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● Proposes an end-to-end model to obtain shape descriptor from images, alleviating pre 
and post-processing needs.

● Self-supervised neural architecture model that leverages image registration to facilitate 
landmark discovery.

● Frameworks provides model variants to encode additional shape information, 
regularization and heuristic for removal of redundant landmarks.

● Discovered landmarks are usable on 2D and 3D images for different downstream tasks 
ranging from clustering to severity quantification.
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Abstract

In current biological and medical research, statistical shape modeling (SSM) pro-

vides an essential framework for the characterization of anatomy/morphology.

Such analysis is often driven by the identification of a relatively small num-

ber of geometrically consistent features found across the samples of a popula-

tion. These features can subsequently provide information about the population

shape variation. Dense correspondence models can provide ease of computa-

tion and yield an interpretable low-dimensional shape descriptor when followed

by dimensionality reduction. However, automatic methods for obtaining such

correspondences usually require image segmentation followed by significant pre-

processing, which is taxing in terms of both computation as well as human

resources. In many cases, the segmentation and subsequent processing require

manual guidance and anatomy specific domain expertise. This paper proposes

a self-supervised deep learning approach for discovering landmarks from im-

ages that can directly be used as a shape descriptor for subsequent analysis.

We use landmark-driven image registration as the primary task to force the

neural network to discover landmarks that register the images well. We also

propose a regularization term that allows for robust optimization of the neu-

ral network and ensures that the landmarks uniformly span the image domain.

∗Corresponding author
Email address: riddhishb@sci.utah.edu (Riddhish Bhalodia)
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The proposed method circumvents segmentation and preprocessing and directly

produces a usable shape descriptor using just 2D or 3D images. In addition,

we also propose two variants on the training loss function that allows for prior

shape information to be integrated into the model. We apply this framework on

several 2D and 3D datasets to obtain their shape descriptors. We analyze these

shape descriptors in their efficacy of capturing shape information by performing

different shape-driven applications depending on the data ranging from shape

clustering to severity prediction to outcome diagnosis.

Keywords: Self-Supervised Learning, Machine Learning, Statistical Shape

Modeling, Image Registration

1. Introduction

Statistical shape modeling (SSM) is an indispensable tool for the analysis of

anatomy and biological structures. Such models can be viewed as a composite

of two distinct steps: shape representation and shape analysis. Shape repre-

sentation is a quantifiable description of the shape/structure of sample from a5

population of anatomies (usually given as a cohort of images or surface meshes)

that is consistent with the population statistics and is easy to use for subsequent

analysis. There are two prominent families of algorithms for shape representa-

tion, (i) landmarks, which express shapes as point clouds that define an explicit

correspondence map from one shape to another using invariant points across10

populations that vary in their form, and (ii) deformation fields, which rely on

transformations between images to encode implicit shape information. Shape

analysis then uses these shape representations to analyze the population’s statis-

tics; in most cases, the representation is projected onto a low-dimensional space

via principal component analysis (PCA). This low-dimensional representation15

is used as a shape descriptor for subsequent shape analysis. Outside of anal-

ysis of different modes of shape variations captured by this descriptor, it can

also be subsequently utilized in different applications. For instance, the shape

descriptor can serve as features to perform classification of different morpho-

4

                  



logical classes Hufnagel et al. (2007), can quantify the severity of a particular20

deformity Bhalodia et al. (2020a), or employed to interpret and discover shape

characteristics that are associated with a particular disease Cates et al. (2014).

We consider such downstream applications that are dependent on how well the

shape descriptors characterize the given shape to showcase the efficacy of the

shape descriptor.25

Due to their simplicity and computational efficiency, correspondence-based

models are the most prominently used models for shape representation. Cor-

respondences is a term used to describe landmarks on the anatomy that are

geometrically consistent across the samples of the population. In the earliest

works, Thompson (1917) correspondence was achieved by handpicked landmarks30

corresponding to distinguishable features. The field has come a long way with

many state-of-the-art correspondence discovery algorithms Styner et al. (2006);

Cates et al. (2007). However, many of these algorithms require segmentation

of the anatomy from images as well as heavy pre-processing. Such segmenta-

tion and or pre-processing often come with a significant computational overhead35

as well as cost human resources. Segmentation of some anatomies is prone to

subjective decisions and hence requires domain expertise. These problems fail

to make the automated correspondence discovery model fully end-to-end, i.e.,

an automated pipeline that for inference just inputs images to produce shape

descriptors for analysis.40

In recent years, deep learning and neural networks models have had a signifi-

cant impact on both image registration and shape analysis. With their ability to

learn complex functions, several methods Bhalodia et al. (2018); Milletari et al.

(2017) have proposed learning correspondence from images, bypassing the need

for segmentation and preprocessing. However, these methods are supervised45

and are data-hungry, they require considerable training data with correspon-

dences, which is not always possible in clinical applications. They also need

anatomy segmentation and preprocessing for the training set that might not be

readily available. Deep networks have also played an essential role in develop-

ing computationally fast and unsupervised learning-based algorithms for image50
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registration (e.g., Balakrishnan et al. (2019)) that perform equivalently to the

state-of-the-art, optimization-based registration methods. However, transfor-

mations are not as friendly as correspondences for shape analysis; they often

require the development of a fixed atlas Joshi et al. (2004). The systems that

process image-to-image transformations express shape information in a high-55

dimensional space. Typically for shape analysis, a low-dimensional space is pre-

ferred, and therefore, these representations are projected onto a low-dimensional

space via PCA (or some equivalent for nonlinear spaces), and the modes of shape

variation need to be analyzed by domain experts to check for their usability in

downstream applications.60

To address the above-stated challenges, we propose an end-to-end system

for extracting a shape descriptor from only a population of input images. Ide-

ally, this shape descriptor would not require any post-processing for subsequent

analysis. This paper proposes a self-supervised deep learning approach for land-

mark discovery that uses image registration as the primary task. The proposed65

method alleviates the need for segmentation and heavy preprocessing (even

during model training) to obtain a landmark-based shape descriptor. The dis-

covered landmarks are relatively low in number; hence, they can be directly

used for shape analysis and bypass the post-processing required to convert the

representation into a low-dimensional space. The work presented here is an ex-70

tension of the preliminary work presented in Bhalodia et al. (2020b). This work

significantly extends and improves on the previous paper in the following ways:

• Additional experiments, results, and analysis on several different datasets

with associated downstream applications for shape descriptors.

• We propose two different model variants that can incorporate prior in-75

formation about shape into the model during training and can implicitly

enforce the landmarks to encode such information.

• We propose an additional image matching loss function that preserves

the local structure and allows for cross-modality registration or usage of

datasets with a lot of intensity variations.80
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2. Related Work

Since the groundbreaking work of D’Arcy Thompson Thompson (1917) who

utilized manually placed landmarks to study variations in shapes of fishes, sta-

tistical shape modeling (SSM) has become an indispensable tool for medical

researchers and biologists. SSM finds applications in various fields such as car-85

diology Gardner et al. (2013), neurology Gerig et al. (2001), growth modeling

Datar et al. (2009), orthopaedics Harris et al. (2013a), and instrument design

Goparaju et al. (2018). Shape representation for SSM can be achieved via ex-

plicit representation of points on surfaces Davies et al. (2002); Styner et al.

(2000), direct usage of surface meshes or distance transforms Mendoza et al.90

(2014) or their features Bouix et al. (2005), or, implicitly via functional maps

Ovsjanikov et al. (2012) or deformation fields Beg et al. (2005).

Correspondence-based models, or particle distribution models (PDMs) Grenan-

der et al. (1991) place a dense set of particles onto the shapes’ surfaces. Auto-

matic PDM algorithms rely on non-linear optimization that reduces the com-95

plexity of the generative model Cates et al. (2007); Davies et al. (2002). In

most cases, PCA is used to project the high dimensional shape space to a low

dimensional shape descriptor Thompson (1917); Bhalodia et al. (2020a). Since

these algorithms require heavy pre-processing/segmentation, deep learning has

been used to learn correspondences directly from a population of 2D/3D images100

Bhalodia et al. (2018); Milletari et al. (2017). These methods being super-

vised still require pre-processing overhead during training and also need large

datasets/data-augmentation methods to learn effectively. Both these require-

ments are not available in many cases, especially with medical data.

Also relevant is the work on deformable registration of images that have105

been used as a tool for shape representation Beg et al. (2005) and atlas build-

ing Joshi et al. (2004). The implicit deformation fields are hard to interpret.

Therefore, having a fixed atlas to which each image in the population will be de-

formed helps make the fields standardized. Deep learning-based unsupervised

registration (e.g., Balakrishnan et al. (2019)) has attracted a lot of attention110
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in recent years. This unsupervised registration framework have been extended

in modeling diffeomorphic registration Dalca et al. (2018), constructing image

atlas Dalca et al. (2019) and leveraging empirical information about the shape

population Bhalodia et al. (2019).

Another relevant body of works stems from computer vision literature that115

uses image alignment to obtain dense feature maps DeTone et al. (2018); Rocco

et al. (2017), in a similar vein to the widely popular scale-invariant feature

transform (SIFT) Lowe (2004) features. Other works focus on utilizing con-

volutional neural networks (CNNs) to learn surface features and use them to

obtain correspondence points Boscaini et al. (2016) or as shape features for120

subsequent correspondence optimization Agrawal et al. (2017). All these works

concentrate on discovering the surface/shape features using CNNs, whereas our

work proposes an unsupervised approach for landmark discovery.

3. Methods

This section covers the necessary background for statistical shape model-125

ing and image registration, the proposed model architecture and training, loss

functions and optimization, and generalized model variants.

3.1. Shape Analysis and Image Registration

Statistical shape modeling (SSM) can be broadly categorized into two parts

(i) shape representation and (ii) shape analysis. Shape representation entails130

using the raw data (can be in the form of images, meshes, label maps, etc.) and

expressing it in a usable, quantifiable form for subsequent shape analysis. Shape

analysis then finds relevant statistics from the shape representation pertinent to

the downstream application. To reiterate, in this paper, we refer to downstream

applications as the applications that utilize the shape descriptors to perform a135

task on given data, for example, using shape descriptors as features for shape

classification. In this paper, we restrict our shape representation to be in the

form of point correspondences, which are a geometrically consistent set of 2D/3D
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points of the population of shapes. Hence, each shape Si from a population of

shapes S1, ..., SN can be expressed via Ci ∈ RM×d, where M is the number of140

landmarks/correspondences per shape and d is the space dimension ( d = 2, 3 for

2D and 3D shapes, respectively). We can use these Ci’s for shape analysis, which

usually involves performing PCA and using the low-dimensional representation

for analysis of shape modes of variation.

Landmarks also play an important role in image registration. A common

underlying assumption in image registration is that a well-registered image will

also match the landmarks placed at anatomically relevant features. Further-

more, landmarks can be used to perform image registration; for instance, radial

basis functions (RBF) can be used to parametrize the image deformation based

on landmarks (used as control points) provided on the source and the target im-

ages. Mathematically, if T represents the image transformation, we can model

the deformation as follows:

T (x) =
M∑

i=1

wiφ(||x− xi||) + α1x + α0 (1)

Here, the φ represents the RBF function used, x represents the coordinates of145

the image, and, xi represents the control points. If we are given the control

points on source and target images, we can solve the linear system of equations

to find w = [w1, ..., wM , α0, α1] and can apply the transformation to the entire

image coordinate grid. The transformed coordinates is interpolated to obtain

the warped image from the source image.150

3.2. Model Description

Here, we propose a model to obtain anatomically relevant landmarks directly

from images. To achieve this, we rely on the assumption that a good image

registration between a pair of images should indicate good anatomical feature

correspondence. This assumption perfectly ties in with self-supervised learning,155

where we use image registration as a primary task and, in turn, obtain key

landmark locations on the input images.
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Figure 1: Network Architecture

The resulting architecture is broken into three components, broadly de-

scribed as follows:

− Landmark Encoder: This is a CNN network that operates on an image160

and outputs a M × d vector of landmark points. Since we work with the

source (IS) and target (IT ) images, landmark encoder fθ is used twice,

but share weights similar to a Siamese architecture Koch et al. (2015).

− RBF Linear Solver: We use the landmarks to construct a linear matrix

A = A(LT ) and its associated output vector b = b(LS). For clarification,165

we note here that the landmarks discovered by the landmark encoder

function as control points for the RBF-based registration. For the trans-

formation parameters w, we have Aw = b. The RBF linear solver module

consists of formulating this system of equations and solving them to find

the transformation parameters. The matrix construction and linear solver170

are described in Appendix A.

− Spatial Warp Module: We use the transformation parameters and

interpolate the source image and obtain the registered image IR. This can

be easily performed using a spatial transform unit Jaderberg et al. (2016).

A detailed description of the architecture with layer description is given in175

Appendix B. Throughout this work, we perform all of our experiments using

thin-plate splines (TPS) as the kernel basis function, i.e., φ(r) = r2 log(r). The
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network architecture is described in Figure 1.

3.3. Loss Function and Regularization

The training loss function of the proposed network can be given as follows:

L = Lmatch(IT , IR) + λLreg(A) (2)

The first term is the image matching or the registration loss between the target180

image and the registered (i.e., warped source) image. The second term is the

regularization of the registration system applied on the matrix A from the RBF

linear solve module. We shall describe both these terms in detail in the following

paragraphs.

3.3.1. Image Matching Loss185

In classical literature for image registration, there is a research emphasis on

interpretation as well as effect of utilizing different loss functions in context of

image matching optimization Tagare & Rao (2014). In the context of deep learn-

ing, the methods are restricted to loss functions that allow for back-propagation.

The two most commonly used image-matching functions used in deep leaning

based image registration are the L2 and the normalized cross-correlation (NCC)

loss. These are given as follows:

Lmatch-L2 = ||IT − IR||2 (3)

Lmatch-NCC = 1− 1

|P|
∑

x∈P
NCC(IT (x, p), IR(x, p)) (4)

Here, I(x, p) represents an image patch on image I centered at voxel loca-

tion x with patch size of p. P denotes the set of all patches/possible patch

centers. The function NCC(IT (x, p), IR(x, p)) represents the normalized cross-

correlation between two patches.

Both the L2 loss and NCC work on the pixel intensities and work well when190

the data population has a consistent intensity profile across the population. CT

scans are a good example of images with a consistent intensity profile. How-

ever, in datasets such as cardiac MRI, the intensity histograms of individual
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MRI scans are highly variable, and these intensity-driven loss functions will

fail to capture structural matching. These losses will also fail when the input195

data comes from two different sources or modalities, such as two different scan-

ners/centers or a dataset containing both T1 weighted MRI and T2 weighted

MRI images. In such scenarios, pixel intensities are not the correct measure

to quantify image matching, and we need losses that can capture structural

correlation. Therefore, we also use the modality independent neighborhood de-200

scriptor (MIND) features to formulate a registration loss; several other recent

registration works have used MIND features as loss Xu et al. (2020). MIND

features rely on image patches; for a given image I at a pixel/voxel location x,

its image patch is denoted as I(x, p), with p being the patch size. The MIND

feature for an image at a pixel/voxel is given as:205

MIND(I,x, p, r) = exp(
−||I(x, p)− I(x + r, p)||2

Var(I(x, p))
) (5)

Here, r is the displacement vector and Var(.) is the local variance of an image

patch. The match loss function using these MIND features is given as:

Lmatch-MIND =
1

|Ω||R|
∑

x∈Ω

∑

r∈R
|MIND(IT ,x, p, r)−MIND(IR,x, p, r)| (6)

Ω is the set of voxel locations and R is the set of displacements used. We

generally use a set of displacement vectors describing a local neighborhood

(such as 4-neighbor for 2D images or 6-neighbor for 3D). The loss function

is parametrized by (i) the patch size p, and (ii) the distance value, i.e. ||r||. In

all of our experiments using MIND loss both on 2D and 3D, we use an isotropic210

patch of size 3 and the displacement is kept as ||r|| = 5.

3.3.2. Regularization

The linear system required to solve the RBF warp parameters requires that

matrix A is a non-singular matrix. However, the positions of the landmarks

coming from the landmark encoder are arbitrary. Hence, during the optimiza-

tion, the matrix A can be poorly conditioned or even singular. A singular matrix
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has an infinite condition number, and a poorly conditioned matrix has a large

condition number. Such a scenario can result in infinite number of solutions

to the linear system and can cause optimization to break. To ensure stable

optimization, we introduce a regularization term that minimizes the condition

number of the matrix A, given as:

Lreg = κ(A) = ||A||F ||A−1||F (7)

||.||F denotes the Frobenius norm of the matrix; this allows us to easily differ-

entiate the regularizer. Minimization of the condition number of A provides an

additional benefit. We note that a poorly conditioned A occurs when one or215

more pair of landmarks (used for the construction of A) are very close together.

Hence, making the matrix well-conditioned will force the landmarks to be spread

out more throughout the image, allowing us to span larger regions. This effect

is showcased in Figure 2, demonstrated on diatoms, which is a simple example.

One can note that the landmarks spread on the diatom boundary are achieved220

even with no regularization. However, we see a lot of landmarks being close

together that can cause the optimization to break. This is indeed the case as

the optimization without regularization is observed to break (generate NaNs)

because of the singularity of the kernel matrix A. With points close together,

the overall shape descriptor is not informative. The regularized version spreads225

landmarks more uniformly over the image domain. The landmarks that are far

from the boundary can be removed by redundancy removal described in the

next section. The effect of regularization on the registration loss is described in

the results section 4.1.

3.4. Training Procedure230

The entire model is trained jointly with Adam Kingma & Ba (2017), and net-

work parameters are initialized randomly in showcased experiments. However,

one can imagine a starting initialization for the output layer of the landmark

encoder. One such initialization could be by using the mean landmarks from

a pre-compute PDM on the population. The choice of hyper-parameter λ con-235
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Effect	of	RegularizationEffect	of	Redundancy	Removal

Figure 2: Effect of regularization (right), where the top image is un-regularized and the bottom

one is regularized. Effect of redundancy removal (left), where top figure is before redundancy

removal and bottom figure is after.

trols the amount of regularization and can be chosen via cross-validation. For

a given set of images, the training is performed on a set of image pairs. For

smaller datasets, we use all possible image pairs, and for larger datasets, we

can either randomly choose image pairs or employ a sampling heuristic. As the

model is trained on pairs of images, even small datasets (as small as 50 images)240

can be effectively used for training the model. Such a low-resource learning is

imperative for medical images where data is scarce and cannot be effectively

used to train neural networks.

In this work, we treat the number of landmarks to be predicted as a hyper-

parameter. As the landmark locations can be arbitrary, there could be redun-245

dant landmarks in characterizing the structure of interest. To remove such

landmarks, we use a simple heuristic, based on the assumption that removing

such redundant landmarks will not affect the registration. Using this heuristic,

we compute the change in mean registration accuracy by removing one landmark

at a time (this is performed on an already trained model as post-processing).250

This difference is the importance value attached to each landmark, as more sig-

nificant the difference more is the importance of the landmark in performing

accurate registration. We remove these landmarks in a greedy fashion, that is,

we follow these steps.

1. For remaining set of landmarks compute the registration loss. Initially the255

set of remaining landmarks is same as the starting set of landmarks.
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2. Temporarily remove one landmark at a time and compute the registra-

tion loss and its difference from one computed in step 1. Do this for all

remaining landmarks.

3. Select the landmark with least difference (least importance) and remove260

it.

4. Repeat steps 1-3 till either desired number of landmarks are reached or a

difference threshold is reached.

This removal allows for a smaller and more informative landmark-based shape

descriptor, and the effect is shown in Figure 2.265

Regularization and redundancy removal: The regularization term

tends to spread the particles evenly across the image and is applied as a soft

constraint with the image matching loss. The regularization acts in conjunc-

tion with the registration loss, i.e., if a feature in an image exhibits a higher

registration loss, the particles will be distributed to match that feature better.270

In cases where the anatomy of interest is localized with lower registration loss

in that region would cause the redundancy removal to disregard the spread-out

particles. In such scenarios, the registration loss must be spatially-weighted to

introduce a preference to the localized anatomy; this model variant is intro-

duced in the following section. Furthermore, the redundancy removal needs to275

be applied carefully with quality control to remove particles from the region of

interest. We can also modify the redundancy removal process to only look at

selective regions in the image while computing the registration accuracy.

Note on Training and Inference Time: We trained the network (2D

architecture described in Appendix Appendix B) with 30 2D landmarks on280

a dataset of 100 toy images of 256 × 256 dimensions (that is 10000 pairs –

actual training size). We utilize a single 12GB NVIDIA TITAN V GPU. The

training time for one epoch with batch size of 20 is 6.2 minutes, and the inference

time for a single scan is 0.4 seconds. Another important aspect is the GPU

memory requirement, which for this experiment is 4600MB utilizing Pytorch285

deep learning framework.
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3.5. Model Variants

Weak Supervision Variant: The proposed model can be easily modified

for a weakly supervised learning framework to introduce a prior that informs the

landmark positioning via changes to its loss function. In many cases, medical290

data can be presented along with some form of shape description. The most

common of these forms is via segmentation of the anatomy of interest. How-

ever, in a typical scenario, only a limited number of data have segmentation

associated with the image. In such cases, segmentation can be used to improve

the landmark positioning by the following changes to the model:295

− We use the learned transformation parameters to transform a source seg-

mentation image (CS) to the registered segmentation (CR).

− Introduce the matching function between the registered segmentation to

the target segmentation (CT ) and optimize the model with the updated

loss. This loss function will only be activated when both the source and300

target segmentations are present, providing weak supervision for the land-

mark (shape descriptor) discovery task.

The loss function can thus be expressed as:

L = Lmatch(IT , IR) + λLreg(A) + β1CLmatch(CT , CR) (8)

Here, 1C is an indicator variable that is 1 when both CT and CS exists and

zero otherwise.305

There are two other aspects to note here: (i) the input to the landmark

encoder are still images, and therefore during testing, we do not need an addi-

tional segmentation input, and (ii) instead of binary segmentation, any other

forms of shape information that can be deformed can be used as well, such as

signed distance transforms or correspondences.310

Localized Variant: In some instances, the anatomical area of interest is

localized, and we would like the landmarks to be expressive of that particular
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location. For instance, in CT scans of the Femur, the diagnosis and character-

ization cam-type femoroacetabular impingement Pun et al. (2015) is done by

analyzing the localized region below the femoral head and how its difference315

from a representative femur shape or a healthy patient. Such localized charac-

terization requires the shape descriptor to contain sufficient information about

this localized anatomy of interest. To achieve this, we again assume that image

registration enforces landmark location, i.e., for the landmarks to be more ex-

pressive of the localized region, we want to achieve the best image registration320

in that region. Therefore, we propose a simple modification to the loss function.

L = Lmatch(mT ◦ IT ,mR ◦ IR) + λLreg(A) (9)

Here, mI ,mR represents a mask representing the location of the localized

region of interest. In a special case, these masks are fixed (i.e., the same) for

the given dataset if the anatomy of interest occupies a common space across the

image population, i.e., images are roughly aligned.325

4. Results

This section shows the results of the proposed methods on different 2D/3D

datasets and is divided into subsections corresponding to each dataset. We also

demonstrate the usefulness of the landmark-based shape descriptor obtained

in each case paired together with a downstream application. This section also330

includes an analysis of regularization, redundancy removal, and the application

of different proposed framework variants. In most cases, the number of epochs

are chosen via early stopping based on the best validation loss.

4.1. Diatom Dataset

Diatoms are a biological group of algae found in different water bodies and335

fossilized deposits. Diatoms are unicellular and are categorized into different

classes based on their shape/structure. Any characterization of diatoms is
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based on their size and shape; therefore, it is a perfect dataset for applying the

proposed method and finding landmark-based shape descriptors. The diatoms

dataset 1 contains 2D isolated cellular images from four different diatom mor-340

phologies, namely, Eunotia (68 samples), Fragilariforma (100 samples), Gom-

phonema (100 samples), and Stauroneis (72 samples). This dataset is collected

as part of the automatic diatom identification and classification project Du Buf

et al. (1999). The data is split into 80%, 10%, 10% for training, validation, and

testing datasets.345

We train the proposed network with L2 loss for image matching, with a

regularization parameter of λ = 0.005 (found using cross-validation as described

ahead), and with 16 landmarks. We also keep four pre-determined landmarks

on the corners while computing the warp; these are not learned via the network.

We train the network (using 2D image architecture as given in Appendix B) for350

20 epochs on all possible image pairs, with no additional data augmentation.

As a post-processing step, we perform the redundancy removal as described

in Section 3.4 to retain 11 landmarks. Results shown in Figure 3 highlight

the structural correspondence between different diatoms classes. We can notice

that some of the landmarks are not precisely on the border of the shape. Such355

positioning of landmarks arises from the fully unsupervised training of the model

with respect to the landmarks. The network has no prior on how and where to

place the landmarks, and hence, the placement of the landmarks is the result of

having the best possible registration loss. For instance, the landmark number 9

in Figure 3 is dictated via the registration error that placing it inside the image360

border in that reasonably similar intensity level will reduce the image matching

loss.

Downstream Application: These landmarks are easy to use as shape-

based features of diatoms. We perform spectral clustering Von Luxburg (2007)

using these landmarks as features, and it performs well to separate the classes365

into clusters except for fragilariforma and eunotia that exhibit very similar

1Downloaded from the DIADIST project page: rbg-web2.rbge.org.uk/DIADIST/

18

                  



(a)

(b)

(c)

(d)

2	PCA	dimensions	of	
Groundtruth Classes

2	PCA	dimensions	of
Spectral	Clusters

(a)								Stauroneis (b)								Fragilariforma (c)									Gomphonema (d)										Eunotia

Figure 3: Diatoms results The left images show landmarks (after redundancy removal) on

test images from four different classes and are in correspondence. The top right plot shows the

effect of the regularization parameter λ on the registration accuracy. The two scatter plots

on the bottom right shows the results of performing unsupervised clustering using landmarks

as features compared to ground truth labels.

shapes when their scales match. For classification, a multi-layer perceptron

(with a single hidden layer) can distinguish between these four classes using

these landmarks as inputs with 100% test accuracy.

Regularization parameter: Using this simple dataset, we also want370

to showcase the selection of regularization parameter λ via cross-validation.

We perform three-fold cross-validation with different lambdas and compute the

average registration loss at every fold. The plot for this experiment is shown

on the top-right of Figure 3. It highlights that there is an optimal λ that

minimizes the registration loss and is a notable result. Since the regularization375

does not act on network parameters and limit the space of solutions, there is no

guarantee that the generalization in registration performance should improve.

The regularization term is only introduced for optimization stability, ensuring
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uniform particle spread tasks that it performs well. However, empirically, we see

an optimal λ that achieves the best generalization, showing that the proposed380

regularization term also improves the generalization of the network.

4.2. Metopic Craniosynostosis Dataset

Metopic Craniosynostosis Johnson & Wilkie (2011) is a morphological condi-

tion of the skull/cranium that affects infants. It occurs due to premature fusion

of the metopic suture in the skull, and the subsequent brain growth causes de-385

formed head shapes. The morphological symptoms include a triangular-shaped

forehead (trigonocephaly) Kellogg et al. (2012) and compensatory expansion of

the back of the head. In severe cases, along with abnormal morphology, patients

are affected by the increased intracranial pressure causing several neurological

complications. In current practice, the severity of metopic craniosynostosis is390

gauged subjectively by surgeons, affecting the subsequent treatment protocol.

The usual treatment entails a risky surgical procedure for severe cases or contin-

ued observation for milder ones. In recent research, the skull shape of metopic

patients and its deviation from normal has been used for devising an objective

severity measure Kellogg et al. (2012); Bhalodia et al. (2018). These meth-395

ods use CT scans that underwent segmentation and/or are processed for shape

representation; these steps involve manual and computational overhead.

We use the proposed method directly on the CT scans and aim to obtain

a shape descriptor that can be subsequently used for severity quantification of

metopic craniosynostosis. Our dataset comprises cranial CT scans of infants400

between 5-15 months of age, these scans were acquired at UPMC Childrens

Hospital of Pittsburgh between 2002-2016. Out of which 27 are scans of pa-

tients diagnosed with metopic craniosynostosis, this diagnosis was performed

by a board-certified craniofacial plastic surgeon utilizing the CT images as well

as a physical examination. The remaining 93 patients were trauma patients that405

underwent CT scans; however, they demonstrated no morphological abnormal-

ities, and these scans form our control set. All the CT scans were acquired as a

part of routine clinical care protocol and under an IRB-approved registry. We
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collect this data with HIPAA protocols and de-identification of the scans. In

the following analysis, we refer to the CT scans from the control set as controls410

and the CT scans that are diagnosed with metopic craniosynostosis as metopic.

We train the network only on the control set with 80%, 10%, 10% data split for

training, validation, and testing, respectively. We use L2 as our image matching

loss function, because the dataset has minimal intensity variation across differ-

ent samples, and the primary structure of the cranium is well-defined. We use415

100 3D landmarks (8 constant on corners), and a regularization parameter of

λ = 0.00001 (discovered via cross-validation). We perform redundant landmark

removal by selecting the best 50 landmarks as post-processing. In addition to

the test set, we also evaluate the model on the CT scans diagnosed with metopic

craniosynostosis, these CT scans are not observed by the model during training420

as it is only trained on the control set. Figure 4 showcases qualitative results

where we see that the registration performance between a single source image

(metopic) and two targets, one metopic other from the control set.

Landmarks	on	a	target	image	A Landmarks	on	a	target	image	B

Target	A	(Green)	on	
registered	image	(Red)

Target	B	(Green)	on	
registered	image	(Red)

Landmarks	on	a	source	image	A

Source	Image	

Figure 4: Metopic craniosynostosis results where we show a single source image (metopic)

with two different target images (A:metopic, B:control). The top row showcases the landmark

positions shown in 3D space with an overlay of segmentation mask and mix-axial,mid-sagittal,

and mid-coronal slices. The bottom row showcases the registration via overlayed segmentation

masks.
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Downstream Application: Using the landmarks from the proposed method

as a shape descriptor, we can compute the Mahalanobis distance/Z-scores of

each scan with respect to a population of control scans. If we consider z1, ..., zN

be the shape descriptors of N scans from the control set, whose mean and co-

variance is given as µ and Σ respectively, the Mahalanobis distance/Z-score for

a data with shape descriptor z is given by:

ZS(z) =
√

(z− µ)TΣ−1(z− µ) (10)

This Z-score represents the deviation of a scan from the control population

(this set does not have any symptoms of cranial deformity). Hence, a metopic425

skull would have a larger Z-score than a control scan. Figure 5 (left) shows that

this is indeed the case. We also want to compare the efficacy of the obtained

landmarks as shape descriptors with respect to dense correspondences from a

points distribution model(PDM). For this, we utilize ShapeWorks Cates et al.

(2017) package, a state-of-the-art method for automatic correspondence discov-430

ery. As a PDM method, ShapeWorks has been used in the context of metopic

severity prediction Bhalodia et al. (2020a). ShapeWorks produces a set of 2048

correspondences on surfaces of cranial CT scans using their segmented images,

which is represented as a low-dimensional PCA loading vector to be used as a

shape descriptor. We compare the efficacy of both the shape descriptors in char-435

acterizing the severity of metopic craniosynostosis. For this, we compute the

Mahalanobis Distance (or Z-score) of each shape (landmark shape descriptor)

with respect to control data distribution. The Pearson’s correlation between

two scores is 0.81, and its scatter plot (after normalizing each set of Z-scores)

is given in Figure 5. The Z-scores are normalized by dividing with the maxi-440

mum Z-score from the set, this allows them to lie between 0 and 1 and provide

better visualization in the scatter plot, this normalization does not affect the

correlation score. Such a significant correlation showcases that both methods

capture similar shape information required to characterize the severity of the

condition. Additionally, we compare the Z-scores from the proposed method445

with aggregate severity scores from 16 craniosynostosis experts’ ratings. Each
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rating uses a Likert scale between 0-5, with 5 being the most severe, and only

27 metopic scans are rated. The Z-scores and the aggregate ratings show a posi-

tive correlation with Pearson’s coefficient of 0.64 (see Figure 5). In comparison,

Pearson’s correlation between the Mahalanobis distance from ShapeWorks and450

the expert ratings is only 0.28.

Corr=	0.81

Histogram	of	Z-scores

Normalized	Z-scores	of	proposed	method Normalized	Z-scores	of	proposed	method

Corr=	0.64
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Figure 5: Metopic severity analysis the plot on the left shows the histogram of Z-scores

using the landmarks as a shape descriptor. The figure in the middle shows the correlation

with Z-score from the state-of-the-art correspondence model. The figure on the right shows

the correlation between the Z-scores of the metopic scans and the aggregate rating of these

scans given by experts.

4.3. Cam-type Femoroacetabular Impingement (cam-FAI)

Femoroarticular impingement (FAI) Atkins et al. (2017) is an orthopedic

disorder that affects movement in the hip joint. Cam-FAI is a primary cause

of hip osteoarthritis and is characterized by an abnormal bone growth of the455

the femoral head. Cam-FAI affects a localized region as shown in Figure 6.

The deviation of a femur anatomy diagnosed with Cam-FAI to representative

femur anatomy from a healthy patient population is of interest. This deviation

can inform operative decisions and subsequent treatment planning. With the

localized variant of the proposed method (see Section 3.4), we aim to discover the460

shape descriptor that captures the localized structure of the cam-FAI pathology.

In this study, we use a dataset of 59 CT scans of the femur bone, out of which 50

scans are of patients without any diagnosed morphological defect in their femurs,

we call this the control set. Additionally, we also have another 9 CT scans

of the femur bone that are from patients diagnosed with Cam-FAI deformity.465
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Mask	Localization	for	
Registration	Loss

Schematic	of	cam-FAI

Figure 6: Cam-FAI The left figure shows location of cam-FAI and the right figure showcases

the location of mask onto a median femur anatomy denoting location of interest to gauge

shape descriptor of pathology.

All data was originally collected for research purposes, and specifically for the

evaluation of hip bio-mechanics Harris et al. (2013a,b) at Orthopaedics Research

Laboratory, School of Medicine, University of Utah. All participants provided

informed consent prior to participation in this University of Utah IRB-approved

study. The data contains femur scans of both left and right femur, and all the470

right femur have been reflected from the mid-saggital plane to have consistent

orientation across the dataset. We use the median CT scan of the control set

to define a common/fixed mask image for the image matching loss (Eq 9). This

is defined by selecting a bounding box around the anatomy of interest and then

blurring it using a convolution with a Gaussian filter ( Figure 6). We apply475

the method with λ = 0.000001 (found by cross-validation) and train the model

for 20 epochs on the joint set (controls and cam-FAI diagnosed scans) dataset

with 80 landmarks, and perform redundancy removal by selecting the top 40

landmarks. Figure 7 showcases the landmarks on a single source-target image

pair and their corresponding registration output. We notice that the registration480

error is low in the region of interest, as stressed by the closeup section of the
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Landmarks	on	a	source	image

Source	Image	

Source Target Registered

Landmarks	on	a	target	image

Target	(Green)	on	registered	
image	(Red)

Figure 7: Femur results where we show landmarks discovery and registration on a single

source image (a Cam-FAI diagnosed subject) with and target image (normal). The bottom

right shows zoomed-in version of the registration error near the location of interest.

registration.

Downstream Application: We want to characterize how well is mean

pathology showcased. In this experiment, we will use the segmentation masks

of femur anatomy for each image available to us. We want to discover the mean485

anatomy of the femurs from the control set and mean of the femurs diagnosed

with Cam-FAI, and we follow these steps for a given image set:

1. We compute the mean landmarks (using the landmarks discovered by the

proposed model) on a set of CT scans.

2. We use these points to compute a mean image. We discover landmarks490

on each image, and then we register each segmentation mask to the mean

landmarks, giving us a single approximation of the mean image.

3. We perform such approximation for all the images in a population, and

taking an average of all these approximations will give us the mean seg-

mentation image.495
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We follow the above steps for the control set, obtaining a representative shape

for healthy femur anatomy (normal mean shape), and for the set of cam-FAI

scans obtaining a representative femur shape with Cam-FAI (Cam-FAI mean

shape). We compare the normal mean shape with Cam-FAI mean shape using

the surface-to-surface distance from the Cam-FAI mean to normal; this dis-500

tance is projected on the mesh of the normal mean shape in Figure 8. The

negative values showcase the regions where average Cam-FAI pathology is out-

ward, whereas positive values showcase it is inwards from the average normal.

We see that visualized Cam-FAI pathology (outward regions) is similar to the

clinically plausible location for the Cam-FAI-affected region on femur bone. We505

believe this behavior will be even more pronounced with more pathological scans

in training. This experiment and the subsequent results are promising as the

Cam-FAI deformity is very subtle and difficult to capture. It would require

full segmentation and dense correspondences to capture such a subtle variation

Atkins et al. (2017). Furthermore, we also compute the Mahalanobis distance510

using the landmarks as shape descriptors and normal CT forming the base dis-

tribution to verify whether CT scans with Cam-FAI diagnosis deviate from the

population of controls. We clarify that the number of scans is less than the num-

ber of landmarks; we need to compute PCA using landmarks with dimension as

the number of scans that captures 100% of shape information. This is necessary;515

otherwise, the covariance is a singular matrix, and Mahalanobis distance will

produce non-interpretable values. From the histogram shown in Figure 8, we see

that the scans with Cam-FAI diagnosis significantly deviate from the control set,

indicating that the shape descriptor is capturing the localized pathology well.

4.4. Cardiac LGE Dataset520

This dataset consists of 3D late gadolinium enhancement (LGE) images of

left-atrium (LA) for 207 patients. All these scans are from patients diagnosed

with irregular heartbeats or atrial fibrillation (AF). These scans are acquired

after the first ablation, a procedure used for the treatment of AF. Cardiac MR

imaging was performed on AF patients presenting at the University of Utah525
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Histogram	of	 Z-
scores	of	CAM-FAI	
and	Normal	Femurs	
from	Normal	
Distribution.

Figure 8: CAM-FAI comparison with normal population: (Left) shows the surface-to-

surface difference between mean segmentation of normal mean shape to the mean segmentation

of Cam-FAI mean shape, this is projected onto the mesh from normal mean shape. (Right)

showcases the logarithm of Mahalanobis distance of each scan from the normal population

using the landmarks as features.

Hospitals Electrophysiology Clinic. Image sequences include a respiratory and

ECG-gated MRA, acquired during continuous gadolinium contrast agent in-

jection (0.1 mmol/kg, Multihance [Bracco Diagnostic Inc.]), followed by a 15-

minute post-contrast LGE sequence. Images were acquired on either a 1.5 T

or 3 T clinical MR scanner (Siemens Medical Solutions) using phased-array re-530

ceiver coils. LGE-MRI scans were acquired approximately 15 minutes after the

contrast agent injection and were acquired at the end-diastole phase of the car-

diac cycle. The scanning protocol utilized a 3D inversion recovery, respiration

navigated, ECG-gated, gradient echo pulse sequence. Typical image acquisi-

tion parameters include the following: free-breathing using navigator gating, a535

transverse imaging volume with voxel size = 1.25 1.25 2.5 mm (reconstructed

to 0.625 0.625 1.25 mm), and inversion time = 270320 ms. Inversion times

for the LGE-MRI scan were identified using a TI scout scan. Other parameters

for the 1.5 T scanner included a repetition time of 5.4 ms, echo time of 2.3 ms,

and a flip angle of 20. Scans performed on the 3 T scanner were done using540

a repetition time of 3.1 ms, echo time of 1.4 ms, and a flip angle of 14. ECG
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gating was used to acquire a small subset of phase encoding views during the

diastolic phase of the LA cardiac cycle.

It is a very challenging dataset due to two reasons, (i) these LGE images

are low resolution and noisy, and very varied in terms of intensity profiles (see545

the image pair in Figure 9), and (ii) the LA shape is not very distinguishable

intensity-wise from the neighboring anatomies. We employ our model on this

dataset to test its limits. The goal of this experiment is not to achieve accurate

registration but rather to find usable shape descriptors. The downstream task

for this application is the prediction of atrial fibrillation recurrence from LA550

shape, which is expressed via the proposed landmark shape descriptor. Due to

the challenging nature of the data, we use the distance transforms via the weak

supervision variant of the framework, and we use all the distance transforms

(207 in number). We apply MIND loss for both the image matching terms

on LGE and distance transforms, with a λ = 0.0000001 and 100 landmarks.555

Additionally, we perform a center of mass alignment on the images (using the

corresponding segmentations) followed by cropping. This step is necessary to

highlight the LA shape and isolate it from the neighboring anatomies. We train

the network for 15 epochs and perform redundancy removal by retaining 50

landmarks per image. A single source image pair with landmarks are shown560

in Figure 9. The registration performance is not as good as other datasets

described due to the low-quality images and high-variability nature of LGE

intensities and LA shapes.

Downstream Application: The LA scans are acquired post-ablation,

however, even after ablation, AF can occur again, this is known as AF recur-565

rence. Therefore, we also monitor patients post-ablation for a recurrence of

AF. The shape of LA and the left-atrium appendage is shown to be successful

in predicting AF recurrence Bieging et al. (2018) . For recurrence prediction,

we again use a simple multi-layer perceptron with three hidden layers, which

yields a test accuracy of 65.72% ± 1.32%. In comparison, we also use Shape-570

Works to place a dense set of 2048 particles on these left atrium shapes perform

PCA on it to reduce to a 20-dimensional shape descriptor. Using this with the
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Source	Image	 Target	(Green)	on	registered	
image	(Red)

Source	Image	

Target	Image	

Landmarks	on	a	source	image Landmarks	on	a	target	image

Figure 9: Results on LGE Images showcasing landmarks on a source image pair, and

the registration of their segmentation. We also show mid axial slices of source and image to

showcase the poor quality of the data.

same MLP architecture for atrial fibrillation recurrence classification, we get a

test accuracy of 68.34%± 0.97%. This showcases that the discovered landmark

shape descriptor captures almost the same amount of information captured by575

a dense correspondence model for this particular downstream task. A better

initialization of landmarks that introduces a degree of supervision and domain

expertise in the model will improve the shape descriptor. However, such ex-

periments take away from the complete unsupervised and domain-independent

framework of the model.580

5. Conclusions

This paper proposes an end-to-end framework of obtaining usable shape de-

scriptor directly from a set of 2D/3D images. The proposed model is a self-

supervised network that works under the assumption that anatomically con-

sistent landmarks will register a pair of images well under a particular class of585

transformations. The model consists of a landmark encoder, an RBF solver, and
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a spatial transformer during training. For testing, we only use the landmark en-

coder to obtain a set of landmarks on a given image. The methodology has been

initially proposed in our previous work Bhalodia et al. (2020b). This paper pro-

vides detailed explanations and significantly extends it by introducing different590

image matching loss functions, two variants of loss functions that incorporate

prior shape information, and extensive experimentation on several different 2D

and 3D datasets. We find that the landmark shape descriptor obtained via the

proposed model can be used directly for shape analysis and subsequent down-

stream tasks such as disease classification and severity quantification.595
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Appendix A. RBF Solver for Image Registration

If we consider the 2D image case now with x = (x, y) specifying a coordinate

on the image grid. Let Tx and Ty be transformations acting on each coordinate,

therefore the entire transformation is given as T (x) = (Tx(x), Ty(y)). The

individual transformations follow the RBF equation (Eq. 1), that results in:

Tx(x) =
M∑

i=1

φ(||x− xi||)wxi + αx2x+ αx1y + αx0 (A.1)

Ty(x) =
M∑

i=1

φ(||x− xi||)wyi + αy2x+ αy1y + αy0 (A.2)

Here, wx = (wx1 , ..., w
x
M , α

x
2 , α

x
1 , α

x
0) and wy = (wy1 , ..., w

y
M , α

y
2 , α

y
1 , α

y
0) are

the unknown parameters for x and y coordinates respectively. Now given a set
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of M control points on source and target image (xi and x̄i)we have T (xi) =

x̄i = (x̄i, ȳi). These gives us 2M linear equations, we need six more equation to

perfectly solve for 2(M + 3) equations. We arrive at this via the constraint that

the RBF part of the transformation should have no linear or constant term, i.e.
M∑
i=1

xiw
x
i = 0,

M∑
i=1

yiw
x
i = 0 and,

M∑
i=1

wxi = 0. We have three similar equation for

y coordinate. There we have a system of equation given as:

B 0

0 B




w

x

wy


 =


kx
ky


 (A.3)

Where, kx = [0, 0, 0, x̄1, ..., x̄M ] and ky = [0, 0, 0, ȳ1, ..., ȳM ], and

B =




x1 x2 . . . xM 0 0 0

y1 y2 . . . yM 0 0 0

1 1 . . . 1 0 0 0

φ11 φ12 . . . φ1M x1 y1 1

φ21 φ22 . . . φ2M x2 y2 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φM1 φM2 . . . φMM xM yM 1




(A.4)

Now for solving the transformation parameters we just solve the following605

linear equation with Aw = b, where A =


B 0

0 B


 and b =


kx
ky


.

Appendix B. Architectural Details

The architecture of landmark encoder used for all 2D experiments is given

by bottom Figure B.10, it is comprised of four blocks, first two blocks having

two convolution layers and the last two having four. Each block is followed by610

a max pooling with factor 2. Each convolutional layer has a kernel size of 3× 3.

The activation function used throughout is ReLU, except at the output layer

we use hyperbolic tangent. The output points are in the range -1 to 1 which

are then scaled to the original coordinates by using the image dimensions.

For 3D we have a smaller architecture due to memory constraints, it consists615

of four blocks with two convolutional layers each. Each block is followed by a
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Figure B.10: Detailed Network Architectures (Top) For 3D data, (Bottom) for 2D data.

max pooling with factor 2. Each convolutional layer has a kernel size of 3×3×3.

The activation function used here is a leaky-ReLU except at the output layer

where we use hyperbolic tangent.
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