metric of performance robustness to evaluate the ability of directional and multi-lead configurations to activate target fiber pathways while taking into account location variability. A more robust lead configuration produces less variability in activation across all stimulation locations around the target.

Main results: Directional leads demonstrated higher overall performance robustness compared to axisymmetric leads, primarily 1-2 mm outside of the target. Multi-lead configurations demonstrated higher levels of robustness compared to any single lead due to distribution of electrodes in a broader region around the target.

Significance: Robustness measures can be used to evaluate the performance of existing DBS lead designs and aid in the development of novel lead designs to better accommodate known variability in lead location and orientation. This type of analysis may also be useful to understand how DBS clinical outcome variability is influenced by lead location among groups of patients.

K. A. Johnson, G. Duffley, D. Nesterovich Anderson, J. L. Ostrem, M. Welter, J. C. Baldermann, J. Kuhn, D. Huys, V. Visser-Vandewalle, T. Foltynie, L. Zrinzo, M. Hariz, A. F. G. Leentjens, A. Y. Mogilner, M. H. Pourfar, L. Almeida, A. Gunduz, K. D. Foote, M. S. Okun, C. R. Butson. “Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome,” In Brain, July, 2020.
ISSN: 0006-8950
DOI: 10.1093/brain/awaa188


Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate ‘reverse’ tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.

F. Wang, N. Marshak, W. Usher, C. Burstedde, A. Knoll, T. Heister, C. R. Johnson. “CPU Ray Tracing of Tree-Based Adaptive Mesh Refinement Data,” In Eurographics Conference on Visualization (EuroVis) 2020, Vol. 39, No. 3, 2020.


Adaptive mesh refinement (AMR) techniques allow for representing a simulation’s computation domain in an adaptive fashion. Although these techniques have found widespread adoption in high-performance computing simulations, visualizing their data output interactively and without cracks or artifacts remains challenging. In this paper, we present an efficient solution for direct volume rendering and hybrid implicit isosurface ray tracing of tree-based AMR (TB-AMR) data. We propose a novel reconstruction strategy, Generalized Trilinear Interpolation (GTI), to interpolate across AMR level boundaries without cracks or discontinuities in the surface normal. We employ a general sparse octree structure supporting a wide range of AMR data, and use it to accelerate volume rendering, hybrid implicit isosurface rendering and value queries. We demonstrate that our approach achieves artifact-free isosurface and volume rendering and provides higher quality output images compared to existing methods at interactive rendering rates.

L. Zhou, M. Rivinius, C. R. Johnson,, D. Weiskopf. “Photographic High-Dynamic-Range Scalar Visualization,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 26, No. 6, IEEE, pp. 2156-2167. 2020.


We propose a photographic method to show scalar values of high dynamic range (HDR) by color mapping for 2D visualization. We combine (1) tone-mapping operators that transform the data to the display range of the monitor while preserving perceptually important features based on a systematic evaluation and (2) simulated glares that highlight high-value regions. Simulated glares are effective for highlighting small areas (of a few pixels) that may not be visible with conventional visualizations; through a controlled perception study, we confirm that glare is preattentive. The usefulness of our overall photographic HDR visualization is validated through the feedback of expert users.


T. Athawale, C. R. Johnson. “Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D Data,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1163-1172. Jan, 2019.
DOI: 10.1109/TVCG.2018.2864505


We present a framework for the analysis of uncertainty in isocontour extraction. The marching squares (MS) algorithm for isocontour reconstruction generates a linear topology that is consistent with hyperbolic curves of a piecewise bilinear interpolation. The saddle points of the bilinear interpolant cause topological ambiguity in isocontour extraction. The midpoint decider and the asymptotic decider are well-known mathematical techniques for resolving topological ambiguities. The latter technique investigates the data values at the cell saddle points for ambiguity resolution. The uncertainty in data, however, leads to uncertainty in underlying bilinear interpolation functions for the MS algorithm, and hence, their saddle points. In our work, we study the behavior of the asymptotic decider when data at grid vertices is uncertain. First, we derive closed-form distributions characterizing variations in the saddle point values for uncertain bilinear interpolants. The derivation assumes uniform and nonparametric noise models, and it exploits the concept of ratio distribution for analytic formulations. Next, the probabilistic asymptotic decider is devised for ambiguity resolution in uncertain data using distributions of the saddle point values derived in the first step. Finally, the confidence in probabilistic topological decisions is visualized using a colormapping technique. We demonstrate the higher accuracy and stability of the probabilistic asymptotic decider in uncertain data with regard to existing decision frameworks, such as deciders in the mean field and the probabilistic midpoint decider, through the isocontour visualization of synthetic and real datasets.

T. M. Athawale, K. A. Johnson, C. R. Butson, C. R. Johnson. “A statistical framework for quantification and visualisation of positional uncertainty in deep brain stimulation electrodes,” In Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Vol. 7, No. 4, Taylor & Francis, pp. 438-449. 2019.
DOI: 10.1080/21681163.2018.1523750


Deep brain stimulation (DBS) is an established therapy for treating patients with movement disorders such as Parkinson’s disease. Patient-specific computational modelling and visualisation have been shown to play a key role in surgical and therapeutic decisions for DBS. The computational models use brain imaging, such as magnetic resonance (MR) and computed tomography (CT), to determine the DBS electrode positions within the patient’s head. The finite resolution of brain imaging, however, introduces uncertainty in electrode positions. The DBS stimulation settings for optimal patient response are sensitive to the relative positioning of DBS electrodes to a specific neural substrate (white/grey matter). In our contribution, we study positional uncertainty in the DBS electrodes for imaging with finite resolution. In a three-step approach, we first derive a closed-form mathematical model characterising the geometry of the DBS electrodes. Second, we devise a statistical framework for quantifying the uncertainty in the positional attributes of the DBS electrodes, namely the direction of longitudinal axis and the contact-centre positions at subvoxel levels. The statistical framework leverages the analytical model derived in step one and a Bayesian probabilistic model for uncertainty quantification. Finally, the uncertainty in contact-centre positions is interactively visualised through volume rendering and isosurfacing techniques. We demonstrate the efficacy of our contribution through experiments on synthetic and real datasets. We show that the spatial variations in true electrode positions are significant for finite resolution imaging, and interactive visualisation can be instrumental in exploring probabilistic positional variations in the DBS lead.