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Importance. Medical images are essential for modern medicine and an important research subject in visualization. However,
medical experts are often not aware of the many advanced three-dimensional (3D) medical image visualization techniques that
could increase their capabilities in data analysis and assist the decision-making process for specific medical problems. Our
paper provides a review of 3D visualization techniques for medical images, intending to bridge the gap between medical
experts and visualization researchers. Highlights. Fundamental visualization techniques are revisited for various medical
imaging modalities, from computational tomography to diffusion tensor imaging, featuring techniques that enhance spatial
perception, which is critical for medical practices. The state-of-the-art of medical visualization is reviewed based on a
procedure-oriented classification of medical problems for studies of individuals and populations. This paper summarizes free
software tools for different modalities of medical images designed for various purposes, including visualization, analysis, and
segmentation, and it provides respective Internet links. Conclusions. Visualization techniques are a useful tool for medical
experts to tackle specific medical problems in their daily work. Our review provides a quick reference to such techniques given
the medical problem and modalities of associated medical images. We summarize fundamental techniques and readily available
visualization tools to help medical experts to better understand and utilize medical imaging data. This paper could contribute
to the joint effort of the medical and visualization communities to advance precision medicine.

1. Introduction

In recent years, with advances in computing power and
algorithms, the impact of technology in medicine is greater
than ever and keeps increasing. Strategic plans focusing on
promoting the application and development of medical
technologies have been made worldwide. In 2018, the
General Office of the State Council of China issued “Opin-
ions on Promoting the Development of ‘Internet Plus
Healthcare,’” calling for strengthening the integration,
sharing, and application of clinical and research data and
supporting the research and development of health-
related artificial intelligence (AI) technology, medical
robots, etc. (http://www.gov.cn/zhengce/content/2018-04/
28/content_5286645.htm). A three-year action plan was
released to develop AI, which puts a priority on expanding
the clinical application such as medical image-assisted
diagnosis systems (http://www.cac.gov.cn/2017-12/15/c_
1122114520.htm). In the same year, the National Institutes

of Health (NIH), USA, released the NIH Strategic Plan for
Data Science, which proposed that technological innova-
tions such as machine learning, deep learning, AI, and vir-
tual reality (VR) could revolutionize biomedical research
over the next 10 years (https://datascience.nih.gov/nih-
strategic-plan-data-science).

Medical images, such as computerized tomography
(CT), magnetic resonance imaging (MRI), and diffusion ten-
sor imaging (DTI), are the backbone of modern medical
practices and research. Furthermore, medical images are a
core data source and target for analysis in AI and VR in
aforementioned strategic plans. Therefore, the analysis and
understanding of medical images are of utmost importance
in medical technologies. In practice, most if not everyone
in health science areas is familiar with medical images, and
many use medical images in daily work. Medical images
are massive and complex and hard to explore and gain
insights with traditional statistical methods that do not
involve the expertise of humans. Therefore, technologies
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that have humans in the loop are needed for medical image
exploration and analysis, and medical experts could make
the best of the potential values of medical images to enable
high-quality healthcare solutions. Vision is known to be
the major and most efficient perception mechanism for
humans. Visualization transforms data into interactive
visual representations to facilitate data understanding and
exploration through visual perception and human-
computer interaction, and it can present medical images in
3D with high accuracy. Visualization integrates the cognitive
advantage of humans and the computational advantage of
computers for data mining [1] and decision-making [2]
and is an effective data analysis technology for medical
images. Throughout this paper, we understand the term
medical image visualization as 3D visualization of medical
images.

We first report on the scope and sources of papers
involved (Section 2). We then summarize fundamental tech-
niques that enable the visualization of various types of med-
ical images (Section 3). Next, in Section 4, specialized
medical imaging visualization methods are reviewed based
on our medical procedure-oriented and scale-based taxon-
omy. In Section 5, we summarize visualization techniques
that may have potential medical applications and discuss
limitations of medical image visualization. Finally, we list
free software tools that are readily available online for med-
ical image visualization (Section 6) and conclude the over-
view in Section 7.

2. Scope

Medical visualization, in general, is systematically covered in
the textbook by Preim and Bartz [3]. In this paper, we focus
on techniques of 3D medical image visualization and specific
techniques for various medical problems based on imaging
categorized by the medical procedure and the scale of
studies.

There are several reviews of visualization techniques for
medical images [4–8]. However, the target audience of these
reviews is visualization researchers rather than medical
experts. These technical-oriented reviews offer in-depth dis-
cussions on visualization techniques for specific medical
data types with fine-grained taxonomy, including perceptu-
ally motivated 3D medical image data visualization [4], mul-
timodal medical data [6], medical flow data [8], cardiac 4D
data [5], and flattening-based medical visualization [7].

Our paper, instead, is to provide medical experts with a
general overview of this highly relevant field. We believe that
our review achieves a balance between the coverage of tech-
niques and the relevance for medical experts, and our goal is
to convey existing visualization techniques that are poten-
tially useful for health care experts in their research and clin-
ical practices.

We focus on techniques that generate 3D visualizations
of medical images. While other representations of 3D medi-
cal images exist, e.g., 2D representations with flattening visu-
alization techniques, we do not include them in our review
and readers are referred to a survey elsewhere [7]. Our
review includes classic papers for fundamental techniques

(Section 3) and visualization papers from mainstream visu-
alization venues, e.g., IEEE Transactions on Visualization
and Graphics (TVCG), Computer Graphics Forum (CGF),
the IEEE VIS conference, the EuroVis conference, the IEEE
PacificVis conference, and Computers and Graphics. Specif-
ically, with a few exceptions, papers covered in Section 4
were selected by first searching for the term “medical visual-
ization” on the two major venues—IEEE TVCG (including
the VIS conference) and CGF (including the EuroVis con-
ference)—with the publication time within the last 15 years
(2006–2021), and then, we carefully examined each paper
found in the search and included papers with direct rele-
vance to medicine and 3D visualization of medical images.

Unlike a previous review on biomedical visualization
techniques [9], our overview covers advanced visual analysis
methods for medical images that are arranged based on a
taxonomy of medical problems from individuals to popula-
tions (Section 4) and also includes advances in fundamental
visualization methods (Section 3). This paper also features
an overview of techniques that could improve spatial percep-
tion, which is vital for the understanding of medical images
in 3D. Overall, rather than a comprehensive review of the lit-
erature on the topic of medical image visualization, this
review provides a big picture of the subject of study and
introduces state-of-the-art techniques driven by specific
medical problems.

3. Fundamental Medical Image
Visualization Techniques

We understand medical images as data over 3D spatial
domains that have values defined for each point in space
and possibly in time (e.g., time-varying data), namely, fields.
Medical imaging data can be abstracted as fields where data
values are defined everywhere within the spatial domain, for
example, fluid characteristics of tissues in an MR image.

In practice, the field data is sampled and stored as dis-
crete data points in images of various formats, e.g., DICOM
(Digital Imaging and Communications in Medicine), NII
(NIfTI-1 data format), TIFF (Tag Image File Format), and
RAW (Raw image). We denote a data point v of a medical
image data as

v : x, y, z, t, s1, s2,⋯, smð Þ, ð1Þ

where x, y, z are the spatial coordinates, t is the time, and
s1, s2,⋯, sm are physical attributes of this data point, for
example, the Hounsfield scale (for CT) or T1- (longitudinal
relaxation time) weighted, T2- (transverse relaxation time)
weighted, and FLAIR-fluid-attenuated inversion recovery,
and m denotes the number of attributes.

Medical image data can be classified into three types: sca-
lar, vector, and tensor, based on the mathematical properties
of physical attributes s. When m > 1, the medical image data
are multifield data that can be a mixture of various data
types, e.g., scalars and vectors or scalars and tensors, that
are typical in real medical practices. Advanced techniques
for multifield visualization are covered in Section 4.
Figure 1 shows the classification of visualization techniques
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for medical images with examples (Figures 1(a)–1(c)) of a
scalar CT scan of a torso, a flow simulation of a torso, and
a tensor field visualization of a brain. In the remainder of
this section, we focus on the case of single-typed data, i.e.,
each attribute of s has the same type, and discuss fundamen-
tal visualization techniques for each type of data.

3.1. Scalar Image Visualization. If each attribute of s of equa-
tion (1) is a scalar, i.e., a quantity without direction, the data
is scalar volumetric data in the context of 3D medical imag-
ing. In general, volume visualization techniques can be cate-
gorized into two classes: indirect volume visualization and
direct volume visualization. Indirect volume visualization
extracts surfaces with certain data values to indirectly visual-
ize a volumetric data with surface meshes. Since the
extracted surfaces there have the same data value, for exam-
ple, parts of the skin that have a specific Hounsfield scale in a
CT scan, such methods are also called isosurface rendering.
In contrast, direct volume visualization or volume rendering
directly visualizes the volume data without extracting any
surfaces and allows the “see-through” of internal structures
of a medical image, for example, the brain within a head
MR scan.

Isosurface rendering is usually realized with the march-
ing cubes method [12]. The marching cubes algorithm tra-
verses data cells, i.e., cubes, through the data volume and
uses a lookup table to efficiently determine the topology of
the isosurface and computes the intersection of the isosur-
face and the cell to construct triangles accordingly. The tri-

angle mesh is then visualized with a color palette specified
by the user. Isosurfaces can be generalized to “thick” interval
volumes and even be combined with direct volume render-
ing in a unified framework [13]. However, indirect volume
rendering shows only a limited number of features as sur-
faces, and it does not provide the volumetric look within
medical images.

3.1.1. Direct Volume Rendering. For a systematic introduc-
tion to direct volume rendering, we refer the reader to the
course notes [14] or the book on real-time volume graphics
[15]. Volume rendering is based on optics, and all tech-
niques are approximations to the solution of the light prop-
agation equation [16] in volumetric materials. Later, volume
rendering was extended to include medical images—initially
focusing on CT human head scans—along with surface
shading [17, 18].

An optical model determines how particles in the media
interact with light [19]. We illustrate the direct volume ren-
dering problem with typical optical models in Figure 2: the
eye symbol represents the viewer, the cloud indicates the
scalar volumetric data, a ray (the straight line) is shot from
the viewer through the volume, the current volume sample
is indicated by a gray dot, and the light source is drawn as
the sun. The final color of the ray “seen” by the viewer is
determined by solving the volume rendering integral with
a given optical model. Particles emit and absorb light in
the emission and absorption model (Figure 2(a)), and the
volume sample only receives lights from samples to its back,

Type of
Si

Vector, e.g.,
si = [1, 0, 0]T

(a) (b) (c)

Tensor, e.g.,
1 2 3
2 21
3 2 1

Scalar, e.g.,
Si = 0.5

si = 

Figure 1: Classification of fundamental visualization techniques for different types of medical image data. Scalar, vector, and tensor image
data visualization is discussed in this order in the remainder of this section. Example visualizations include a direct volume rendering of a
CT scan of a torso [10] for scalar data, a streamline visualization of a bioelectric field simulation of a torso for vector data, and a tube-based
tractography visualization of a brain [11] for tensor data. Reprinted from Computers & Graphics, Vol. 36, No. 6, Zhou and Hansen [10],
Transfer Function Combinations, 596-606, Copyright 2012, with permission from Elsevier (a). Reprinted, with permission, from the SCI
Institute (b). ©2007 SPIE. Reprinted, with permission, from Weldeselassie et al. [11] (c).
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e.g., the white dot, along the ray. On top of the emission and
absorption model, a local illumination model adds local
reflections of light from the light source. Here, light from
the source along the straight line to the volume sample
may be attenuated as illustrated in Figure 2(b). Alternatively,
attenuation between the light source and the point in the
volume might be neglected. Finally, global illumination
(Figure 2(c)) considers a full model of scattering that leads
to complex light paths and interactions, as indicated by the
irregular polylines. Currently, most applications rely on local
illumination (often, without attenuation from the light
source to the point of local illumination) as a compromise
between rendering quality and computational cost. In con-
trast, the global illumination model can achieve photorealis-
tic visual effects, such as shadows and translucency, that
improve spatial perception, which is important for medicine
as discussed in Section 3.1.3.

Volume rendering, even with a simple optical model, has
high computational cost. Due to the limitation of computer
hardware, interactivity was not achieved even with hardware
acceleration [20] in early work. Therefore, practical use of direct
volume rendering of medical images was not feasible back then.

With the advent of graphics processing units (GPUs),
interactive volume rendering techniques were devised
[21–23]. Among them, the GPU-based ray casting [23]
method is currently the standard volume rendering tech-
nique in most applications. The main advantages of GPU-
based ray casting lie in that no geometry has to be generated,
and the implementation is straightforward. Interactive vol-
ume rendering is also available on mobile devices [24] that
can facilitate ubiquitous visualization and analysis of medi-
cal images.

3.1.2. Visual Data Exploration with Transfer Functions. The
medical image data and its rendering are linked by a transfer
function—a mapping from the data value to optical proper-
ties, i.e., color and opacity of the volume. The idea is already
realized in early volume rendering papers [17, 18], but they
did not use transfer functions as a data exploration tool.
However, for medical visualization, transfer functions are
the main means of interactive visual mining/exploration of
scalar medical images. A survey of transfer functions for vol-
ume rendering can be found elsewhere [25].

The basic and most frequently used transfer functions
are one-dimensional (1D) transfer functions that typically
map data values of the scalar volume, i.e., the grayscale value
of images, to color and opacity. An example of volume ren-
dering of a CT head scan is shown in Figure 2 with a screen-
shot of a 1D transfer function widget (Figure 2(e)). The
distribution of data values is shown in blue in the back-
ground, and the transfer function is shown in the fore-
ground: the line in black indicates the opacity, and the
color is set by linear interpolation of the colored dots. Here,
the skin and muscles are set to yellow and brown of low
opacity, blood vessels are assigned red with high opacity,
and bones are set to white of high opacity. Although rela-
tively easy to use, 1D transfer functions have limited feature
classification capability; for example, they cannot clearly
separate the bone and the blood vessels as shown in
Figure 2(d), due to the partial-volume effect of medical
imaging. A preintegrated technique can be employed to
improve the quality of volume rendering with 1D transfer
functions [26].

Artifacts caused by the partial-volume effect cannot be
resolved by using only the single scalar image data value.

(a)

(b)

(c) (e)

(d)

Figure 2: Optical models of direct volume rendering: (a) emission and absorption, (b) local illumination, and (c) global illumination. A CT
human head scan is visualized in (d) using local illumination with (e) a 1D transfer function.
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Therefore, more attributes are measured as in the multi-
modal medical imaging, e.g., T1, T2, and FLAIR channels
in MRI, or derived from the original image data. Accord-
ingly, multidimensional transfer functions use the attributes
jointly for improved classifications. Two-dimensional trans-
fer functions that enhance boundaries of volumes are the
typical choice on most occasions as the second attribute is
easily derived from the original data [27, 28]. Interaction
widgets for 2D transfer functions [28] have become standard
in most of the current visualization tools described in
Section 6.

Designing multidimensional transfer functions for
more than two attributes is challenging. One common
approach is to explore the value domain of multimodal
medical images. Several techniques [29–31] based on mul-
tidimensional diagrams facilitate selections of specific value
ranges of each data attribute. However, value domain
approaches are unfamiliar to medical experts. In contrast,
the spatial domain, e.g., on the slices of images, is pre-
ferred. Accordingly, slice-based multidimensional transfer
function methods are available. For example, a machine
learning-based method allows the user to draw directly
on slices for training [32]. Another example is slice-
based sketching combined with parallel coordinates and
scatterplots for multimodal medical images [33]. A semi-
automatic method sets transfer functions through drawing
features of interest on slices with probabilistic boundary
lassos and approximate optimization [34].

3.1.3. Techniques for Improved Spatial Perception. Although
local illumination is widely used in volume rendering, more
realistic rendering is often necessary for clinical purposes as
it provides important depth cues allowing accurate spatial
perception. Therefore, global illumination has been a core
research topic in volume rendering. A general and compre-
hensive global illumination model that creates various visual
phenomenon is available in computer graphics [37].

In the case of direct volume rendering, Monte Carlo
sampling enables global illumination [38]; however, the
gradual rendering from a coarse to fine visualization and
the noisy look makes its integration to the clinical pipeline

premature. Shadows and translucency are enabled by half-
angle slicing [22], and directional occlusion is also available
[35]. Figure 3(b) shows the volume rendering of an MRI
brain scan with directional occlusion. Compared to
Figure 3(a) with the traditional Phong illumination—a
frequently used local illumination method—directional
occlusion (Figure 3(b)) creates important depth cues that
improve the perception of the complex creases of the brain.

Scattering and shadows are also made possible with
GPU-based ray casting that achieves high image quality
[39]. Advanced global illumination models [36, 40] are
available to include scattering and soft shadowing in ray-
casting volume rendering. Figure 3(c) shows the volume
rendering of a CT scan with a low-pass shadowing model
with scattering that provides translucency. These methods
could aid medical experts in their clinical work to quickly
and accurately locate features of interest in the visualiza-
tion, which is not possible with traditional local illumina-
tion models.

3.2. Vector Image Visualization. When attributes s (equation
(1)) are vectors, the medical image to be visualized is a vec-
tor field. Vector field visualization is extensively used and
studied in computational fluid dynamics for science and
engineering, and a survey of general vector field visualization
techniques is available [43]. In medicine, vector field data in
terms of fluid flow from phase-contrast MR (PC-MR) scans
are typically used for understanding pathological cerebral
aneurysm haemodynamic, nasal aerodynamics, and aortic
haemodynamics; bioelectric simulations based on electrocar-
diography (ECG) in cardiology and electroencephalography
(EEG) or magnetoancephalography (MEG) in neurology are
another source of vector image data [44].

For more details on medical vector field data visualiza-
tion, we refer the reader to several surveys [5, 8, 45]. In this
section, we briefly review medical vector field visualization
techniques in the following order: direct methods, geometry
methods, feature methods, and techniques for accurate spa-
tial perception. Segmentation and mesh generation are also
important processes in vector medical image visualization
but are beyond of the scope of our review.

(a) (b) (c)

Figure 3: Direct volume rendering of a brain scan using (a) the traditional local illumination model and with (b) the directional occlusion
shading [35] that approximates global illumination to enhance depth perception. ©2009 John Wiley & Sons, Inc. Reprinted, with
permission, from Schott et al. [35]. A more advanced global illumination technique [36] generates the photorealistic rendering of a CT
scan in (c). ©2014 IEEE. Reprinted, with permission, from Ament et al. [36].
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3.2.1. Direct Methods. Direct methods do not explicitly
extract any geometry or features in a vector field. One strat-
egy visualizes vector information with glyphs on 2D slices
[46]. Another strategy converts vector information into mul-
tiple scalars and visualizes them with color coding in slices
or volumes using direct volume rendering. However, direct
methods do not visualize trajectories of particles in the vec-
tor field, i.e., global path features, which is one of the focal
points of vector field analysis. Therefore, direct methods
see limited use in vector medical image visualization.

3.2.2. Geometry Methods. Extracting and visualizing repre-
sentative geometry in the vector field, e.g., streamlines, path-
lines, or streaklines, are effective and well-received methods.
Geometry methods extract global path features from seeded
points in the image [47]. Streamlines are visualized as 3D
lines or tubes colored by the desired property, for example,
the electrical potentials of electric fields of a torso in
Figure 4(v) or a brain with the volume rendering as context
in Figure 4(d). The analysis of flow patterns is aided with
image slices [48] similar to the case of volume rendering,
where a cutting plane is often used. The extraction of global
path features is sensitive to seed points; a probing tool facil-
itates seeding in images [49]. However, automatic seeding
remains as a challenging and open question.

Alternative to visualizing 3D geometry as lines, tubes, or
surfaces, global path features can be shown with textures.
Line integral convolution (LIC) [50] visualizes the vector
field by convolving a noise image with a low-pass filter along
streamlines extracted from the data image. The LIC method
can be extended to curved surfaces [41, 51], for example, on
the surface of a heart [41] as shown in Figure 4(a) or a torso
as shown in Figure 4(b).

3.2.3. Feature Methods. Feature methods extract features of
interests, e.g., sinks, sources, saddle points, vortices, and
regions of abnormal flow velocity, in vector fields. We cover
specialized methods for medical fluid flows; for other vector
field data, we refer the readers to a general overview of
texture-based vector field visualization [43]. Extracting vor-

tex regions is a vital process in a number of vector medical
image visualization techniques [52, 53]. Vortex cores in
blood vessels are related to blood transportation mecha-
nisms in the aorta and the left ventricle [53]. Vortex regions
are extracted for analysis of potential malfunctions [52].

Line predicates [54] are functions used for querying inte-
gral lines (streamlines or pathlines) that meet certain prop-
erties of interest. These functions are flexible and especially
suitable for vector medical images as flow features such as
velocity, shapes of lines, and distances to the vessel wall
can be encoded. Blood with high residence times [55] and
impingement zones of cerebral aneurysms [56] can be
extracted with line predicates.

3.2.4. Techniques for Improved Spatial Perception. Spatial
perception of path geometry, lines or tubes, is difficult in
3D due to many factors, e.g., cluttering, inaccurate depth
perception, occlusion, and inaccurate perception of orienta-
tion. Methods that improve spatial perception are available
to complement aforementioned visualization techniques
(Sections 3.2.1–3.2.3). Particles in the flow field can be
drawn as different shaped glyphs [52] or cartoon-styled
stretched ellipsoids or short pathlines (pathlets) [49]. Draw-
ing whole extracted lines as illuminated streamlines [57] or
with halos [58, 59] is another strategy for visualization with
enhanced spatial perception.

Global illumination is superior to local illumination in
user performance for locating and comparing features with
tube/line renderings as shown in a comparative study [60].
Shadows are especially important for depth perception of
vector field visualization as they provide depth cues. Direc-
tional ambient occlusion [61] or ray tracing for tubes [62]
is able to create shadow effects for vector field data or field
lines extracted from tensor fields (Figures 5(c) and 5(d)).

3.3. Tensor Image Visualization. Tensor image visualization
techniques concern medical images with the attribute(s) s
of equation (1) as tensors—here, we consider only second-
order tensors [65], i.e., matrices, and most applications in
medicine assume symmetric matrices. DTI captures the

(a) (b) (c)

Figure 4: Vector field visualization of medical images. The LIC method is used to visualize (a) a simulation of the bioelectric field of the
heart [41]. ©2008 IEEE. Reprinted, with permission, from Li et al. [41]. Streamlines are visualized as colored lines in bioelectric field
simulations in (b) a torso (reprinted, with permission, from the SCI Institute). The visualization of a brain in (c) applies LIC with
isosurfacing for an MRI scan along with volume rendering of a functional MRI (fMRI) [42]. ©2007 SPIE. Reprinted, with permission,
from Schafhitzel et al. [42].
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diffusion information of water molecules in tissues as symmet-
ric matrices at each point. In medicine, clinical experts often
use the term diffusion-weighted imaging (DWI) to refer to
the isotropic diffusion map—a scalar measurement of DTI.
To avoid confusion, we use the term DTI to refer to the imag-
ing that measures tensor fields and do not use DWI. We clas-
sify techniques into three categories for tensor image
visualization: voxel-based, glyph-based, and tractography. As
in previous sections, we also discuss available techniques for
improved spatial perception for tensor medical images.

3.3.1. Voxel-Based Methods. By computing scalar descrip-
tions of tensors and using 2D slices and/or volume render-
ing, voxel-based methods convert tensor data visualization
to scalar data visualization. One such description is frac-
tional anisotropy [66], and other anisotropy measurements,
including linear anisotropy, planar anisotropy, and isotropy
are also helpful for describing the shape and size of tensors.
Moreover, measurements based on characteristic curves, for
example, finite separation ratio, are calculated to describe
coherent fiber structures [64]. Tract-based spatial statistics
uses nonlinear registration and fractional skeleton to
improve the analysis of multisubject DT images [67]. Strate-
gies of voxel-based visualization using direct volume render-
ing are available, including designing transfer functions
based on tensor information and using diffusion volume tex-
tures [68].

3.3.2. Glyph-Based Methods. Glyphs allow encoding the
complex tensor information using multiple visual channels,
for example, shape, size, and color. Classic glyph design uses

ellipsoids [69, 70] (spherical glyphs) or cuboids that change
shape and orientation based on diffusion information—the
anisotropy and orientation of principal components. A com-
posite glyph can directly encode linear, planar, and spherical
information [71]. Superquadric glyphs [72] with general
principles of usage [73] avoid the shortcomings of spherical
or cubical glyphs. Uncertainty-aware visualization is avail-
able for augmenting spherical, superquadric glyphs for DTI
and fourth-order homogeneous polynomial glyphs for high
angular resolution diffusion imaging (HARDI) [63]. Afore-
mentioned glyph shapes can be found in Figure 5(a). The
spatial arrangement of glyphs is another crucial issue. A
glyph packing technique leads to efficient use of space and
correct perception of the visualization [74].

3.3.3. Tractography. The main goal of DTI is to reconstruct
the whitematter fiber tracks of the brain. Tractography extracts
fibers or tracts from DTIs and visualizes extracted fibers with
vector field visualization techniques. Therefore, tractography
is probably the most well-known and popular tensor visualiza-
tion technique among medical experts. A review on tractogra-
phy can be found elsewhere [75]. Fiber tracts are typically
visualized as lines [57, 76] or tubes [77]. GPU acceleration
enables interactive visualization of fiber tracks as tubes with
tuboids and level-of-detail techniques [78] or hybrid rendering
of triangle stripes and point sprites [79].

Visualizing fiber tracts in the context of the scalar med-
ical image [80] helps medical experts better analyze the data.
Grouping and clustering fiber tracts reduce clutter and facil-
itate understanding the anatomy of these tracts. Grouped or
clustered tracts are typically color labeled by anatomical

(a)

(b) (c) (d)

Figure 5: Visualizations of diffusion tensor medical images with (a) glyphs [63], (b) hybrid voxel-based and tractography method [64], and
(c, d) tractography methods [61, 62]. Different uncertainty-aware glyph encodings are shown in (a), from left to right: ellipsoids,
superquadrics, and fourth-order homogeneous polynomial [63]. A combined rendering of voxel-based visualization of characteristic
curves along with extracted tractography is shown in (b) [64]. For tractography visualizations, extracted fiber tracts of the brain are
visualized as tubes with shadows with (c) ray tracing [62] and are combined into the context of volume rendering of scalar MRI with
unified volume and surface occlusion shading [61] (d). ©2012 IEEE. Reprinted, with permission, from Jiao et al. [63] (a). ©2011 IEEE.
Reprinted, with permission from, Hlawatsch et al. [64] (b). ©2019 John Wiley & Son, Inc. Reprinted, with permission, from Han et al.
[62] (c). ©2013 IEEE. Reprinted, with permission, from Schott et al. [61] (d).
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bundles [81]. Similar to graph visualization, edge bundling
of fiber tracts can also enhance the readability of the visual-
ization [82, 83].

3.3.4. Techniques for Improved Spatial Perception. Percep-
tion of glyphs is difficult in 3D due to loss of information
from projection to the 2D image plane and the ambiguity
in the 3D shape representation. There are superquadric
glyphs that avoid the ambiguity and improve over spherical
and cubical glyphs [72, 73]. The glyphs are typically ren-
dered with illuminated surfaces and shadow effects in 3D
to further enhance depth perception.

Similarly, perception is an important issue in tractogra-
phy. Illustrative visualization that provides depth cues helps
reduce visual clutter and enhance spatial perception. A sur-
vey on illustrative visualization is available elsewhere [84].
Depth-dependent halos [59] enhance depth perception with
line-based visualization and depth-based contrast enhance-
ment. Line-based ambient occlusion [85] is devised to
enhance depth cues of the tractography visualization in both
grayscale and color. Ambient occlusion also enhances depth
perception for combined direct volume rendering and fiber
tract visualization [61] as shown in Figure 5(b). Shadows
could also be generated with ray tracing. In Figure 5(a), a
whole brain tractography is visualized by 3D tubes with
ray-traced shadows [62]. These techniques complement
visualization in context [86] and fiber clustering and bun-
dling [83] for more effective analysis of fiber tracts.

4. Medical Visualization Methods for
Health Applications

Medical studies on individuals are aimed at providing pre-
cise and tailored solutions for the specific anatomy and
pathology for individual patients. With the power of medical
image visualization, medical experts could deepen the
understanding of the data and, therefore, potentially
improve the quality of personalized medicine.

Of equal importance is to understand health problems in
populations. More specifically, medical image visualization
for studies of populations involves ensemble data, i.e., a col-
lection of data members that are individual 3D medical
images. Understanding such datasets requires specialized
ensemble visualization and visual analysis techniques built
on top of basic methods covered in Section 3. Ensemble
visualization is aimed at achieving one or more of the fol-
lowing goals: visualizing the main trend of the ensemble,
visualizing outliers of the ensemble, and comparing specific
members to the main trend or other members. Therefore,
we believe that it is necessary and helpful to distinct visual-
ization methods that support medical studies for individuals
from those for populations.

In this section, we focus on medical image visualization
methods specifically designed to address clinical and public
health problems. We cover a broad range of medical visual-
ization methods focusing on medical problems to be tackled
(diagnosis, treatment, or prognosis) and with a classification
of the scale of the medical study—from individuals to
populations.

A summary of papers reviewed in this section can be
found in Tables 1–3 for diagnosis, treatment, and prognosis,
respectively. Each paper is documented with the following
properties for readers to quickly locate techniques of their
interests: supported data types (data type), scale of studies
(scale), body locations of the problem (location), and modal-
ities of medical images (modalities). We classify data type
into scalar, vector, and tensor; scale is classified into individ-
ual and population; location is defined by the target body
part(s) of medical image(s); and modalities show the modal-
ity of scanners of medical images.

4.1. Diagnosis. Methods designed for diagnosis are summa-
rized in Table 1. While the majority of these methods handle
studies on the individual level, a few recent works support
studies of populations.

4.1.1. Individual. Diagnosis for individuals often requires
multimodal medical images to provide sufficient informa-
tion. In oncology, positron emission tomography (PET)
images that show physiological functions and CT images
that represent anatomical structures are used jointly for the
diagnosis of tumors. Multimodal visualization techniques
are, therefore, required to analyze the combination of the
two types of scans. Focusing only on potential PET anomaly
regions with the CT anatomy as the context, i.e., focus-and-
context visualization, is an effective visualization strategy for
PET+CT images. An illustrative technique allows us to visu-
alize the CT data as the context in cartoon style and the PET
data as focus with a see-through lens that quickly draws the
attention of medical experts [87]. There, the focus can be
interactively manipulated and contents within focal regions
are controlled by interactive transfer functions. Alterna-
tively, a visibility-based transfer function for PET+CT data
allows users to select regions of interest for further analysis
[88]. Shape-encoded rendering combines shape analysis
with volume rendering to highlight tubular and nodular
structures [89]. The method aids the diagnosis of anomalies
in CT scans of lungs or PET/CT scans for oncological
practices.

In the field of cardiology diagnosis, perfusion data from
MR or single photon emission computed tomography
(SPECT) are used in conjunction with the regular MR or
CT images that are of higher resolutions to indicate the
underlying anatomy. The analysis of coronary artery disease
is achieved by integrating the perfusion MR with the mor-
phologic data from CT angiography (CTA) using visual
analysis with multiple-linked views [91]. A well-accepted
analysis tool in cardiac diagnosis, the bull’s eye plot is
extended for rest and stress comparison and is used interac-
tively to drive the 3D exploration with colored height fields,
icons, and synchronized lenses. The bull’s eye plot is further
extended to be continuous and as a volume to assess trans-
murality in a 3D anatomical context [90]. Diagnosis is
achieved with visual analysis supported by a comprehensive
visualization and interactive exploration with multiple-
linked views, and several segmented volumes and enhanced
MR images are used for the joint rendering. A multivariate
glyph-based method enables the structured analysis of
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myocardial perfusion using 3D glyphs encoding parameters
of the left ventricular myocardium [94]. By linking the 3D
view with 2D slices, the method supports the analysis of nor-
mal case, various types of ischemia, and heart failure. CTA

and perfusion SPECT images are combined and jointly ana-
lyzed to diagnose coronary artery disease [93]. A study com-
paring the method to the traditional practice shows that the
visualization method is advantageous in terms of diagnostic

Table 1: Summary of specialized medical image visualization techniques for diagnosis.

Reference Data type Scale Location Modalities

Lawonn et al. 2016 [87] Scalar Individual Whole body PET+CT

Jung et al. 2013 [88] Scalar Individual Whole body PET+CT

Wiemker et al. 2013 [89] Scalar Individual Lymph nodes, lungs, breast, whole body PET+CT+MR

Termeer et al. 2007 [90] Scalar Individual Heart Perfusion-MR+MR

Oeltze et al. 2006 [91] Scalar Individual Heart Perfusion-MR+CTA

Hennemuth et al. 2008 [92] Scalar Individual Heart MR

Kirisli et al. 2014 [93] Scalar Individual Heart CTA+SPECT

Meyer-Spradow et al. 2008 [94] Scalar Individual Heart SPECT

Williams et al. 2008 [95] Scalar Individual Colon CT

Mirhosseini et al. 2019 [96] Scalar Individual Colon CT

Song et al. 2017 [97] Scalar Individual Chest, abdomen CT

Viola et al. 2008 [98] Scalar Individual Liver US+CT

Zhou and Hansen 2014 [34] Scalar Individual Brain MR

Jösson et al. 2020 [99] Scalar Population Brain fMR+MR

Elbaz et al. 2014 [53] Vector Individual Heart PC-MR

Meuschke et al. 2016 [100] Vector Individual Heart PC-MR

Köhler et al. 2013 [52] Vector Individual Heart PC-MR

Born et al. 2013 [55] Vector Individual Heart PC-MR

van Pelt et al. 2010 [101] Vector Individual Heart PC-MR

van Pelt et al. 2011 [49] Vector Individual Heart PC-MR

Zhang et al. 2016 [102] Tensor Population Brain DT

Zhang et al. 2017 [103] Tensor Population Brain DT

Table 2: Summary of specialized medical image visualization techniques for treatment.

Reference Data type Scale Location Modalities

Rieder et al. 2008 [104] Scalar Individual Brain MR

Weiler et al. 2011 [105] Scalar Individual Brain MR

Khlebnikov et al. 2011 [106] Scalar Individual Abdomen CT

Beyer et al. 2007 [107] Scalar Individual Brain MR

Dick et al. 2011 [108] Scalar Individual Bone CT

Lundstrom et al. 2011 [109] Scalar Individual Bone CT

Smit et al. 2007 [110] Scalar Individual Pelvic MR

Butson et al. 2013 [111] Scalar Individual Brain MR

Vorwerk et al. 2020 [112] Scalar Individual Brain MR

Bock et al. 2013 [113] Scalar Individual Brain MR

Athwale et al. 2019 [114] Scalar Individual Brain MR

Blaas et al. 2007 [115] Tensor Individual Brain fMR+MR+DT

Born et al. 2009 [116] Tensor Individual Brain fMR+MR+DT

Diepenbrock et al. 2011 [117] Tensor Individual Brain fMR+MR+DT

Joshi et al. 2008 [118] Tensor Individual Brain fMR+MR+DT

Rieder et al. 2008 [119] Tensor Individual Brain fMR+MR+DT

Dick et al. 2009 [120] Tensor Individual Bone CT+sim

Note: sim: simulation.
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performance. Contrast-enhanced cardiac images, including
perfusion images, whole-heart coronary angiography, and
late enhanced images, are analyzed by aligning different
datasets together and visualized as multiple isosurfaces [92].

Another important medical image visualization-based
diagnosis approach is virtual endoscope visualization, e.g.,
virtual colonoscopy and gastroscopy, where the visualization
of inner surfaces of tubular structures is the main focus. For
example, an immersive virtual colonoscopy method sup-
ports the exploration of the colon within volume visualiza-
tion in a virtual reality environment [96]. A hybrid
technique that combines the inner surface rendering and
volume rendering of colons is available [95]. For a full review
of flattening visualization techniques, we refer readers to a
survey elsewhere [7].

Extensive training is required for diagnosis with medical
images. A visual analysis method enables comparative visu-
alization of gaze data of several radiologists reading slices
and volume rendering of medical images [97]. By setting in
a real diagnostic environment, the method is useful for train-
ing radiologists. Ultrasound (US) images are frequently used
in clinical practice, but effective diagnosis with such images
requires extensive training. A joint 2D US and 3D CT image
visualization method registers the 2D plane of the US image
to segmented 3D structures of CT to assist the learning of
liver examinations [98].

The 4D phase-contrast MR (PC-MR) is a recent
advancement in medical imaging that is designed for mea-
suring time-varying flow fields in the body, which is specifi-
cally used for hemodynamics analysis. Among other
features, the vortex is especially useful in the analysis and
diagnosis of cardiac flow data. Vortex rings in the left ventri-
cle are extracted and visualized in 3D to analyze inflow dur-
ing early and late diastolic filling of normal subjects [53].
Quantitative parameters characterizing vortex flow for these
phases are formulated for normal subjects. Aortic vortex
flow is classified based on the orientation, shape, and tempo-
ral occurrence of the vortex for PC-MR data of healthy sub-
jects and ones with cardiovascular diseases [100]. The
classification results are visualized with 2D vortex plots
and 3D glyph visualization.

The flow field in the heart and aorta is analyzed by semi-
automatic segmentation with line predicates that extract
vortices and visualized with arrows [52]. The most suitable
cardiac blood flow vortex extraction criterion is found
through comparison, investigating pathologies like coarcta-
tions, tetralogy of Fallot, and aneurysms. A visual analysis
method provides flexible interactive exploration of cardiac
blood flow using line predicates that generate bundles with
similar flow characteristics [55]. The technique can be

applied to healthy and pathological hearts and shows aspects
of flow that cannot be seen with traditional methods.

4.1.2. Population. Diagnosis can benefit from studying
health problems in a population, for example, with a cohort
study, and by comparing different individuals. Traditionally,
cohort studies with medical images rely on hypothesis for-
mation and statistical analysis, but the visualization and
exploration of the imaging data are ignored. A visual analy-
sis method combines hypothesis formation and reasoning
with interactive volume rendering of multivariate brain
MRI and fMRI cohort study data [99]. With multiple-
linked views, the method supports the exploration of the
bidirectional correlations between the volume rendering
and clinical parameters and the comparison of different
patient groups.

Diagnosis can be potentially further improved by includ-
ing tensor information of DTIs. However, visualization of
DTIs in a population is challenging because, on top of the
occlusion issue of spatially overlapping images, each voxel
there encodes complex information. As a first step, effective
comparative visualization of two DTI images is required. A
glyph-based technique visualizes three aspects of tensors,
namely, the scale, the anisotropy type, and the orientation
[102]. By showing the glyphs on 2D slices, the method is able
to compare two DTI images. As an example, the brain DTI
of a healthy subject is compared to an HIV-infected subject.
An overview+detail visualization is devised for DTI image
ensembles: aggregate tensor glyphs show an overview of
the ensemble in the spatial layout, and visualizations of ten-
sor properties (scale, shape, and orientation) are used for
detailed analysis [103]. A case study demonstrates that the
method is able to visualize and analyze a cohort DTI study
of 46 subjects.

4.2. Treatment. Treatments aided by medical visualization
are mainly surgical planning and therapeutical intervention
planning. Therefore, treatment-related visualization
methods are individual-based as shown in Table 2. A thor-
ough introduction of various applications of visualization
in surgical planning can be found elsewhere [121].

Neurosurgery preoperative planning is a major task for
visualization techniques for brain imaging. Due to the com-
plexity and importance of the brain, multimodal 3D medical
images are used in neurosurgery to locate different anatom-
ical structures. Heterogeneous pathological tissues are visu-
alized with volume rendering by registering multimodal
volumes, e.g., T1, T2, and FLAIR MRI, and automatically
segmented mask volumes [104]. A slice-based interface that
is familiar to medical experts is used to drive the visual

Table 3: Summary of specialized medical image visualization techniques for prognosis.

Reference Data type Scale Location Modalities

Raidou et al. 2016 [127] Scalar Population Prostate MR

Karall et al. 2018 [128] Scalar Population Breast MR

Raidou et al. 2018 [129] Scalar Population Bladder CT

Furmanová et al. 2021 [130] Scalar Population Prostate, bladder, rectum CT
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exploration of multimodal brain images with direct manipu-
lation on the 2D images with lassos [34]. Transfer functions
are semiautomatically designed based on user-selected 2D
regions, and then, brain tumors and edema can be visually
segmented in 3D and visualized with volume rendering.
Vascular structures in the brain are extracted and visualized
with volume rendering to aid neurosurgery planning for
arteriovenous malformations [105]. Here, feeding arteries,
draining veins, and arteries “en passage” are segmented
and visualized together with the brain rendered as the con-
text. A high-quality multimodal scalar volume visualization
method facilitates the actual planning of neurosurgeries
[107]. The method supports specific operation planning,
for example, the optimal skin incision and skull opening
for the pathology and customized surgery of deep-seated
lesions for a given patient; specialized visualization of super-
ficial brain anatomy, function, and metabolism facilitates the
planning.

Using DT images jointly with fMRI and regular MR
scans could further improve the quality of surgical planning
as fiber tracts and functional regions of the brain around the
tumor could be analyzed. DTI, fMRI, and regular MRIs are
combined and visualized with volume rendering and tube-
based rendering for brain tumor resection planning [115].
Fiber bundles can be interactively selected so that those
around the tumor could be avoided in the planning. The
fMRI activation areas, functional areas of the brain, and fiber
tracts connecting these areas are jointly visualized with illus-
trative rendering [116]. Interactive probing of fMRI, DTI,
and MRIs within the brain visualization is proposed for neu-
rosurgical planning [117]. Uncertainty of these images is
also visualized in the method to provide additional informa-
tion to the user. Interactions, especially, cropping or cutting
operations from the surface of the brain to the inside, are
critical for neurosurgery planning. Volume clipping with
complex geometries [122] is the foundation for such tailored
cropping operations. Cropping views with different shapes,
e.g., sphere, cube, and cylinder, are combined with an
image-guided navigation system that visualizes MRI, fMRI,
DTI, and SPECT for epilepsy neurosurgery [118]. Distance
information is critical in preoperative planning, and DTI
and fMRI provide such data for fiber tracts and functional
regions. In a comprehensive method designed for neurosur-
gical planning, the tumor and neighboring fiber tracts are
rendered as the focus with distance-based enhancements
while the volume-rendered brain provides the context
[119]. The planned path can be interactively manipulated
and is visualized as a line and as a cylindrical cropping win-
dow on the brain.

In an oncology surgery, multiple possible paths to a
tumor may exist. However, the safety of paths is not equal
and has to be considered during the planning. A ray-based
method estimates the safety of all straight access paths to
the tumor in volume rendering and provides the area and
path safety information [106]. Clear evidence shows that
the method is liked by medical experts and can be used in
clinical practice with little overhead. Pelvic oncology surgery
planning is aided with a visual analysis method based on
preoperative MR scans [110]. The method is built on an atlas

by registering the MRIs of a patient to visualize the context
(organs around the tumor), the target (the tumor), and risks
(autonomic nerves) of the surgery. Distances between nerves
to the mesorectum and the tumor to the mesorectum, which
are critical to the surgery, are calculated as a distance field. A
linked-view tool comprising a 3D model view, an MRI view,
and a distance field-based unfolded view is implemented.
Five medical experts evaluated the method and considered
that it has potential in surgical planning and surgical train-
ing for oncologic surgeons.

Precise preoperative planning is also critical in ortho-
pedics. A medical visualization table is available to visual-
ize CT scans using volume rendering with user interface
and interactions designed for low learning effort and sim-
ilarity to the real working scenarios for surgeons [109]. A
user study shows that the table system is liked by surgeons
and potentially beneficial for planning. Hip joint replace-
ment is an important surgery in orthopedics. The optimal
implant positioning can be aided by an interactive distance
field visualization technique that uses glyphs and slices in
a 3D isosurface context to show distances between the
implant and the bone boundaries [108]. Stress simulation
is an effective method for the design and the planning of
the implant; however, the resulting stress tensor fields
need special visualization methods as most methods are
designed for diffusion tensors. With volume rendering
and line rendering, a focus-and-context method is pro-
posed to visualize time-varying stress tensor fields gener-
ated by such simulations [120]. The method supports the
interactive exploration of the simulation and reacts to
changes in the simulation and therefore could compare
the physiological stress distribution before and after the
simulated replacement surgery.

Deep brain stimulation (DBS) is an accepted neuromod-
ulation therapy for treating the motor symptoms of Parkin-
son’s disease. The DBS device that generates electrical
stimulation as an alternation of neural activity is comprised
of a multielectrode lead implanted in the brain and a con-
nected subcutaneous implantable pulse generator. The accu-
racy of the multielectrode lead placement is the key to the
effectiveness of the therapy. A mobile device-based visualiza-
tion tool supports volume rendering and isosurface render-
ing to compare different settings of DBS and help
healthcare providers to choose the optimal configuration
for a patient [111]. A further improvement uses a client-
server approach to achieve efficient interactive visualization
and simulation of DBS [112]. The usefulness of the method
is demonstrated by a postoperative example and another
example of DBS surgery pre- and interoperative planning.
The precision of DBS electrode positioning is related to the
uncertainty introduced by the resolution of brain imaging.
The positional uncertainty of each electrode is quantified
and visualized with uncertainty-aware volume and isosur-
face visualization techniques [114]. Multimodal volumes
and their associated uncertainty are quantified and fused in
a multiview visual analysis method to assist the planning of
DBS electrodes [113]. This comprehensive method covers
the planning, recording, and placement phases of the treat-
ment and uses volume and geometry rendering,
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spatiotemporal visualization, and uncertainty visualization
for corresponding elements in the procedure.

A relevant topic that requires high-quality visualization
is the segmentation of 3D anatomy and lesions from med-
ical images. Segmentation is often necessary for the diag-
nosis and treatment of individuals and, therefore, is a
prerequisite for many of the aforementioned visualization
techniques. Accurate and efficient segmentation of specific
anatomical structures, for example, the heart [123, 124]
and the prostate [125], has been an active and long-
standing research area in medical imaging. A discussion
of state-of-the-art segmentation techniques is beyond the
scope of our paper and can be found elsewhere [126]. In
Section 6, we list free visualization software dedicated to
3D segmentation.

4.3. Prognosis. In contrast to the case of treatment, the value
of visualization lies in its capability of comparison in a pop-
ulation to aid the prognosis evaluation. Therefore, all tech-
niques for prognosis summarized in Table 3 are
population-based. A number of techniques focus on radio-
therapy treatment evaluation. A visualization method is
available for exploring and understanding tumor control
probability models for cohorts [127]. By combining visuali-
zations of medical images and statistical models, the method
supports the exploration of uncertainty, parameter sensitiv-
ity analysis, interpatient response variability identification,
and finding treatment strategies that result in the desired
outcome.

A cohort study of patients who underwent breast cancer
chemotherapy treatment is analyzed with a visualization
method that shows different aspects of the study using
multiple-linked views [128]. The method combines medical
images and nonimage information in an interactive visuali-
zation tool that allows for analyzing individual patients,
comparing different chemotherapy treatment strategies and
comparing different patients.

Radiotherapy-induced bladder toxicity is analyzed with a
visualization technique tailored to investigating individual
patients and cohorts in the whole treatment process of a
cohort study [129]. This method focuses on the analysis of
the impact of shape variations on the accuracy of dose deliv-
ery by integrating the spatial visualization of bladders,
dimensionality reduction and clustering, and dose distribu-
tion visualizations. The idea is further extended to visualize
and analyze more organs that may impact the accuracy of
dose delivery in radiotherapy treatment for prostate cancer

[130], and its usefulness has been demonstrated through
the exploration of cohort studies by health experts.

5. Future Directions and Limitations of Medical
Image Visualization

Some visualization methods support exploring and analyz-
ing medical image data from basic medical research that
can potentially address unsolved health challenges in the
future. In this section, we discuss some of these important
future directions and also limitations of medical image visu-
alization. In Table 4, we summarize medical image visualiza-
tion techniques with potential health science applications.
Here, we list the features of these methods as a reminder
to the readers of what are available in the visualization tool
box in the future.

Simulations are an important approach in medical
research to understand complex, invisible, and/or perpetual
activities in human bodies. Nasal flow simulation is an
important means for understanding the physiological nasal
breathing that improves the overall traditional statistics-
based summary of flow behaviors. A visual analysis method
aids in the exploration of a computational fluid dynamics
simulation on an anatomically correct model of the upper
respiratory tract [131]. With multiple-linked views, the
method allows users to analyze multiple attributes, e.g.,
speed, pressure, humidity, and temperature, of the complex
flow simulation to derive intervention plans. Hemodynamic
characteristics in cerebral aneurysms are studied with com-
putational fluid dynamic simulations and segmented data
from CTA scans [56]. The visual analysis tries to understand
the inflow jet and impingement zone that are correlated with
the risk of rupture. A vortex classification method automat-
ically classifies blood flows in cerebral aneurysms and visual-
izes the clusters as streamlines in an aneurysm-based and a
hemisphere-based visualization [132].

Cardiac diseases are typically related to malfunctions in
bioelectric fields in the body that are difficult to measure
in vivo. Simulation of such bioelectric fields then becomes
a feasible alternative, and, therefore, in-depth analysis of
simulation results is important. Early work focuses on the
visualization of torso electric field simulations [136]. Special-
ized for the 3D myocardial ischemia simulation, a multiple-
linked view approach is devised to perform the visual analy-
sis of the multiple simulation runs of bioelectric fields on the
heart [133], which could also potentially be used for diagno-
sis. A systematic discussion of computational and numerical

Table 4: Techniques with potential health science applications.

Reference Scale Location Modalities Features

Zachow et al. 2009 [131] Individual Nose CT+sim Fluid dynamics: speed, pressure, humidity, temperature

Gasteiger et al. 2012 [56] Individual Brain CTA+sim Fluid dynamics: inflow jet and impingement zone

Meuschke et al. 2019 [132] Individual Brain CTA+sim Fluid dynamics: vortex, blood flows

Rosen et al. 2016 [133] Individual Heart MR+DT+sim Bioelectric fields

Meuschke et al. 2017 [134] Individual Brain Sim Rupture risk of aneurysms, stress tensor

Zhou et al. 2021 [135] Population Brain, heart MR+sim Quantitative comparison of scalar medical images

Note: sim: simulation.
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methods for bioelectric fields problems can be found in a
review, where related visualization techniques are also dis-
cussed [44].

Comparative visualization is important for understand-
ing an ensemble of simulation runs and comparing between
patients or different measures of medical images. Scalar
image ensembles, for example, brain MR atlas data
(https://www.oasis-brains.org/), are a common form of
ensemble medical image data. Direct visualization of image
members in 2D and 3D is not effective due to occlusion,
and quantitative comparison is not feasible in this way
either. One possible solution is to reduce the dimensionality
of image data to one (1D) with space-filing curves [135, 137,
138]. Data-driven space-filling curves [135] better preserve
spatial coherency in the resulting 1D representation than
static curves [137, 138], which potentially break spatially
coherent features into distant 1D fragments. The method is
applied for visualizing brain MRI atlas and an ensemble of
3D myocardial ischemia simulations and could potentially
be used for diagnosis or research by finding anomalies of
subjects through comparison to the main trends. Compara-
tive visualization of stress tensors is available for analyzing
rupture risks of cerebral aneurysms based on computational
fluid dynamic simulations [134]. With several glyph designs,
the method supports the comparison of local stress tensors
on the inner and outer vessel walls. Medical experts consider
that this method introduces the often overlooked wall struc-
ture information for rupture assessment and could contrib-
ute to the development of a comprehensive risk factor of
aneurysms in the future.

Medical image visualization has its limitations. First, cus-
tomized techniques and tools are required for specific medical
problems, which demand close collaborations between the
visualization and medical experts. Typically, an iterative pro-
cess with several prototypes is required for a method and its
associated software tool to become usable, which is often
time-consuming. Second, a learning process is required for
medical experts to familiarize themselves with new concepts
or interactions, for example, transfer function design in vol-
ume rendering. Nevertheless, medical image visualization
has the advantage of combining the expertise of humans and
the computational power of machines, which is vital for health
science, making it a promising research direction.

6. Software Tools for Medical
Image Visualization

Both commercial tools and free software are available for
medical image visualization. In this paper, we list representa-
tive free software that can be found on the Internet and read-
ily used for 3D medical images of various types and file
formats. As shown in Table 5, we briefly summarize these
tools with data types that can be handled (data types) as well
as their featuring characteristics (features).

Visualization and analysis tools for general scientific
problems and data provide flexible rapid prototyping frame-
works. ParaView (https://www.paraview.org/) is a cross-
platform open-source visualization tool designed for interac-
tive visualization and data analysis for a wide range of
research and engineering areas, and various types of medical
images (scalar, vector, and tensor) are supported [139].
Voreen (voreen.uni-muenster.de) is an open-source rapid
application development framework for the interactive visu-
alization and analysis of multimodal volumetric datasets
[140]. Inviwo (https://inviwo.org/) is a framework for rapid
prototyping visualizations and provides a rich visual inter-
face for creating customized visualization [141]. MegaMol
(https://megamol.org/) is a comprehensive cross-platform
visualization prototyping framework evolved from particle
rendering for molecular datasets [142, 143]. SCIRun
(https://www.sci.utah.edu/software/scirun.html) is a soft-
ware environment for scientific problem simulation, model-
ing, and visualization, and it supports various types of
medical images.

A number of tools are available for scalar medical image
visualization and analysis. 3D Slicer (https://download.slicer
.org/) is a tool for visualization and analysis of medical
images and features interface for medical devices, for exam-
ple, surgical navigation system and robotic devices [144].
Seg3D (https://www.sci.utah.edu/software/seg3d.html) is a
medical volume segmentation and processing tool that
allows for flexible manual segmentation and a number of
automatic segmentation algorithms. ImageVis3D (https://
www.sci.utah.edu/software/imagevis3d.html) is a scalable
and multiplatform volume visualization tool that supports
large datasets and works on mobile devices [145]. FluoRen-
derer (https://www.sci.utah.edu/software/fluorender.html)

Table 5: Medical image visualization tools.

Name Data types Features

ParaView Scalar, vector, tensor Analysis, large datasets, parallel/super computing

Voreen Scalar, vector Rapid prototype

Inviwo Scalar, vector Rapid prototype

MegaMol Scalar, vector Particles, rapid prototype

SCIRun Scalar, vector, tensor Modeling, simulation, analysis

3D Slicer Scalar AI, segmentation

Seg3D Scalar Segmentation

ImageVis3D Scalar Large datasets

FluoRenderer Scalar Confocal microscopy data

13Health Data Science

https://www.oasis-brains.org/
https://www.paraview.org/
https://inviwo.org/
https://megamol.org/
https://www.sci.utah.edu/software/scirun.html
https://download.slicer.org/
https://download.slicer.org/
https://www.sci.utah.edu/software/seg3d.html
https://www.sci.utah.edu/software/imagevis3d.html
https://www.sci.utah.edu/software/imagevis3d.html
https://www.sci.utah.edu/software/fluorender.html


features the visualization of confocal microscopy data and
multichannel scalar volume datasets.

These software tools contain example datasets, tutorials,
detailed user guides, and supporting communities. Readers
are encouraged to try out these tools with included datasets
and their own medical images to have first-hand experience
of some key techniques discussed in this paper.

7. Conclusion

In this paper, we have provided an overview of 3D medical
image visualization techniques. Starting from a classification
of medical images in terms of data characteristic, i.e., the
mathematical properties of field data, we review fundamen-
tal visualization techniques for scalar, vector, and tensor
medical images. The discussion covers seminal work that
lays foundations for each type of visualization and features
techniques that allows for accurate spatial perception that
is important in medical practices. Next, specialized medical
visualization techniques are categorized based on the sup-
ported data type, medical procedures, the scale of the con-
cerned medical problems, locations of the studied
problems, and modalities of images. We describe the medi-
cal aspects as well as technical aspects of each technique to
facilitate medical experts to choose proper techniques for
their specific problems. Then, we discuss works that have
potential health science applications and the limitations of
medical image visualization. Finally, state-of-the-art free
visualization software is listed so that medical experts can
have a first-hand experience of some of the aforementioned
techniques and experiment with their own data to gain
insights into visualization.
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