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Learning Deep Features for Shape Correspondence
with Domain Invariance

Praful Agrawal, Ross T. Whitaker, Shireen Y. Elhabian

Abstract—Correspondence-based shape models are key to var-
ious medical imaging applications that rely on statistical analysis
of populations of anatomical shapes. Such shape models are
expected to represent consistent anatomical features across the
population for meaningful, population-specific shape statistics.
Early approaches for correspondence placement rely on nearest
neighbor search for simpler anatomies. Coordinate transfor-
mations for shape correspondence hold promise to address
the increasing anatomical complexities. Nonetheless, due to the
inherent shape-level geometric complexity and population-level
shape variation, the coordinate-wise correspondence often does
not translate to the anatomical correspondence. An alternative,
group-wise approach for dense correspondence placement is to
explicitly model the trade-off between the geometric description
of each shape and the statistical compactness of the population.
However, due to primitive assumptions, these models achieve
limited success in resolving nonlinear shape correspondence.
Recent works have addressed this limitation by adopting an
application-specific notion of correspondence through lifting
positional data to a higher dimensional feature space (e.g., sulcal
depth, brain connectivity, and geodesic distance to anatomical
landmarks). However, they heavily rely on the manual expertise
to create domain-specific features and the consistent placement of
landmarks. This paper proposes an automated feature learning
approach, using deep convolutional neural networks, to extract
correspondence-friendly features from shape ensembles. Further,
an unsupervised domain adaptation scheme is introduced to
augment the pretrained geometric features with new anatomies.
Results on anatomical datasets of human scapula, femur, and
pelvis bones demonstrate that features learned in supervised
fashion show improved performance for correspondence estima-
tion compared to the manual features. Further, the unsupervised
learning is demonstrated to learn features for a complex anatomy
using the supervised domain adaptation from features learned on
a simpler anatomy.

Index Terms—shape correspondence, feature learning, Siamese
network, domain adversarial training.

I. INTRODUCTION

Statistical shape models have important applications in
various medical imaging tasks, such as image segmentation
(e.g., [1]), hypothesis testing (e.g., [2]), anatomical reconstruc-
tion (e.g., [3]), and pathology detection (e.g., [4]). The utility
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of such models is influenced by a shape representation that
facilitates statistical analysis. In this regard, landmarks are a
popular choice as a lightweight but effective representation.
Compared to embedding shapes in the image intensity values
at voxels, landmarks-based representation is more intuitive and
promotes visual communication of the results [5]. To perform
shape statistics, landmarks should be defined consistently
within a given population to refer to the same anatomical
position on every shape instance, a concept known as corre-
spondence. Such correspondences are often created manually,
but this is time-/labor-intensive, requiring qualified specialists
(e.g., radiologists), and cost-prohibitive for 3D images and
large collections of imaging data.

Advances in shape modeling have achieved some success in
automatic placement of correspondences on anatomical struc-
tures [6]–[9], and have been effective in a range of biomedical
applications (e.g., [10]–[19]). However, this success is limited
to anatomies that conform to the modeling assumptions in
existing methods. Typically, the assumptions include mapping
to primitive shapes (such as a sphere) or predefined initial at-
las, linear shape variations, and pairwise comparisons with no
consideration of population-based shape variations. Such as-
sumptions often do not generalize well for complex anatomies
[20]. The lunate surface of the acetabulum in a pelvis, for
example, has a horseshoe-like shape that does not adhere to a
standard primitive. Pairwise comparisons do not observe the
entire population, leading to biased and suboptimal models
[21]–[23], and in many cases fail to find surface-to-surface
correspondences across populations. Anatomical variability
can be far more complex than linear approximations, in which
case nonlinear variations normally exist, e.g., bending fingers,
soft tissue deformations, and vertebrae with different types
(lumbar, thoracic, and cervical). Furthermore, the complexity
of a shape anatomy can be quantified as a comparison between
the statistical shape variations and the local shape features
(such as Feret’s diameter [24]). The complexity of the shape
increases as the shape features get smaller compared to the
observed variations among different samples. Due to this
smaller feature size, the task of establishing correspondence
becomes more challenging and thus limits the success of
existing methods.

Previous works in the context of brain imaging have in-
cluded sulcal depth [21], brain connectivity [25], and anatom-
ical landmarks [26] as additional domain knowledge to guide
the correspondence optimization for complex shapes. Al-
though promising, these approaches are specific to a partic-
ular anatomy and thus not generalizable to other anatomies.
Further, their success heavily relies on the domain-specific
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expertise (and time) to find the geometric features or land-
marks consistently on shape samples across the population.
Furthermore, such domain knowledge cannot be transferred to
new anatomies.

In [27], we presented an automated feature-learning to aide
the generation of point-wise shape correspondence models.
The idea is motivated by recent advances in computer vision
and computer graphics that use deep convolutional neural
networks (CNNs) to learn shape features to establish pairwise
correspondences between shapes (e.g., [28]–[30]). In [27],
shape-specific local geometric features are learned via a sur-
rogate task of correspondence vs noncorrespondence classifi-
cation for a pair of points sampled from the shape surface(s).
At the specific point location, a snapshot of local surface
geometry is used as input to the convolutional neural network
to facilitate the feature learning. The results indicate that the
learned features represent the inherent shape anatomy and
are able to successfully guide the optimization of point-wise
correspondences. This paper provides an extended description
of methods and experimental results presented in [27]. Further,
we propose a methodology to generate geometric features for
a new complex anatomy via unsupervised domain adaptation
of pretrained features. We use orthopedic data with femur and
pelvis shapes to showcase successful feature adaptation.
The contributions of this work can be summarized as follows:

– supervised deep feature learning using direct surface
geometry rather than relying on predefined surface de-
scriptors;

– incorporating the learned features in the optimization of
dense correspondences for complex shape ensembles.

– unsupervised adaptation of pretrained features to new,
complex anatomies; and

– comprehensive experiments showcasing supervised fea-
ture learning and unsupervised feature adaptation.

II. RELATED WORK

The relevant work falls into three categories: existing meth-
ods used to generate shape correspondence models, deep
learning methods used to establish shape correspondence, and
domain adaptation schemes, with a particular focus on feature-
level adaptation.

A. Correspondence Estimation

Correspondence-based shape models represent each surface
as a point cloud, where the notion of correspondence is
established by the index position of each point. In an optimal
correspondence model, a particular index should represent the
same anatomical location across all the point clouds. The
problem of solving point-wise correspondence is challenging
due to the variations observed across different shapes. Existing
shape modeling approaches to estimating correspondences fall
into two broad families: a pairwise approach that relies on
pairwise shape comparisons and a groupwise approach that
observe the entire population.

Pairwise methods that rely on finding nearest points between
surfaces (e.g. [31] and their variants) work well for limited
anatomies with large sized shape features but are prone to

mismatches with complex geometries having high curvature
regions and small sized shape features. Alternatively, other
pairwise methods try to match predefined parameterizations of
surfaces while maintaining regularity. For example, the spher-
ical harmonics point distribution model (SPHARM-PDM) [9]
relies on a smooth one-to-one mapping from each shape
instance to the unit sphere. The mapping to a predefined
surface topology and the a priori assumptions on smoothness,
rather than population-specific shape features, limit the class
of anatomies and populations for shape modeling. Correspon-
dence estimation based on pairwise coordinate transformations
(e.g., [8], [32], [33]) holds promise, but they fail to adapt the
deformation metric to the inherent modes of variability in the
population, and in many cases fail to find surface-to-surface
correspondences across entire populations.

Groupwise approaches use the statistics of the population
itself to drive the matching of shape features. For instance,
minimum description length (MDL) [7] optimizes point cor-
respondences using an information content objective, but it
relies on intermediate spherical surface parameterizations,
which places limitations on the types of shapes and the opti-
mization process. Forgoing the parameterization, the particle-
based shape modeling (PSM) approach has offered a flexible
nonparametric and general framework to establish dense point
correspondences across shape ensembles without constraining
surface topology or parameterization [6], [22], [34]. The PSM
approach explicitly models the inherent trade-off between the
geometric description of each shape and the statistical com-
pactness of the population via an entropy optimization scheme.
Recently, it has been show that the PSM approach outperforms
other pairwise [9] and groupwise [8] methods in consistently
estimating anatomical measurements and capturing clinically
relevant population-level shape variations [20]. In this paper,
we thus focus on PSM and its variants to demonstrate the
efficacy of learned shape features for correspondence opti-
mization.

Current PSM implementations rely on a Gaussian model
in the shape space, which is the vector space formed by
the spatial coordinates of surface correspondences (modulo
a similarity transform). However, the distribution of anatom-
ical structures can be far more complex than the Gaussian
assumes, and surface locations are not always indicative of
their correspondence. To address these shortcomings, Datar et
al. [26] proposed to use geodesic distances to user-identified
landmarks on individual shapes. These point-wise distance
values were used to guide the entropy-based optimization of
shape correspondence. Further, Oguz et al. (in the context of
brain imaging) considered sulcal depth [21] and brain con-
nectivity [25] as additional features in the PSM optimization.
While promising, such approaches are tailored to a particular
dataset, anatomy and application. In [27], we proposed to
automatically learn the shape-specific anatomical features in
supervised fashion. Here, we propose to adapt the pretrained
features for new anatomies.

B. Deep Learning for Shape Correspondence
Shape matching methods in computer vision and computer

graphics represent shapes as 3D meshes, and use point-wise
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matching to establish correspondence between a pair of shapes.
Here, we focus on scenarios where point-wise matching is
simultaneously optimized with population-level statistics.

Recent works have trained deep convolutional neural net-
works (CNNs) to estimate the point-wise matching between
an input 3D mesh and a template mesh [35]. Boscaini et
al. [29] proposed a supervised learning of pointwise shape
correspondence using anisotropic CNNs. The network was
trained using a predefined correspondence model. Thus, this
method requires retraining for a new set of correspondences.
Groueix et al. [36] estimated shape correspondence with
respect to a predefined template using feature descriptors.
The choice of template shape impacts the resulting statistical
variations, and thereby does not lead to a generic population-
based statistical model. Kleiman and Ovsjanikov [37] adopted
a graph matching approach to establish region-wise correspon-
dence across shapes. The method works with any given shape
representation and relies on inherent symmetric nature of
shapes. This symmetric property limits the success for shapes
with significantly varying topologies. Sun et al. [38] trained a
Siamese network for a correspondence vs noncorrespondence
classification of an input pair. The training relies on predefined
spectral shape descriptors to enable shape matching. Although
predefined descriptors may not generalize to complex shapes,
this method does not require selection of a template. Hence,
we adopt this idea of a Siamese network for a correspondence
vs noncorrespondence classification. As input, we have chosen
to use a direct snapshot of local surface geometry in place of
spectral descriptors, enforcing the network to automatically
learn the shape features.

C. Domain Adaptation
Here, our goal is to learn a set of geometric features that

may generalize to unknown classes of shapes. The supervised
learning of such generic features requires a large pool of
exhaustive training data. Further, for complex shapes, the
labeled training pairs are often expensive and require manual
expertise. Thus, to alleviate the need for labeled data, we
refine the pretrained features on simple anatomies to model
new anatomies in an unsupervised way borrowing ideas from
unsupervised domain adaptation techniques.

A recent survey on domain adaptation [39] illustrates the
different techniques to learn semantically meaningful and
domain invariant features. Broadly, the domain adaptation
techniques follow either adversarial training paradigms or a
feature space matching approach. In the feature space match-
ing, the source and target distributions are made to align in the
output feature space. For instance, Sun et al. [40] formulated
the problem as minimizing the distance between covariance
matrices of source and target domain feature spaces, thus
resulting in aligning the source domain feature space with
that of the target domain. Fernando et al. [41] used subspace
matching to map the input data from the source domain
onto the target domain. Although simple, Fernando et al. ’s
approach is dependent on the correct subspace estimation,
which typically requires a large number of samples. In the
case of a limited number of samples in either or both domains,
these methods may lead to overfitting.

Adversarial training is a more generic approach where a
discriminator function is trained on the output features, with
an adverse objective function. The goal of this adversarial ob-
jective is to promote confusion for the discriminator function,
to distinguish between source and target domains. There are
two types of models for adversarial training; 1) based on a
generative model, which tries to generate impostor samples for
the discriminator network [42]–[44]; and 2) based on learning
discriminative features by directly using them as inputs to the
discriminator network. The goal is to ensure that the output
features perform poorly at discriminating between samples
from the two domains, while being good at the original task
[45]–[49].

In this paper, we adopt the domain adversarial training pro-
posed by Ganin and Lempitsky [45], where the output features
are used to solve a parallel domain classification problem.
The sign-reversed gradients from the augmented discriminator
network are backpropagated to encourage domain confusion.

III. METHODOLOGY

In this paper, we propose to train a deep neural network to
learn features that capture the geometry of any given anatomy.
Specifically, the features should highlight the shape properties
of the anatomy, such as convexity/concavity, saddle structures,
and flat regions. Such a feature bank can help correlate
anatomical regions across different shape samples, and thus
guide the correspondence optimization. We devise a supervised
feature learning scheme via a paired-classification task. As
input to the deep neural network, we extract local surface
geometrical characteristics using circular geodesic patches in
the neighborhood of given point locations on a shape’s surface
(see Figure 1). Once trained, the network should encode
similar anatomical regions with similar feature vectors. We
further use the unsupervised domain adversarial training [45]
to adapt the trained network for new anatomies. The trained
feature maps, supervised and/or unsupervised, are then used
to aide shape correspondence optimization in the context of
particle-based shape modeling (PSM) [6], [34].

In this section, we discuss the details of input patch extrac-
tion, followed by the deep network configurations used for
supervised feature learning and unsupervised feature adapta-
tion to new anatomies. We conclude the section with details
to incorporate the extracted features into an existing method
for correspondence optimization and evaluation criterion used
for the resulting shape-correspondence models.

A. PSM Background

Particle-based shape modeling (PSM) is a method for
constructing compact statistical point-based models of shape
ensembles while not relying on any specific surface parame-
terization [22], [34], [50], [51]. PSM uses a set of dynamic
particle systems, one for each shape, in which particles interact
with one another with mutually repelling forces to cover
optimally, and therefore describe the surface geometry. An
image segmentation process is generally used to extract the
anatomy of interest in which the surface geometry is described
implicitly as the interface between foreground and background
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regions. PSM makes use of the signed distance transform (DT)
of this binary representation for finite numerical calculation
of surface geometry. Here we give a brief review of the PSM
method.
PSM formulation: Consider a cohort of shapes S =
{z1, z2, ..., zN} of N surfaces, each with its own set of M
corresponding particles zn = [z1n, z

2
n, ..., z

M
n ] ∈ RdM where

each particle zmn ∈ Rd whose ordering implies correspondence
among shapes (typically d = 3 for anatomical structures). This
representation involves two types of random variables: a shape
space variable Z ∈ RdM and a particle position variable Xn ∈
Rd that encodes particles distribution on the n−th shape (con-
figuration space). For groupwise modeling, shapes in S should
share the same world coordinate system. Hence, generalized
Procrustes alignment [52] is used to estimate a rigid transfor-
mation matrix Tn that can transform the particles in the n−th
shape local coordinate xm

n to the world common coordinate
zmn such that zmn = Tnxm

n . Correspondences are established
by minimizing a combined shape correspondence and surface
sampling cost function Q = H(Z) −

∑N
n=1H(Xn), where

H is an entropy estimation assuming Gaussian shape distri-
bution with covariance Σ in the shape space and Euclidean
particle-to-particle repulsion in the configuration space [34].
In particular, H(Z) ≈ 1/2 log |Σ| = 1/2

∑N
j=1 log λj where

λj are the eigenvalues of Σ. Since N � dM , covariance
is estimated in the dual space of dimension N which defines
the hyperplane in RdM where all the N−samples inhabit. This
formulation favors a compact ensemble representation in shape
space (first term) against a uniform distribution of particles on
each surface for accurate shape representation (second term).
The optimization process is defined via gradient descent, by
moving individual points on the surface to minimize Q, as
described in [34].

B. Geodesic Patch Extraction

The success of deep convolutional neural networks (CNNs)
has been demonstrated in analyzing functions defined on
Euclidean grid-like domains such as images. Nonetheless, non-
Euclidean data, particularly surface geometry, do not directly
benefit from these deep models in which operations such as
convolution and pooling are not readily defined. However,
using a 3D patch from a volumetric shape representation
(e.g., label maps or signed distance maps) to represent the local
surface geometry may not yield optimal results. Furthermore,

Fig. 1. Geodesic patch extraction at a surface point x: (a) Sample patches
on a human scapula mesh. (b) Finding a point (x′ at a geodesic distance ρ in
direction that makes angle θ with first principal curvature direction (u) in the
tangent space of x. (c) Two channels of an input to the CNN, representing
geodesic patches where every pixel corresponds to the signed normal distance
of point x′ in the patch to the tangent plane at x.

using 3D convolutions will result in a very large number of
network parameters with a limited field of view.

Recently, local charting methods (e.g., [28]) have been
proposed as a generalization of convolution to non-Euclidean
domains where a patch operator is defined to extract the
local surface patches that are subsequently associated with
predefined shape descriptors. Here, we rely directly on surface
geometry to compute such local shape descriptors. Specifi-
cally, a spatial function of surface distance to the tangent space
can encode local geometrical properties in a local neighbor-
hood. Hence, we propose to use signed normal distance to
the tangent space sampled in the geodesic neighborhood of a
surface point x as a snapshot of the local surface geometry. We
use the principal curvature directions (~u,~v) to define the local
intrinsic coordinate system at the surface point x. As illustrated
in Figure 1, neighboring points that lie in the geodesic ball
B(x) = {x′ : dX(x,x′) ≤ ρo} with a radius ρo > 0 are
sampled on a circular geodesic patch. Each ring in the patch
corresponds to a particular geodesic distance dX(x,x′) = ρ
with ρ ∈ [0, ρo]. Total 64 concentric rings are sampled with
radii increasing by a fixed geodesic distance upto a maximum
of rhoo. Every ray originating from x, perpendicular to the
geodesic rings, is inclined at an angle θ ∈ [0, 2π) to the first
principal curvature direction at x. Total 64 rays are uniformly
sampled to cover the 2π angle. Thus, resulting in a rectangular
patch of size 64 × 64. The parameter ρo is set to 5% of the
maximum shape diameter in the ensemble.

Principal curvature directions are estimated using least
squares fitting of a quadratic [53]. We enforce the right-hand
rule on local coordinates with the normal direction represent-
ing the z-axis. However, the principal curvature directions
are accurate only up to the sign of the vector. To address
this ambiguity, we extract two patches per surface point (see
Figure 1c), one with bases defined by the positive sign of
principal directions and the other by negative sign, and use
them as a two-channel image for input to the neural network.
The other two combinations with opposite signs of the two
directions are invalid as they violate the right hand rule.

There still remains ambiguity about order of the two patches
in the two-channel input image. We perform the supervised
training of paired-classification such that the network is in-
variant to this ambiguity. Thus we use all four possible
combinations of an input pair as independent training samples
to help the network become invariant to this sign ambiguity.

C. Supervised Feature Learning

We use deep CNNs to learn local shape features for es-
tablishing shape correspondence. The goal is to make some
of the hidden layers of the network respond similarly at
corresponding locations across the given shape ensemble, and
dissimilarly at noncorresponding ones. Therefore, we design
the feature learning problem as a paired-classification task
(corresponding vs noncorresponding).

Given a pair of inputs, the task is to identify if they belong
to a similar anatomical location. To accomplish this task,
we use a Siamese network configuration, which consists of
two identical copies of the same deep CNN. We train the
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Fig. 2. The Siamese network architecture used to learn features for corre-
spondence.

Siamese CNN to learn the binary classification problem, where
the positive class indicates correspondence between a pair of
input patches, and the negative class suggests that patches
possess different shape characteristics. Contrastive loss [30]
is optimized to facilitate the Siamese training. After training,
one copy of the two identical deep CNNs in the Siamese
network becomes a nonlinear filter bank (Figure 2) that is
computed on all mesh vertices to produce feature maps on the
surface. We rely on a given point-cloud based correspondence
model to generate the supervised training samples, i.e., the
corresponding and noncorresponding pairs. The training data
consists of a small set of quality controlled point clouds
generated using position-based [50] and geodesics-based [26]
PSM methods. The geodesic patches extracted at the point
locations are fed as inputs to the Siamese network.

For the CNN configuration, we modify the network config-
uration of Chopra et al. [30] with added regularization using
batch normalization and dropout layers; see Figure 2. Beyond
the regularization layers, the adapted network configuration
includes following updates:

• In our experiments, we found that using dropout layer
does not impact the classification performance; therefore,
we set the probability of dropout to zero.

• Batch normalization is used at the end of convolutional
layers.

• It is critical for the correspondence optimization methods
that the output features exhibit smooth transitions from
one shape feature to another. Therefore, we replace the
max pooling layers with the average pooling.

• We use the softplus activation function in place of ReLU.
Softplus activation ensures smooth output features, while
maintaining faster convergence behavior similar to ReLU.

• All the weights are initialized using a zero mean normal
distribution with 0.05 standard deviation, and bias is
initialized with zero.

• We subtract the mean of the training data from all training
patches (and the same mean is subtracted from testing
patches for feature extraction) such that the input data
can align with the distribution of initial network weights
(spanning the hypersphere).

Fig. 3. The combined network configuration used for adversarial training of
the Siamese network.

D. Unsupervised Feature Adaptation

The supervised feature learning scheme relies on a given
correspondence model to provide training correspondences
for the Siamese network. Positional PSM or any other
shape modeling approach can provide such training samples.
Nonetheless, for highly variable anatomical populations, op-
timal correspondences are not expected, hence the purpose
of learning deep features. In this regard and to alleviate
the need for manual intervention through the selection of
anatomical landmarks for network training, we make use of
recent advances in machine learning for domain adaptation,
in which correspondence models optimized for simple varying
anatomies (or even synthetic shape ensembles with analytical
correspondences), a.k.a. source domain, will leverage popula-
tions of unknown correspondences, a.k.a. target domain, with
deep learned features that are invariant w.r.t. the shift in shape
distribution between the two domains.

Given a pretrained feature (Siamese) network for a particu-
lar anatomy S, the objective is to generalize the output features
to a new anatomy, without providing the labeled correspond-
ing/noncorresponding samples for this new anatomy T . To
accomplish this objective, we adopt the idea of adversarial
training, proposed by Ganin and Lempitsky [45]. In [45],
feature-level domain adaptation is achieved by augmenting a
domain classifier onto the original learning network (Siamese
network in our case, see Figure 3). The domain classifier
is tasked to identify the domain of an incoming sample,
represented by the feature vector fw(x). The gradients from
this domain classifier network are backpropagated into the
Siamese network after a sign reversal, typically performed by a
gradient reversal layer. This sign reversal facilitates adversarial
training of the domain classifier network, and makes it difficult
to identify the domain of the input sample. As a result of
this confusion, the CNN in the Siamese network is forced to
update the parameters so as to combine the topology of the
new anatomy T with the shape characteristics of S that is
being learned via supervision.

Similar to the configuration used by Ganin and Lempitsky
[45], we use a two-layered network for the domain classifica-
tion. The two layers contain 500 and 1000 convolution filters
of size 1 × 1. The binary crossentropy loss function is used
for the domain classifier (Lossdomain) with a weight λ. Com-
bined with the contrastive loss function [30] as Losssiamese,
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the total loss for the joint network becomes, Losstotal =
Losssiamese+λLossdomain. The value of λ = 0.01 achieved
stable training of the combined network. The Siamese part of
the network is initialized using the weights from pretrained
network. Glorot initialization [54] is used for the domain
classifier. The initialized network is trained to minimize the
total loss, using the samples from S and T . The samples
from S have corresponding/noncorresponding labels as well
as the domain identifying label (i.e., source domain), whereas
samples from T possess only domain identification (i.e., target
domain). At the end of training, the CNN is expected to
produce features that capture shape characteristics from both
S and T anatomies.

E. Deep Feature PSM

We incorporate our learned features into the framework
of entropy-based PSM [6], [34]. The method uses a set
of dynamic particle systems, one for each shape, in which
particles interact with one another using mutually repelling
forces to sample (and therefore describe) the surface geometry.
Consider a cohort of shapes S = {z1, z2, ..., zN} containing
N surfaces, each with its own set of M corresponding par-
ticles. Each shape vector zn = [z1n, z

2
n, ..., z

M
n ] ∈ RdM such

that zmn ∈ Rd is the position vector of m−th particle on n−th
shape, and ordering implies correspondence across shapes.
Correspondences are established by minimizing an entropy-
based cost function that consists of shape correspondence and
surface sampling cost Q = H(Z) −

∑N
n=1H(Xn). Here,

H(Z) measures the differential entropy, assuming multivariate
normal distribution over samples in the dM -dimensional shape
space. Minimizing this entropy enables correspondence among
shape vectors. Further, H(Xn) is a nonparametric density
estimator in the (3D) configuration space of the n−th shape.
Maximizing this entropy ensures uniform sampling of the
n−th shape surface. For groupwise modeling, shapes in S
should share the same world coordinate system. Generalized
Procrustes alignment [52] is used to estimate a rigid transfor-
mation matrix Tn per shape instance, such that zmn = Tnxm

n .
In particular, correspondence entropy relies solely on particle
positions to achieve compact ensemble representation in shape
space (first term) against a uniform distribution of particles on
each surface for accurate shape representation (second term).

In this paper, we propose to modify the correspondence term
H(Z) by incorporating the features extracted from a trained
CNN. Optimizing the updated objective function results in
a compact statistical shape model for complex anatomies.
The extracted features encode only local geometric properties
and require position information, unlike geodesic distances
used in [26], which can encode global shape characteris-
tics. Therefore, we also keep the particle positions to guide
optimization for locating corresponding points. The updated
shape vector becomes zn = [z1n, ..., z

M
n ]T ∈ R(d+L)M , where

zmn =
[
f1(xm

n ), ..., fL(xm
n ), (Tnxm

n )T
]
, and f l(xm

n ) is the
l−th deep feature extracted at the m−th particle on the n−th
shape.

F. Evaluation Criterion

We assess the optimized correspondence models using
qualitative inspection and quantitative metrics. The qualitative
assessment of shape correspondence models entails exam-
ining the anatomical correctness and integrity of the mean
shape. Further, modes of variation, computed using principal
component analysis (PCA), should reveal population-specific
variations. For a quantitative assessment, the resulting shape
generative model is evaluated. To construct the generative
model, a low-dimensional PCA subspace is learned from
the high-dimensional shape space. This generative model is
evaluated using the following quantitative metrics:
• Variance plot: We plot the percentage of variance with

respect to PCA (principal component analysis) modes to
demonstrate the compactness of sample distribution in the
resulting subspace (higher is better).

• Generalization: Proposed by Davies et al. [55], this
quantifies the ability of the generative model to represent
the unknown samples. The reconstruction error of the
correspondence model for an unseen shape instance,
using the PCA model built from training samples, is
evaluated in a leave-one-out fashion. We plot the mean
of the point-wise physical distance between test samples
and their reconstruction with respect to the number of
PCA modes (lower is better).

• Specificity: Proposed by Davies et al. [55], this measures
the ability of the generative model to produce plausible
shapes. It is quantified as the Euclidean distance between
a sampled shape (from PCA model built using all training
samples) and the closest training sample (lower is better).
The average over 1000 samples is used.

IV. RESULTS AND DISCUSSION

We showcase the results of supervised feature learning and
unsupervised adaptation of pretrained features using synthetic
and clinical datasets. First, we demonstrate the success of
supervised-learned features in establishing a good shape-
correspondence model for complex anatomies. We then show-
case the adaptation of features learned from a simpler anatomy
to a complex anatomy.

A. Shape Correspondence Models Using Supervised Features

Fig. 4. Sample shapes from synthetic and clinical datasets: (a) side view and
(b) top view of Bean2, (c) side view and (d) top view of Bean4, (e) scapula.
Left column – controls, right column – patients.
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Fig. 5. Bean2 results: (a) mean shape from deep feature PSM, (b) variance
plot, (c) generalization (mm), (d) specificity (mm), voxel size=1mm.

Fig. 6. Sample feature maps from networks trained using Bean2 and Scapula
datasets.

Two synthetic datasets and a clincal dataset are used to
demonstrate the ability of deep feature PSM to generate
improved statistical models for complex shapes compared to
relying on positional or handcrafted features. The proposed
method (deep feature PSM) is compared with positional PSM
[6], [34] and geodesic PSM [26].

Fig. 7. Bean4 results: (a) mean shape from positional PSM, (b) mean
shape from deep feature PSM, (c) variance plot, (d) generalization (mm),
(e) specificity (mm), voxel size = 1 mm.

1) Proof-of-Concept: The first synthetic dataset (Bean2)
contains 30 shapes that represent a coffee bean with a spatially
varying structure. The second dataset (Bean4) is comprised
of 23 samples of a more complex coffee bean shape, with a
group of closely located thin structures collectively varying in

position (see Figure 4). To generate training samples for the
Siamese network, we use an optimized statistical shape model
with 3072 points for Bean2, obtained using the geodesic PSM
[26]. Patches extracted using correspondence points from 6
randomly selected shapes are used to generate the training
data. The CNN configuration with L = 10 output features
yields an optimal Siamese classification performance of 0.92
AUC (area under the curve) of the ROC (receiver operating
characteristics) curve, resulting in a 90% true positive ratio
(TPR) at the expense of a 20% false positive ratio (FPR).
Figure 6 shows sample features. Given that there are multiple
regions with similar shape characteristics, which may lead to a
higher FPR, 20% is a relatively small penalty. Moreover, using
position information in deep feature PSM will help reduce the
impact of false positives. All 10 features are used in PSM
to generate a shape model with 4096 correspondence points.
Figure 5 presents the mean shape and quantitative evaluation
of the correspondence model. Results indicate compactness
of the statistical shape model and better generalization and
specificity performance over the geodesic PSM.

Bean4 shapes have similar characteristics to those of Bean2,
and therefore, we use the same trained Bean2 network to
extract features for Bean4 shapes (i.e., without feature adap-
tation). Figure 6 presents samples of the same feature on the
two datasets. Comparative results on Bean4 data, presented
in Figure 7, highlight the better performance of the proposed
method over positional PSM in generating a more compact
statistical shape model. The generative model from the pro-
posed method also outperforms in its ability to generalize over
unseen data and to produce plausible shape samples.

2) Clinical Data: A clinical dataset of 20 scapula shapes
(10 controls and 10 patients with osseous Hill-Sachs lesions) is
used for experiments. Samples are rigidly aligned with respect
to the glenoidal plane, and a set of 16 anatomical landmarks
are defined manually. Reconstructed scapula meshes are then
clipped to the glenoid, acromion, and coracoid to model the
areas of high geometric curvature related to constraint of the
humeral head; Figure 4 illustrates sample shapes. The shape
model with 2432 points and 6 randomly selected shapes are
optimized using the geodesic PSM to generate the training
data. Using L = 5 output features gives optimal classification

Fig. 8. Scapula results: (a) mean shape from deep feature PSM, (b) variance
plot, (c) generalization (mm), (d) specificity (mm), voxel size = 0.5 mm.



IEEE TRANSACTIONS ON MEDICAL IMAGING 8

performance of AUC= 0.80. Figure 6 shows sample feature
maps.

For additional comparison, we augment geodesic and posi-
tional PSM with local surface curvature. Figure 8 showcases
the mean shape from correspondence model generated using
the proposed deep features, and shows the improved quanti-
tative measures in comparison to handcrafted features. It is
important to note that the proposed method is able to achieve
generalization and specificity of about 2 voxels using dominant
modes (5 modes) in contrast to a minimum of 3 voxels from
other methods.

B. Shape Correspondence Models Using Adapted Features

Fig. 9. Anatomical complexity in sample femur and pelvis shapes.

Using the coffee bean and human scapula datasets, we
demonstrated the improved performance of statistical shape
models using the proposed deep learned features in the PSM
optimization. However, for highly complex medical anatomies,
labeled training data are often not available. Therefore, the
goal is to capitalize on supervised learning of relatively simpler
anatomies and adapt the learned features to complex shapes,
without supervision.

Here, we use the femur and pelvis anatomies to demon-
strate the feature adaptation via domain adversarial learning.
Figure 9 shows sample shapes of the two anatomies that have
inherently different topological features. Of the two, femur
shapes can be successfully modeled using the position-based
shape models [10], and hence is used as the source anatomy or
domain. Pelvis shape, on the other hand, has complex small-
sized shape features and hugely varying curvature. Therefore,
it is challenging for the position-based models to generate a
good shape-correspondence model. In this work, we showcase
automated learning of geometric features for the pelvis shape.
Unlike Section IV-A, the goal here is to learn these features
without requiring a correspondence model for the pelvis. We
first train a CNN in the Siamese framework, using the labeled
samples from a femur correspondence model. The trained
network is then refined/adapted using the unsupervised domain
adversarial training, to adapt to the pelvis anatomy (as the
target domain). As a result, the pretrained features are evolved
into a combined feature space of femur and pelvis anatomies.

We use an optimized statistical shape model with 2045
correspondence points on a dataset of 8 femur shapes to train
the Siamese network. The CNN configuration with 10 output
features performed best for corresponding/noncorresponding
classification, yielding a performance of 0.90 AUC on training
samples (80% of the total samples) and 0.87 AUC on the

validation set (10% of the total samples). Figure 10 show-
cases sample features from the network. The learned features
highlight key anatomical aspects of the femur shape, similar
to the coffee bean and scapula shapes in Figure 6.

Fig. 10. Sample features for the femur shape, learned using the Siamese
network.

To validate the pelvis features, we independently train a
Siamese network using a quality-controlled model of 8 pelvis
shapes and 2048 correspondence points. Figure 11 shows the
sample features thus obtained. To highlight the need for feature
adaptation, we use the CNN trained on femur shapes to extract
features for the pelvis shape without adaptation; Figure 12
shows the output feature maps. In comparison, the feature
maps extracted using the femur trained model (Figure 12) do
not generalize for the pelvis anatomy.

Fig. 11. Sample pelvis features obtained via supervised training using the
quality-controlled pelvis correspondence model.

Fig. 12. Sample features extracted on the pelvis shape using the CNN trained
on the femur shape.

The femur trained model is then adapted using the domain
adversarial training. Figure 13 shows the adapted features
extracted on the pelvis shape. As a result of the feature
adaptation, the new features are able to model the high
curvature regions and the flat anatomical regions in the iliac
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Fig. 13. Sample adapted features extracted for the pelvis shape.

wing of pelvis. We use the deep learning features to optimize
for the shape correspondence model for a dataset of 23 pelvis
shapes. The proposed deep learning features are trained using
the geodesic patch, which captures the local surface geometry
and is invariant to the location and orientation of the shapes.
Such invariance is useful for the generalizability of trained
networks onto new datasets. As discussed earlier, we use
position information with the deep learning features to resolve
the correspondence in similar anatomical regions across the
shape. For the pelvis anatomy, orientation information plays
a vital role in resolving complex regions, such as the very
thin iliac wing. Therefore, we use the position and orientation
information along with the deep features in PSM optimization.
Specifically, we use the following combinations of position,
orientation (surface normals), and deep learning features to
compare the performance:
• XYZ: positional PSM [6], [34];
• Normals: position and surface normals in the PSM frame-

work;
• FemurFea: position and femur-trained features (Fig-

ure 12) in the PSM framework;
• PelvisFea: position and pelvis-trained features (Figure 11)

in the PSM framework;
• DannFea: position and domain-adapted features (Fig-

ure 13) in the PSM framework;
• FemurFea-normals: position, surface normals, and femur-

trained features (Figure 12) in the PSM framework;
• PelvisFea-normals: position, surface normals, and pelvis-

trained features (Figure 11) in the PSM framework; and
• DannFea-normals: position, surface normals, and

domain-adapted features (Figure 13) in the PSM
framework.

The pelvis is a complex shape with very thin structures,
and therefore, both position and orientation provide crucial
support to other geometric features. First, we showcase the
mean shapes generated using models involving position and
deep learning features; see Figure 14. As expected, the pelvis-
trained and domain-adapted features are able to significantly
reduce the number of incorrect correspondences compared to
the positional PSM (XYZ) and the FemurFea models. The
few unresolved correspondences in the PelvisFea and DannFea
models belong to the highly thin region (up to a voxel thick-
ness of 0.5 mm) in the iliac wing (highlighed by the red circle
in Figure 14). Adding surface normals to the PSM further

Fig. 14. Comparing mean shapes from positional and the three deep feature
PSM models. The highlighted regions contain incorrect correspondence points.

Fig. 15. Comparing mean shapes after including normals to positional
and deep feature PSM models. The highlighted regions contain incorrect
correspondence points.

resolves all the incorrect correspondences; see Figure 15.
Figure 16 presents the quantitative comparison of all PSM
variants. Figure 16(a) compares the variance plots for the
different models. PelvisFea-normals produce the most compact
model, followed by the PelvisFea, DannFea-normals, normals,
DannFea, XYZ, FemurFea-normals, FemurFea, respectively.
This trend highlights that the adapted features provide an
improvement over traditional PSM models (positional and
position with surface normals), and are upper-bounded by the
performance of deep features learned with supervision (Pelv-
isFea and PelvisFea-normals). The quantitative performance
plots in Figure 16(b-c) closely follow a similar trend, thus
highlighting the need for domain-specific geometric features
to generate improved shape correspondence models.

V. CONCLUSION

This paper proposed deep learning methods to resolve the
challenges in shape correspondence estimation for complex
anatomies. Supervised and unsupervised learning approaches
are proposed to facilitate geometric feature learning. The
unsupervised technique is especially useful when a train-
ing correspondence model is difficult to obtain for complex
anatomies. Thus far, such models have been generated with
the help of manual expertise, which may limit the throughput
of studies with a large number of sample shapes. Quantitative
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Fig. 16. Pelvis results: (a) variance plot, (b) generalization (mm), (c)
specificity (mm), voxel size=0.5mm.

results obtained using synthetic and clinical datasets show-
case the success of the proposed method to improve shape
correspondence models. The results showed that position and
orientation still play a crucial role in the correspondence
optimization. Next steps should involve learning geometric
features that also encapsulate this global information and thus
reduce the high computation cost of Hessian, required for
any normals-based PSM. Furthermore, image-based feature
learning can help reduce the preprocessing overhead of shape
segmentation.
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