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A B S T R A C T   

Electrocardiographic imaging is an imaging modality that has been introduced recently to help in visualizing the 
electrical activity of the heart and consequently guide the ablation therapy for ventricular arrhythmias. One of 
the main challenges of this modality is that the electrocardiographic signals recorded at the torso surface are 
contaminated with noise from different sources. Low amplitude leads are more affected by noise due to their low 
peak-to-peak amplitude. In this paper, we have studied 6 datasets from two torso tank experiments (Bordeaux 
and Utah experiments) to investigate the impact of removing or interpolating these low amplitude leads on the 
inverse reconstruction of cardiac electrical activity. Body surface potential maps used were calculated by using 
the full set of recorded leads, removing 1, 6, 11, 16, or 21 low amplitude leads, or interpolating 1, 6, 11, 16, or 21 
low amplitude leads using one of the three interpolation methods – Laplacian interpolation, hybrid interpolation, 
or the inverse-forward interpolation. The epicardial potential maps and activation time maps were computed 
from these body surface potential maps and compared with those recorded directly from the heart surface in the 
torso tank experiments. There was no significant change in the potential maps and activation time maps after the 
removal of up to 11 low amplitude leads. Laplacian interpolation and hybrid interpolation improved the inverse 
reconstruction in some datasets and worsened it in the rest. The inverse forward interpolation of low amplitude 
leads improved it in two out of 6 datasets and at least remained the same in the other datasets. It was noticed that 
after doing the inverse-forward interpolation, the selected lambda value was closer to the optimum lambda value 
that gives the inverse solution best correlated with the recorded one.   

1. Introduction 

Body surface potential mapping (BSPM) provides a remote measure 
of the electrical activity of the heart that can provide valuable infor-
mation about cardiac electrophysiology. A larger number of electrodes 
than that used for the 12-lead ECG are typically required with anything 
between 32 and 250 used in practical systems. Combined with patient- 
specific heart-torso geometry obtained using MRI or CT scans, the in-
verse problem is solved to provide details of electrical activity on the 
heart’s surface. This procedure is often referred to as electrocardio-
graphic imaging (ECGI) which is effectively a non-invasive cardiac 

electroanatomic mapping modality that can reveal a range of detailed 
data that include epicardial electrograms, activation maps, and recovery 
sequences. Among other things, these data can help guide catheter 
ablation therapy of ventricular arrhythmias [1,2]. 

The mathematically computed cardiac electrical activity is sensitive 
to inaccuracies in both heart-torso geometry and body surface potential 
maps (BSPM) [3]. In the practical setting, it is not uncommon for the 
body surface information to be disrupted due to factors that include 
noise, accidental disconnection of electrodes, or intentional altering of 
electrode positions to facilitate other devices such as defibrillation pads 
or Carto patches. The impact of noise and different ECG signal 
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processing methods have been investigated by the signal processing 
group within the consortium for ECG imaging [4,5]. Several studies 
have also investigated the effect of missing body surface ECG informa-
tion on the reconstructed cardiac signals and the effectiveness of 
different interpolation methods in alleviating this effect [6,7]. Further-
more, the effect of removing noise-contaminated leads on the accuracy 
of the inverse solution and consequently on the localization of the focus 
of premature ventricular complexes (PVCs) has been studied previously 
[8]. 

In a previous study, we demonstrated using a single dataset that 
removing the lowest amplitude signals (<0.2 mV peak to peak over the 
QRS complex) and replacing them with Laplacian interpolated signals 
improves the inverse reconstruction of cardiac electrical activity [9]. As 
the peak-to-peak amplitude depends on the distance from the potential 
source (the heart), and the location of the recording electrode with 
respect to the QRS axis, some locations on the torso are more prone to 

the effects of noise than others [9]. In the current paper, we aim to study 
this idea in more detail, by evaluating the impact on the inverse solution 
of removing or replacing low amplitude signals with interpolated sig-
nals. This work further builds on the previous study by incorporating 
additional datasets generated from a torso tank experiment where the 
heart was paced from 5 different locations. We also evaluate two 
alternative methods of interpolation, the inverse-forward method (IF) 
[10] and a hybrid interpolation scheme [11]. These interpolation 
methods have been previously investigated when the simulated region 
of missing data was over the heart [10,11]. However, this study focuses 
on interpolating low amplitude leads and its impact on the inverse 
solution. 

Laplacian interpolation of body surface potential maps was firstly 
introduced by Oostendorp et al. [12]. It is based on computing the un-
known potentials from the known potentials by minimizing the Lap-
lacian of potential function at all points of the body surface [12]. This 

Fig. 1. Body surface maps that show the distribution of peak-to-peak amplitude (Ap-p) measured from 192 or 128 surface electrodes. The lowest amplitude leads are 
located at the right shoulder in Utah datasets and at the lower part of the torso in the Bordeaux dataset. 

Fig. 2. The position of the removed/interpolated leads on the torso and their relative position to the stimulating electrode on the heart.  
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method has been used previously to standardize body surface potential 
data from different research centres [13,14]. It has also been investi-
gated to study the impact of interpolating missing potentials on the in-
verse problem of electrocardiography [10,15]. The hybrid interpolation 
method combines Laplacian interpolation and principal component 
analysis (PCA) interpolation [11]. Principal component analysis (PCA) 
was previously used for temporal and spatial compression of BSPM [16, 
17]. In this study, the PCA method will be used as a part of the hybrid 
interpolation scheme [11,18]. The inverse forward interpolation was 
developed by Burnes et al. [10]. The potentials at an inner surface 
chosen between the torso and the heart were inversely computed from 
the measured torso potentials using the method of fundamental solu-
tions. The interpolated potentials are then computed by forward trans-
forming the inner surface potentials to the outer surface [10]. 

2. Methods 

2.1. Bordeaux dataset 

All experimental data were obtained in accordance with the guide-
lines from Directive 2010/63/EU of the European Parliament on the 
protection of animals used for scientific purposes and approved by the 
local ethical committee. The procedure is described in detail in 
Ref. [19]. Briefly, an explanted Langendorff-perfused pig’s heart was 

suspended in an instrumented, human-shaped, electrolytic torso tank. 
Electrical potentials were recorded simultaneously from 128 tank elec-
trodes (inter-electrode spacing 66 ± 24 mm) and 108 sock electrodes 
(inter-electrode spacing 9.9 ± 2.2 mm) at 2 kHz (BioSemi, the 
Netherlands). For this study, we used the data recorded with the heart 
paced from the right ventricular (RV) apex. Following that, 3D rota-
tional fluoroscopy (Artis, Siemens) was used to acquire heart and tank 
geometries along with the locations of the recording electrodes. 

2.2. Utah dataset 

The experiment was performed under deep anesthesia using pro-
cedures approved by the Institutional Animal Care and Use Committee 
of the University of Utah and conformed to the Guide for the Care and 
Use of Laboratory Animals. The experimental setup and protocol were 
described in detail in Ref. [20]. Briefly, A canine heart was excised and 
mounted on a Langendorff’s perfusion. It was perfused using a mixture 
of whole blood and Tyrode’s solution. Arterial blood was supplied from 
a second canine under deep anesthesia. The venous blood was extracted 
from the right ventricle of the isolated heart and pumped into the jugular 
vein of the support dog. A tank shaped like a human torso was filled with 
an electrolytic solution (500 Ω cm) and the isolated, perfused canine 
heart was suspended in it. The dataset consists of signals recorded 
simultaneously from 192 torso-tank electrodes (with inter-electrode 

Fig. 3. The median of NRMSEECG of ECGs (mV) for each of the six datasets. Each subplot shows the median of NRMSEECG measured for HYB, LAP, and IF methods as 
the number of interpolated leads were increased. The median of NRMSEECG values are expressed as median [lower quartile, upper quartile]. 

A.S. Rababah et al.                                                                                                                                                                                                                             



Computers in Biology and Medicine 136 (2021) 104666

4

spacing 40.2 ± 16.8 mm) and 247 epicardial sock electrodes (inter--
electrode spacing 6.5 ± 1.3 mm). For this study, we used the data 
recorded when the heart was paced from 5 different epicardial locations: 
left ventricular (LV)-base, LV-apex, LV-septum, LV-free wall, and right 
ventricular (RV)-free wall from a series of intramural plunge needles 
using a 247-electrode epicardial sock. The epicardial, and torso tank 
electrodes were referenced to Wilson’s central terminal and were 
sampled at 1 kHz simultaneously for 5 s during pacing. An MRI was used 
to generate the heart geometry and the tank was created via the digiti-
zation of the electrode position and manual triangulation [20,21]. 

2.3. ECG signal processing 

For the Bordeaux dataset, we applied a Savitzky–Golay filter for 
baseline wander removal and a 3rd order Butterworth low-pass filter to 
remove high-frequency noise above 40 Hz. However, for the Utah 
datasets, we applied only the Butterworth low pass filter to eliminate 
high-frequency noise above 40 Hz. In the Utah datasets, representative 
beats used in this analysis were isolated, baseline corrected, filtered, and 
fiducialized using PFEIFER open-source platform [22]. 

2.4. Removal or interpolation of ECG leads deemed to be of lowest 
amplitude 

For each dataset, low amplitude ECG leads were determined by 
sorting, in ascending order, all ECG leads (128 leads for the Bordeaux 
data and 192 leads for the Utah data) based on the peak-to-peak 
amplitude of the signal within the QRS complex (Ap-p). Fig. 1 

(generated using Map3d [23]) shows the distribution of Ap-p over the 
torso for each of the datasets (Utah and Bordeaux datasets). 

Following that, we selected the M leads with the lowest Ap-p and 
either removed them or replaced them with interpolated signals 
computed using one of several methods. The number of leads (M) was 
selected as follows: 1, 6, 11, 16, and 21. The methods used to replace the 
selected M leads with the lowest Ap-p were as follows: 1. Removal, 2. 
Laplacian interpolation [7,10,12]. 3. Hybrid interpolation [11], 4. 
Inverse-Forward interpolation (IF) [10]. 

The Laplacian interpolation method is based on the physical prop-
erties that govern the behaviour of electrostatic potential in the volume 
conductor. Since the torso surface contains neither sources nor sinks, the 
Laplacian of the potential over the entire torso surface is zero. So, the 
unknown potentials are computed in a way that guarantees that the 
spatial second derivative of the potentials is smooth over the surface of 
the volume conductor [10]. Laplacian-based interpolation has been used 
previously to transform BSPMs recorded using one lead system to 
another lead system in order to pool or standardize body surface po-
tential data from different research centres [13,14]. 

The hybrid interpolation method combines Laplacian interpolation 
and principal component analysis (PCA) interpolation [11]. In PCA 
interpolation, we suppose that we have at least one ECG beat over the 
entire torso surface. We used the PCA technique on the first beat to find 
new uncorrelated variables called the principal components (PCs) ar-
ranged in order of decreasing variance. We then predicted the values of 
potentials for the remaining beats using the first n principal components 
that account for most of the variability in the first beat. In the hybrid 
method, the number of principal components is selected to result in an 

Fig. 4. The median of CCECG (mV) for each of the six datasets. Each subplot shows the median of CCECG measured for HYB, LAP, and IF methods as the number of 
interpolated leads were increased. The median of CCECG values are expressed as median [lower quartile, upper quartile]. 
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interpolated signal that is a trade-off between Laplacian interpolation 
and PCA interpolation [11]. 

The inverse-forward interpolation (IF) is a method described in 
Ref. [10]. Briefly, it uses the method of fundamental solutions to solve 
the inverse problem to calculate the potentials at a surface between the 
torso and the heart. The interpolated potentials are then computed by 
forward transforming the inner surface potentials to the outer surface. 

Afterward, the recorded and the interpolated signals were segmented 
manually in the Bordeaux dataset and using PFEIFER software for Utah 
datasets. This resulted in 31, 12, 13, 14, 13, 12 beats for the Bordeaux, 
Utah 1, Utah 2, Utah 3, Utah 4, and Utah 5 datasets respectively. 

2.5. Inverse reconstruction of cardiac electrical activity 

Given the processed torso electrical potentials and the heart-torso 
geometries, we estimated the epicardial electrical potentials. We used 
the boundary element method [24] to compute the transfer coefficients 
(forward matrix) that relate the body surface potential distributions to 
the epicardial potential distributions based on the measurement of the 
heart-torso geometries [25]. 

Vtorso =A Vepi + e 

Vtorso: is a vector of recorded torso potentials. 
Vepi : is a vector of unknown epicardial potentials. 
A : is the forward matrix. 
e : is a vector of measurement noise. 
Computing epicardial potentials from the potential measurements on 

the torso is the goal. This can be achieved by solving the inverse prob-

lem. However, the inverse problem is ill-posed which means that any 
small noise in the measurement can potentially be amplified in the so-
lution. This can be overcome by regularization. We used zero-order 
Tikhonov regularization to regularize the solution [26]: 

min
Vepi

[⃦
⃦AVepi − Vtorso‖

2
+ λ‖Vepi

⃦
⃦2]

, (1)  

where λ is the regularization parameter calculated using the L-curve 
which is a log-log plot of the regularized solution norm versus the cor-
responding residual norm. The inverse problem was solved using a 
single lambda value selected by finding the median of all lambda values 
computed at each time instant using the L-curve. 

2.6. Methods of comparison 

The performance of each method (Laplacian interpolation, Hybrid 
interpolation, Inverse forward interpolation) was assessed by comparing 
the interpolated ECGs with the recorded ECGs using two independent 
and widely used metrics; Pearson’s correlation coefficient (CC) and 
normalized root mean square error (NRMSE) defined as shown in 
equations (2) and (3). Pearson’s correlation coefficient (CC) was also 
used to compare the reconstructed electrograms (EGMs) after removing 
or interpolating low amplitude leads with the recorded EGMs. 

CC =
∑n

i=1

(
Vm

i − Vm
)(

Vc
i − Vc

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Vm

i − Vm
)2

√
∑n

i=1

(
Vc

i − Vc
)2

(2) 

Fig. 5. The median of CCEGM of EGMs for each of the six datasets. Each subplot shows the median of CCEGM measured for FULL, REM, HYB, LAP, and IF methods as 
the number of removed or interpolated leads were increased. The median of CCEGM values are expressed as median [lower quartile, upper quartile]. 
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NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1(Vm
i − Vc

i )
2

n

√

(maxVm − minVm)
(3)  

where: 
n represents the number of temporal samples in the EGM or the ECG. 
Vm

i denotes the measured potentials of the ith sample. 
Vm denotes the average measured potential over all samples. 
Vc

i indicates the calculated potentials of the ith sample. 
Vc indicates the average calculated potential over all samples. 
Ground truth activation times (ATT) were computed as the moment 

of the steepest voltage downslope. However, the spatiotemporal 
approach that realizes that the activation times are not only dependent 
on the temporal signals but also on the spatial gradient of potentials 
between neighbouring nodes was used to compute the activation times 
from the reconstructed EGMs (ATR) [27,28]. Following that, we 
compared ATT and ATR using Pearson’s correlation coefficient. 

For each beat in each dataset, five metrics were calculated at each 
electrode: CCECG: Pearson’s correlation coefficient between the 

interpolated and recorded ECGs, NRMSEECG: normalized root mean 
square error between the interpolated and recorded ECGs, CCEGM: 
Pearson’s correlation coefficient between the reconstructed and recor-
ded EGMs, CCAT: Pearson’s correlation coefficient between the recon-
structed and Ground truth ATs, and localization error (LE). For each of 
the previously defined metrics, the median value across all electrodes 
was calculated, except CCAT and LE which are already a single value for 
each beat. 

2.7. Statistical analysis 

The values of median CCECG, median NRMSEECG, median CCEGM, 
CCAT and LE across all beats are expressed as median [lower quartile, 
upper quartile]. The Wilcoxon signed-rank tests were performed for 
these metrics with p < 0.05 defined as significant. 

Fig. 6. Scatter plots for all datasets that display at one axis the CCEGM (FULL) and at the other axis the CCEGM (REM, LAP, HYB, or IF). The points above the identity 
line represent an improvement in the CCEGM, whereas the points below the identity line represent a worsening in the CCEGM. 
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3. Results 

3.1. ECG comparisons 

Fig. 3 shows the median of NRMSEECG as calculated between the 
recorded and interpolated ECGs. The hybrid method resulted in the 
lowest values for the median of NRMSEECG (p < 0.05). On the other 
hand, the Laplacian interpolation largely exhibited the highest error in 
terms of the median of NRMSEECG. This was with the exception of when 
the Bordeaux dataset was studied. 

The medians of CCECG between the recorded and interpolated ECGs 
are shown in Fig. 4. All interpolation methods resulted in highly 
correlated ECGs in Utah 1 and 3. The ECG signals interpolated using the 
hybrid method were the most correlated with the recorded ECGs except 
in the Bordeaux dataset when over 16 leads were interpolated. CCECG 
values were very low for the Laplacian interpolation method in Utah 4 
and 5. These values were also very low for the IF interpolation method in 
Utah 2 and Bordeaux datasets. 

3.2. EGM comparisons 

Fig. 5 presents the median of CCEGM for each of the six datasets. As 
can be seen, there was no significant change in the median of CCEGM 
when removing the low amplitude leads of up to 11 leads in all datasets 
as compared to when using the full set of leads. Furthermore, Laplacian 
and hybrid interpolating low amplitude leads did not improve the 

inverse solution. Instead, they worsened the reconstructed EGMs in 
some datasets. For example, In Utah 4, when Laplacian interpolation 
was used over 21 leads, the median CC was reduced from 0.825 [0.823, 
0.826] to 0.776 [0.774, 0.779] (p < 0.05) compared to using the full set 
for reconstructing (Fig. 5). Hybrid interpolation also worsened the in-
verse solution for the Bordeaux dataset where median CCEGM decreased 
from 0.619 [0.603, 0.628] to 0.575 [0.556, 0.594] (p < 0.05) when 
removing the 21 leads as compared to using the full set of leads. Inverse- 
forward interpolation improved the inverse reconstruction in the 
Bordeaux dataset, where the median CCEGM started at 0.619 [0.603, 
0.628] without interpolation, peaked at 0.656 [0.649, 0.663] when 
interpolating 11 electrodes, and then remaining at 0.65[0.643, 0.654] 
when interpolating 21 electrodes (p < 0.05). In Utah 5, the median 
CCEGM increased from 0.81 [0.805, 0.814] to 0.827 [0.823, 0.83] and 
then decreased to 0.807 [0.806, 0.809] when IF interpolating the 0, 11, 
or 21 leads with the lowest Ap-p, respectively (p < 0.05). The change in 
the median CCEGM for Utah 1 to Utah 4 was slight and insignificant when 
using the IF interpolation method. 

Fig. 6 shows scatter plots that display the values of two variables: the 
first one is the correlation coefficient between the recorded EGMs and 
the reconstructed EGMs using the full set of leads (CCEGM (FULL)), and 
the second variable is the correlation coefficient between the recorded 
EGMs and the reconstructed EGMs when 11 leads with the lowest Ap-p 
were removed or interpolated (CCEGM (Inter or REM)). These plots help 
in identifying the sock electrodes where the reconstructed EGMs were 
improved or worsened. The points above the identity line correspond to 

Fig. 7. The CCAT for each of the six datasets. Each subplot shows the median of CCAT measured for FULL, REM, HYB, LAP, and IF methods as the number of removed 
or interpolated leads were increased. The CCAT values are expressed as median [lower quartile, upper quartile]. 
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improvements in the reconstructed EGMs, whereas those below the 
identity line correspond to worsening in the reconstructed EGMs. Fig. 6a 
(Utah 4) shows an example where there was a slight change in the CC 
values when using FULL, REM, HYB, or IF methods. LAP method 
resulted in a worsening in the inverse reconstruction as shown in Fig. 6a. 
Whereas, the change in the inverse reconstruction is higher in the 
Bordeaux dataset (Fig. 6b). It is apparent that IF interpolation achieved 
the best results in terms of improving the CCEGM values. These results are 
in agreement with the results showed in Fig. 5. 

3.3. AT comparisons 

Fig. 7 presents the change in the CCAT as we remove or interpolate 
more leads in all datasets. There was no significant change in the median 
of CCAT when removing the low amplitude leads of up to 11 leads in all 
datasets as compared to when using the full set of leads. There was a 
significant decrease in the CCAT when Laplacian interpolation was used 
over more electrodes in Utah 2, with CCAT decreased from 0.85 ± 0.023 
to 0.81 ± 0.02 (p < 0.05) after 21 leads were interpolated. The same 
trend was noticed when we used the hybrid interpolation in the 
Bordeaux dataset with numbers decreased from 0.87 ± 0.028 to 0.80 ±
0.06 for 0 and 21 leads respectively. However, there was a significant 
increase when the IF interpolation was used for the Bordeaux dataset, 
increasing to 0.93 ± 0.02 for 21 leads (p < 0.05). 

3.4. Localization error 

Fig. 8 shows the localization error which is the distance between the 

true pacing site and the computed pacing site using the activation times 
derived from the reconstructed EGMs. In Utah 1 and Utah 4, the local-
ization error was approximately fixed at 10.74 and 13.69 mm respec-
tively. In Utah 3, apart from the few outliers shown in the figure, the 
localization error was approximately 12.13 mm. There was no signifi-
cant difference in the localization error between different methods of 
interpolation in these datasets (Utah 1, Utah 2, and Utah 3). This is 
because the different methods of interpolation did not impact the 
reconstructed epicardial potentials especially at the region around the 
pacing site. We noticed that there is a variation in the localization error 
between the different methods of interpolation and between different 
beats in Utah 5 and Bordeaux datasets. This might be because the 
interpolated low amplitude leads are located above the pacing site in 
these two datasets as shown in Fig. 2. In the Bordeaux dataset, the IF 
interpolation of the 11 leads with the lowest Ap-p reduced the median of 
the localization error significantly. 

3.5. AT and CC maps 

Fig. 9 presents the CC maps for all datasets when the full set of leads 
(FULL), the 11 electrodes with the lowest Ap-p removed (REM), or 
interpolated using HYB, LAP, or IF interpolation methods were used for 
solving the inverse problem of electrocardiography. The results in these 
maps are in agreement with the results shown previously in Fig. 5. There 
was no significant change in the CC map between the different methods 
in Utah 1 to 3. In Utah 4 and 5, it can be noticed that the Laplacian 
method worsened the CC map in some regions of the heart. This wors-
ening in the CC map is marked by the widening of the blue region. The IF 

Fig. 8. The localization error for each of the six datasets. Each subplot shows the median of localization error (LE) measured for FULL, REM, HYB, LAP, and IF 
methods as the number of removed or interpolated leads were increased. The LE values are expressed as median [lower quartile, upper quartile]. 
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interpolation method improved the CC map in some regions on the heart 
in Utah 5 and Bordeaux datasets as presented in Fig. 9. This is also 
apparent from the change in the CC from 0.8171 to 0.5591 to 0.8245 
and 0.645 in Utah 5 and Bordeaux datasets respectively. It is clear the 
widening in the red region in the CC map for Utah 5 and Bordeaux 
datasets which indicates the improvement in the inverse solution. 

Fig. 10 shows how interpolating the 11 body surface leads in Utah 5 
(Fig. 10A) using the inverse-forward interpolation improved the 
reconstructed EGMs at nodes 1, 2, and 3 and the surrounding region. At 
these nodes, the CCEGM increased from 0.557, 0.169, 0.031 to 0.882, 
0.840, 0.674. The CCEGM maps between the ground truth EGMs and 
reconstructed EGMs are shown in Fig. 10B (EGMs were reconstructed 
using the full set of leads) and Fig. 10C (EGMs were reconstructed after 
IF interpolating the 11 leads with the lowest Ap-p). We can see from 
Fig. 10D how the reconstructed EGMs were improved to become closer 
to the recorded EGMs. The activation time maps derived from the 
recorded EGMs, reconstructed EGMs using the full set, and recon-
structed EGMs after IF interpolation of the 11 leads with the lowest Ap-p 
are shown in Fig. 10E. The correlation between the ground truth AT map 
and the reconstructed AT map is higher for the IF interpolation (CCAT =

0.91) than the full set (CCAT = 0.89). 
The enhancement in the reconstructed EGMs is more apparent in 

Bordeaux dataset than in the others. Fig. 11 shows that the enhance-
ments are mainly in two regions (see the CC maps, EGMs plots, and AT 

maps). There was a substantial increase in the CC of the reconstructed 
EGMs with the recorded EGMs at nodes 1 to 6. The figures increased 
from − 0.006, 0.106, − 0.058, − 0.757, − 0.530, − 0.629 to become 0.877, 
0.877, 0.797, 0.591, 0.548, and 0.719. The activation time maps derived 
from the recorded EGMs, reconstructed EGMs using the full-set, and 
reconstructed EGMs after IF interpolation of the 11 leads with the lowest 
Ap-p are shown in Fig. 8E. The AT map (IF interpolation, CC = 0.902) is 
more correlated with the AT map (Ground truth) than AT map (Full set, 
CC = 0.845). 

It has been noticed that the number of the low amplitude leads that 
should be interpolated to improve or at least does not harm the inverse 
reconstruction should not exceed 11 electrodes. We found that this 
number of leads can be determined by selecting a threshold of 0.02. This 
threshold was computed by finding the percentage of the sum of peak-to- 
peak amplitudes of low amplitude leads to the sum of peak-to-peak 
amplitudes of all leads. 

In order to determine the reason behind the improvements seen in 
reconstructions with interpolation, we analysed the lambda values used 
for regularization as computed using the L-curve method for each beat 
and compared these to an optimum lambda value. The optimum lambda 
was defined as the lambda value that gives the best solution in terms of 
the highest CCEGM. Although the optimum lambda value shown in 
Table 1 is one value for each beat, there is a range of values for lambda 
where the highest CCEGM occurs. For simplicity, the reported lambda 

Fig. 9. Correlation coefficient maps (CC maps) for each of the six datasets when 11 leads with the lowest Ap-p were removed or interpolated.  
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value in the table is one value for each beat. In Table 1, the median 
CCEGM was calculated for each beat and the median (min-max) across all 
beats is shown in Table 1 for reconstruction using the full data set, the IF 
interpolation of 11 electrodes with the L-curve method to define lambda, 
and the using the full data set but with the optimal lambda value. This 
explains that there is an improvement in the solution in Utah 5 and 
Bordeaux and no improvement in Utah 1 to 4 after IF interpolating the 
lowest amplitude signals. IF interpolating helps in finding a better 
lambda that could improve the solution. Fig. 12 shows some examples of 
the L-curve and how the selected lambda value becomes closer to the 
optimum lambda when the IF interpolation was performed for the 11 
leads with the lowest Ap-p amplitude. 

4. Discussion 

This study investigated the effect of removal or interpolating low 
amplitude signals on the inverse reconstruction of cardiac electrical 
activity. Body surface signals were ranked based on their peak-to-peak 
amplitude over the QRS complex. Measured low amplitude signals 
were removed or replaced with interpolated signals before computing 
the inverse solution. IF interpolation, Laplacian interpolation, and 
hybrid interpolation were used and compared. 

Although the hybrid method was successful in interpolating the low 
amplitude leads with a higher correlation coefficient and lower NRMSE 

values as compared to the IF interpolation method, it did not result in a 
better inverse reconstruction of the cardiac electrical activity. This is 
because other parameters such as the regularization parameter can play 
an important role in getting a better inverse solution. 

The Laplacian interpolation that has been used as a method to 
transform BSPMs recorded using one lead system to another lead system 
in order to pool or standardize body surface potential data from different 
research centres [13,14] did not perform very well in interpolating low 
amplitude leads. This is apparent from the worsening in the recon-
structed EGMs and activation times derived from them when this 
method was used. 

The Inverse forward interpolation (IF) performed better than other 
interpolation methods. This is not surprising, given the effectiveness of 
this method over other interpolation methods has previously been re-
ported [6,10]. This is because this method considers the physics of the 
problem that describe the electromagnetic field in the torso volume 
conductor. What is surprising is that when we interpolate some elec-
trodes, although some information was lost, a better or at least the same 
reconstruction was achieved. That is IF interpolation of the low ampli-
tude signals improved the inverse solution in Bordeaux and Utah 5. 
However, no substantial change was noticed in the other datasets (Utah 
1, Utah 2, Utah3, and Utah 4) when using the IF interpolation method. 

The explanation for this improvement is that the interpolation 
contributed to the regularization of the solution. An infinite number of 

Fig. 10. A) The black dots represent the 11 leads with the lowest Ap-p that were interpolated or removed. B) CCEGM map between the recorded EGMs and recon-
structed EGMs using the full set of leads. C) CCEGM map between the recorded EGMs and reconstructed EGMs after IF interpolating the 11 leads with the lowest Ap-p. 
D) EGMs recorded or reconstructed at the nodes 1,2, and 3 shown in B and C. E) Activation time map derived from the recorded EGMs (Left) vs derived from the 
reconstructed EGMs using the full set (Middle) and that derived from the reconstructed EGMs using IF interpolation the 11 leads with the lowest Ap-p (Right). 
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solutions satisfy the equations of this problem, and the best solution is 
selected by regularization. For Bordeaux and Utah 5 datasets, interpo-
lation improved the choice of the regularization parameter compared to 
the other Utah datasets where choosing other values for lambda did not 
improve the solution. This change in the regularization parameter was 
noticed as we interpolate (IF) more electrodes in Bordeaux and Utah 5. 
In other words, when interpolating these low amplitude signals using 
the IF method, although we might lose some information, we allow for 
choosing a better value for the regularization parameter that gives a 
better inverse reconstruction. The stability of lambda values in Utah 1 to 
Utah 4 datasets as we interpolate more electrodes using the IF method 

indicates that the regularization in these datasets is sufficient and no 
more regularization is needed. 

5. Conclusion 

Removal of low amplitude signals of up to 11 leads did not change 
the reconstructed EGMs or the activation maps derived from them. In 
addition, interpolating low amplitude signals using the Laplacian or the 
Hybrid method improved the inverse solution in some datasets but 
worsened it in other datasets. Furthermore, IF interpolating the lowest 
amplitude signals of up to 11 electrodes improved the reconstructed 

Fig. 11. A) The black dots represent the 11 leads with the lowest Ap-p that were interpolated or removed. B) CCEGM map between the recorded EGMs and recon-
structed EGMs using the full set of leads. C) CCEGM map between the recorded EGMs and reconstructed EGMs after IF interpolating the 11 leads with the lowest Ap-p. 
D) EGMs recorded or reconstructed at the nodes 1,2, and 3 shown in B and C. E) Activation time map derived from the recorded EGMs (Left) vs derived from the 
reconstructed EGMs using the full set (Middle) and that derived from the reconstructed EGMs using IF interpolation the 11 leads with the lowest Ap-p (Right). 

Table 1 
The median of CCEGM between true and reconstructed EGMs using Lambda selected using the L-curve approach or using the best possible Lambda.  

Dataset median of CCEGM 

Full set (λ: L-curve) 
Lambda values (Full) median of CCEGM 

IF 11 (λ: L-curve) 
Lambda values (IF 11) median of CCEGM 

Full set (Optimum λ) 
Lambda values (Optimum) 

Utah 1 0.845 (0.842–0.851) 0.0094 [0.0093, 0.0096] 0.849 (0.845–0.856) 0.0096 [0.0095–0.0098] 0.856 (0.849–0.859) 0.0114 [0.0134–0.0150] 
Utah 2 0.76 (0.749–0.77) 0.0126 [0.0123–0.0134] 0.765 (0.75–0.775) 0.0130 [0.0128, 0.0137] 0.765 (0.754–0.777) 0.0137 [0.0126–0.0148] 
Utah 3 0.788 (0.78–0.80) 0.0090 [0.0090–0.0093] 0.786 (0.777–0.8) 0.0096 [0.0094–0.0098] 0.792 (0.787–0.80) 0.0078 [0.0074–0.0082] 
Utah 4 0.825 (0.817–0.828) 0.0138 [0.0135–0.0140] 0.827 (0.82–0.833) 0.137 [0.0135–0.0140] 0.826 (0.821–0.834) 0.0113 [0.0104–0.0131] 
Utah 5 0.81 (0.80–0.818) 0.0022 [0.0021–0.0024] 0.827 (0.821–0.84) 0.0030 [0.0030–0.0032] 0.821 (0.812–0.828) 0.0088 [0.0072–0.0167] 
Bordeaux 0.619 (0.559–0.655) 0.0017 [0.0014–0.0019] 0.656 (0.63–0.698) 0.0033 [0.0030–0.0036] 0.666 (0.64–0.683) 0.0049 [0.0035–0.0058]  
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EGMs and the AT maps in some datasets and at the same time did not 
significantly worsened the reconstructed EGMs AT maps in the rest of 
the datasets. More importantly, despite a potential loss of BSPM infor-
mation when using IF interpolation on low amplitude signals, inverse 
solutions can be improved by altering the L-curve and allowing a more 
optimal regularization parameter to be selected. This improvement is 
not seen by simply removing low amplitude signals. 
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