Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

SCI Publications

2020


A. P. Janson, D. N. Anderson, C. R. Butson. “Activation robustness with directional leads and multi-lead configurations in deep brain stimulation,” In Journal of Neural Engineering, Vol. 17, No. 2, IOP Publishing, pp. 026012. March, 2020.
DOI: 10.1088/1741-2552/ab7b1d

ABSTRACT

Objective: Clinical outcomes from deep brain stimulation (DBS) can be highly variable, and two critical factors underlying this variability are the location and type of stimulation. In this study we quantified how robustly DBS activates a target region when taking into account a range of different lead designs and realistic variations in placement. The objective of the study is to assess the likelihood of achieving target activation.

Approach: We performed finite element computational modeling and established a metric of performance robustness to evaluate the ability of directional and multi-lead configurations to activate target fiber pathways while taking into account location variability. A more robust lead configuration produces less variability in activation across all stimulation locations around the target.

Main results: Directional leads demonstrated higher overall performance robustness compared to axisymmetric leads, primarily 1-2 mm outside of the target. Multi-lead configurations demonstrated higher levels of robustness compared to any single lead due to distribution of electrodes in a broader region around the target.

Significance: Robustness measures can be used to evaluate the performance of existing DBS lead designs and aid in the development of novel lead designs to better accommodate known variability in lead location and orientation. This type of analysis may also be useful to understand how DBS clinical outcome variability is influenced by lead location among groups of patients.



K. A. Johnson, G. Duffley, D. Nesterovich Anderson, J. L. Ostrem, M. Welter, J. C. Baldermann, J. Kuhn, D. Huys, V. Visser-Vandewalle, T. Foltynie, L. Zrinzo, M. Hariz, A. F. G. Leentjens, A. Y. Mogilner, M. H. Pourfar, L. Almeida, A. Gunduz, K. D. Foote, M. S. Okun, C. R. Butson. “Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome,” In Brain, July, 2020.
ISSN: 0006-8950
DOI: 10.1093/brain/awaa188

ABSTRACT

Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate ‘reverse’ tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.



B. Kundu, T. S. Davis, B. Philip, E. H. Smith, A. Arain, A. Peters, B. Newman, C. R. Butson, J. D. Rolston. “A systematic exploration of parameters affecting evoked intracranial potentials in patients with epilepsy,” In Brain Stimulation, Vol. 13, No. 5, pp. 1232-1244. 2020.

ABSTRACT

Background
Brain activity is constrained by and evolves over a network of structural and functional connections. Corticocortical evoked potentials (CCEPs) have been used to measure this connectivity and to discern brain areas involved in both brain function and disease. However, how varying stimulation parameters influences the measured CCEP across brain areas has not been well characterized.

Objective
To better understand the factors that influence the amplitude of the CCEPs as well as evoked gamma-band power (70–150 Hz) resulting from single-pulse stimulation via cortical surface and depth electrodes.

Methods
CCEPs from 4370 stimulation-response channel pairs were recorded across a range of stimulation parameters and brain regions in 11 patients undergoing long-term monitoring for epilepsy. A generalized mixed-effects model was used to model cortical response amplitudes from 5 to 100 ms post-stimulation.

Results
Stimulation levels <5.5 mA generated variable CCEPs with low amplitude and reduced spatial spread. Stimulation at ≥5.5 mA yielded a reliable and maximal CCEP across stimulation-response pairs over all regions. These findings were similar when examining the evoked gamma-band power. The amplitude of both measures was inversely correlated with distance. CCEPs and evoked gamma power were largest when measured in the hippocampus compared with other areas. Larger CCEP size and evoked gamma power were measured within the seizure onset zone compared with outside this zone.

Conclusion
These results will help guide future stimulation protocols directed at quantifying network connectivity across cognitive and disease states.


2019


D.N. Anderson, G. Duffley, J. Vorwerk, A.D. Dorval, C.R. Butson. “Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation,” In Journal of Neural Engineering, Vol. 16, No. 1, IOP Publishing, pp. 016026. Jan, 2019.
DOI: 10.1088/1741-2552/aae590

ABSTRACT

Objective. During deep brain stimulation (DBS), it is well understood that extracellular cathodic stimulation can cause activation of passing axons. Activation can be predicted from the second derivative of the electric potential along an axon, which depends on axonal orientation with respect to the stimulation source. We hypothesize that fiber orientation influences activation thresholds and that fiber orientations can be selectively targeted with DBS waveforms. Approach. We used bioelectric field and multicompartment NEURON models to explore preferential activation based on fiber orientation during monopolar or bipolar stimulation. Preferential fiber orientation was extracted from the principal eigenvectors and eigenvalues of the Hessian matrix of the electric potential. We tested cathodic, anodic, and charge-balanced pulses to target neurons based on fiber orientation in general and clinical scenarios. Main results. Axons passing the DBS lead have positive second derivatives around a cathode, whereas orthogonal axons have positive second derivatives around an anode, as indicated by the Hessian. Multicompartment NEURON models confirm that passing fibers are activated by cathodic stimulation, and orthogonal fibers are activated by anodic stimulation. Additionally, orthogonal axons have lower thresholds compared to passing axons. In a clinical scenario, fiber pathways associated with therapeutic benefit can be targeted with anodic stimulation at 50% lower stimulation amplitudes. Significance. Fiber orientations can be selectively targeted with simple changes to the stimulus waveform. Anodic stimulation preferentially activates orthogonal fibers, approaching or leaving the electrode, at lower thresholds for similar therapeutic benefit in DBS with decreased power consumption.



C.J. Anderson, D.N. Anderson, S.M. Pulst, C.R. Butson, A.D. Dorval. “Neural Selectivity, Efficiency, and Dose Equivalence in Deep Brain Stimulation through Pulse Width Tuning and Segmented Electrodes,” In bioRxiv, Cold Spring Harbor Laboratory, April, 2019.
DOI: 10.1101/613133

ABSTRACT

Background
Achieving deep brain stimulation (DBS) dose equivalence is challenging, especially with pulse width tuning and directional contacts. Further, the precise effects of pulse width tuning are unknown.

Methods
We created multicompartment neuron models for two axon diameters and used finite element modeling to determine extracellular influence from standard and segmented electrodes. We analyzed axon activation profiles and calculated volumes of tissue activated.

Results
Long pulse widths focus the stimulation effect on small, nearby fibers, suppressing white matter tract activation (responsible for some DBS side effects) and improving battery utilization. Directional leads enable similar benefits to a greater degree. We derive equations for equivalent activation with pulse width tuning and segmented contacts.

Interpretations
We find agreement with classic studies and reinterpret recent articles concluding that short pulse widths focus the stimulation effect on small, nearby fibers, decrease side effects, and improve power consumption. Our field should reconsider shortened pulse widths.



D. N. Anderson, C. Anderson, N. Lanka, R. Sharma, C. R. Butson, B. W. Baker, A. D. Dorval. “The μDBS: Multiresolution, Directional Deep Brain Stimulation for Improved Targeting of Small Diameter Fibers,” In Frontiers in Neuroscience, Vol. 13, October, 2019.
DOI: 10.3389/fnins.2019.01152

ABSTRACT

Directional deep brain stimulation (DBS) leads have recently been approved and used in patients, and growing evidence suggests that directional contacts can increase the therapeutic window by redirecting stimulation to the target region while avoiding side-effect-inducing regions. We outline the design, fabrication, and testing of a novel directional DBS lead, theμDBS, which utilizes microscale contacts to increase the spatial resolution of stimulation steering and improve the selectivity in targeting small diameter fibers. We outline the steps of fabrication of theμDBS, from an integrated circuit design to post-processing and validation testing. We tested the onboard digital circuitry for programming fidelity, characterized impedance for a variety of electrode sizes, and demonstrated functionality in a saline bath. In a computational experiment,we determined that reduced electrode sizes focus the stimulation effect on small, nearby fibers. Smaller electrode sizes allow for a relative decrease in small-diameter axon thresholds compared to thresholds of large-diameter fibers, demonstrating a focusing of the stimulation effect within small, and possibly therapeutic, fibers. This principle of selectivity could be useful in further widening the window of therapy. TheμDBS offers a unique, multi resolution design in which any combination of microscale contacts can be used together to function as electrodes of various shapes and sizes. Multiscale electrodes could be useful in selective neural targeting for established neurological targets and in exploring novel treatment targets for new neurological indications.



C. C. Aquino, G. Duffley, D. M. Hedges, J. Vorwerk, P. A. House, H. B. Ferraz, J. D. Rolston, C. R. Butson, L. E. Schrock. “Interleaved deep brain stimulation for dyskinesia management in Parkinson's disease,” In Movement Disorders, 2019.
DOI: 10.1002/mds.27839

ABSTRACT

Background

In patients with Parkinson's disease, stimulation above the subthalamic nucleus (STN) may engage the pallidofugal fibers and directly suppress dyskinesia.

Objectives

The objective of this study was to evaluate the effect of interleaving stimulation through a dorsal deep brain stimulation contact above the STN in a cohort of PD patients and to define the volume of tissue activated with antidyskinesia effects.

Methods

We analyzed the Core Assessment Program for Surgical Interventional Therapies dyskinesia scale, Unified Parkinson's Disease Rating Scale parts III and IV, and other endpoints in 20 patients with interleaving stimulation for management of dyskinesia. Individual models of volume of tissue activated and heat maps were used to identify stimulation sites with antidyskinesia effects.

Results

The Core Assessment Program for Surgical Interventional Therapies dyskinesia score in the on medication phase improved 70.9 ± 20.6% from baseline with noninterleaved settings (P < 0.003). With interleaved settings, dyskinesia improved 82.0 ± 27.3% from baseline (P < 0.001) and 61.6 ± 39.3% from the noninterleaved phase (P = 0.006). The heat map showed a concentration of volume of tissue activated dorsally to the STN during the interleaved setting with an antidyskinesia effect.

Conclusion

Interleaved deep brain stimulation using the dorsal contacts can directly suppress dyskinesia, probably because of the involvement of the pallidofugal tract, allowing more conservative medication reduction. © 2019 International Parkinson and Movement Disorder Society



T. M. Athawale, K. A. Johnson, C. R. Butson, C. R. Johnson. “A statistical framework for quantification and visualisation of positional uncertainty in deep brain stimulation electrodes,” In Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Vol. 7, No. 4, Taylor & Francis, pp. 438-449. 2019.
DOI: 10.1080/21681163.2018.1523750

ABSTRACT

Deep brain stimulation (DBS) is an established therapy for treating patients with movement disorders such as Parkinson’s disease. Patient-specific computational modelling and visualisation have been shown to play a key role in surgical and therapeutic decisions for DBS. The computational models use brain imaging, such as magnetic resonance (MR) and computed tomography (CT), to determine the DBS electrode positions within the patient’s head. The finite resolution of brain imaging, however, introduces uncertainty in electrode positions. The DBS stimulation settings for optimal patient response are sensitive to the relative positioning of DBS electrodes to a specific neural substrate (white/grey matter). In our contribution, we study positional uncertainty in the DBS electrodes for imaging with finite resolution. In a three-step approach, we first derive a closed-form mathematical model characterising the geometry of the DBS electrodes. Second, we devise a statistical framework for quantifying the uncertainty in the positional attributes of the DBS electrodes, namely the direction of longitudinal axis and the contact-centre positions at subvoxel levels. The statistical framework leverages the analytical model derived in step one and a Bayesian probabilistic model for uncertainty quantification. Finally, the uncertainty in contact-centre positions is interactively visualised through volume rendering and isosurfacing techniques. We demonstrate the efficacy of our contribution through experiments on synthetic and real datasets. We show that the spatial variations in true electrode positions are significant for finite resolution imaging, and interactive visualisation can be instrumental in exploring probabilistic positional variations in the DBS lead.



G. Duffley, D. N. Anderson, J. Vorwerk, A. C. Dorval, C. R. Butson. “Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated,” In Journal of Neural Engineering, Aug, 2019.
DOI: 10.1088/1741-2552/ab3c95

ABSTRACT

Computational models are a popular tool for predicting the effects of deep brain stimulation (DBS) on neural tissue. One commonly used model, the volume of tissue activated (VTA), is computed using multiple methodologies. We quantified differences in the VTAs generated by five methodologies: the traditional axon model method, the electric field norm, and three activating function based approaches - the activating function at each grid point in the tangential direction (AF-Tan) or in the maximally activating direction (AF-3D), and the maximum activating function along the entire length of a tangential fiber (AF-Max).

Approach: We computed the VTA using each method across multiple stimulation settings. The resulting volumes were compared for similarity, and the methodologies were analyzed for their differences in behavior.

Main Results: Activation threshold values for both the electric field norm and the activating function vary with regards to electrode configuration, pulse width, and frequency. All methods produced highly similar volumes for monopolar stimulation. For bipolar electrode configurations, only the maximum activating function along the tangential axon method, AF-Max, produced similar volumes to those produced by the axon model method. Further analysis revealed that both of these methods are biased by their exclusive use of tangential fiber orientations. In contrast, the activating function in the maximally activating direction method, AF-3D, produces a VTA that is free of axon orientation and projection bias.

Significance: Simulating tangentially oriented axons, the standard approach of computing the VTA, is too computationally expensive for widespread implementation and yields results biased by the assumption of tangential fiber orientation. In this work, we show that a computationally efficient method based on the activating function, AF-Max, reliably reproduces the VTAs generated by direct axon modeling. Further, we propose another method, AF-3D as a potentially superior model for representing generic neural tissue activation.



K. A. Johnson, P. T. Fletcher, D. Servello, A. Bona, M. Porta, J. L. Ostrem, E. Bardinet, M. Welter, A. M. Lozano, J. C. Baldermann, J. Kuhn, D. Huys, T. Foltynie, M. Hariz, E. M. Joyce, L. Zrinzo, Z. Kefalopoulou, J. Zhang, F. Meng, C. Zhang, Z. Ling, X. Xu, X. Yu, A. YJM Smeets, L. Ackermans, V. Visser-Vandewalle, A. Y. Mogilner, M. H. Pourfar, L. Almeida, A. Gunduz, W. Hu, K. D. Foote, M. S. Okun, C. R. Butson. “Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study,” In Journal of Neurology, Neurosurgery & Psychiatry, BMJ Publishing Group, 2019.
DOI: 10.1136/jnnp-2019-320379

ABSTRACT

BACKGROUND:
Deep brain stimulation (DBS) can be an effective therapy for tics and comorbidities in select cases of severe, treatment-refractory Tourette syndrome (TS). Clinical responses remain variable across patients, which may be attributed to differences in the location of the neuroanatomical regions being stimulated. We evaluated active contact locations and regions of stimulation across a large cohort of patients with TS in an effort to guide future targeting.

METHODS:
We collected retrospective clinical data and imaging from 13 international sites on 123 patients. We assessed the effects of DBS over time in 110 patients who were implanted in the centromedial (CM) thalamus (n=51), globus pallidus internus (GPi) (n=47), nucleus accumbens/anterior limb of the internal capsule (n=4) or a combination of targets (n=8). Contact locations (n=70 patients) and volumes of tissue activated (n=63 patients) were coregistered to create probabilistic stimulation atlases.
RESULTS:
Tics and obsessive-compulsive behaviour (OCB) significantly improved over time (p<0.01), and there were no significant differences across brain targets (p>0.05). The median time was 13 months to reach a 40% improvement in tics, and there were no significant differences across targets (p=0.84), presence of OCB (p=0.09) or age at implantation (p=0.08). Active contacts were generally clustered near the target nuclei, with some variability that may reflect differences in targeting protocols, lead models and contact configurations. There were regions within and surrounding GPi and CM thalamus that improved tics for some patients but were ineffective for others. Regions within, superior or medial to GPi were associated with a greater improvement in OCB than regions inferior to GPi.
CONCLUSION:
The results collectively indicate that DBS may improve tics and OCB, the effects may develop over several months, and stimulation locations relative to structural anatomy alone may not predict response. This study was the first to visualise and evaluate the regions of stimulation across a large cohort of patients with TS to generate new hypotheses about potential targets for improving tics and comorbidities.



G. S. Smith, K. A. Mills, G. M. Pontone, W. S. Anderson, K. M. Perepezko, J. Brasic, Y. Zhou, J. Brandt, C. R. Butson, D. P. Holt, W. B. Mathews, R. F. Dannals, D. F. Wong, Z. Mari. “Effect of STN DBS on vesicular monoamine transporter 2 and glucose metabolism in Parkinson's disease,” In Parkinsonism and Related Disorders, Elsevier, 2019.

ABSTRACT

Introduction

Deep brain stimulation (DBS) is an established treatment Parkinson's Disease (PD). Despite the improvement of motor symptoms in most patients by sub-thalamic nucleus (STN) DBS and its widespread use, the neurobiological mechanisms are not completely understood. The objective of the present study was to elucidate the effects of STN DBS in PD on the dopamine system and neural circuitry employing high-resolution positron emission tomography (PET) imaging. The hypotheses tested were that STN DBS would decrease striatal VMAT2, secondary to an increase in dopamine concentrations, and would decrease striatal cerebral metabolism and increase cortical metabolism.

Methods

PET imaging of the vesicular monoamine transporter (VMAT2) and cerebral glucose metabolism was performed prior to DBS surgery and after 4–6 months of STN stimulation in seven PD patients (mean age 67 ± 7).
Results

The patients demonstrated significant improvement in motor and neuropsychiatric symptoms after STN DBS. Decreased VMAT2 was observed in the caudate, putamen and associative striatum and in extra-striatal, cortical and limbic regions. Cerebral glucose metabolism was decreased in striatal sub-regions and increased in temporal and parietal cortices and the cerebellum. Decreased striatal VMAT2 was correlated with decreased striatal and increased cortical and limbic metabolism. Improvement of depressive symptoms was correlated with decreased VMAT2 in striatal and extra-striatal regions and with striatal decreases and cortical increases in metabolism.
Conclusions

The present results support further investigation of the role of VMAT2, and associated changes in neural circuitry in the improvement of motor and non-motor symptoms with STN DBS in PD.



J. Vorwerk, A. Brock, D.N. Anderson, J.D. Rolston, C.R. Butson. “A Retrospective Evaluation of Automated Optimization of Deep Brain Stimulation Settings,” In Brain Stimulation, Vol. 12, No. 2, Elsevier, pp. e54--e55. March, 2019.
DOI: 10.1016/j.brs.2018.12.167



J. Vorwerk, Ü. Aydin, C.H. Wolters, C.R. Butson. “Influence of head tissue conductivity uncertainties on EEG dipole reconstruction,” In Frontiers in Neuroscience, 2019.
DOI: 10.3389/fnins.2019.00531

ABSTRACT

Reliable EEG source analysis depends on sufficiently detailed and accurate head models. In this study, we investigate how uncertainties inherent to the experimentally determined conductivity values of the different conductive compartments influence the results of EEG source analysis. In a single source scenario, the superficial and focal somatosensory P20/N20 component, we analyze the influence of varying conductivities on dipole reconstructions using a generalized polynomial chaos (gPC) approach. We find that in particular the conductivity uncertainties for skin and skull have a significant influence on the EEG inverse solution, leading to variations in source localization by several centimeters. The conductivity uncertainties for gray and white matter were found to have little influence on the source localization, but a strong influence on the strength and orientation of the reconstructed source, respectively. As the CSF conductivity is most accurately determined of all conductivities in a realistic head model, CSF conductivity uncertainties had a negligible influence on the source reconstruction. This small uncertainty is a further benefit of distinguishing the CSF in realistic volume conductor models.



J. Vorwerk, A. Brock, D.N. Anderson, J.D. Rolston, C.R. Butson. “A retrospective evaluation of automated optimization of deep brain stimulation parameters,” In Journal of Neural Engineering, 2019.
DOI: 10.1088/1741-2552/ab35b1

ABSTRACT

Objective: We performed a retrospective analysis of an optimization algorithm for the computation of patient-specific multipolar stimulation configurations employing multiple independent current/voltage sources. We evaluated whether the obtained stimulation configurations align with clinical data and whether the optimized stimulation configurations have the potential to lead to an equal or better stimulation of the target region as manual programming, while reducing the time required for programming sessions. Methods: For three patients (five electrodes) diagnosed with essential tremor, we derived optimized multipolar stimulation configurations using an approach that is suitable for the application in clinical practice. To evaluate the automatically derived stimulation settings, we compared them to the results of the monopolar review. Results: We observe a good agreement between the findings of the monopolar review and the optimized stimulation configurations, with the algorithm assigning the maximal voltage in the optimized multipolar pattern to the contact that was found to lead to the best therapeutic effect in the clinical monopolar review in all cases. Additionally, our simulation results predict that the optimized stimulation settings lead to the activation of an equal or larger volume fraction of the target compared to the manually determined settings in all cases. Conclusions: Our results demonstrate the feasibility of an automatic determination of optimal DBS configurations and motivate a further evaluation of the applied optimization algorithm.



J. Vorwerk, D. McCann, J. Krüger, C.R. Butson. “Interactive computation and visualization of deep brain stimulation effects using Duality,” In Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Taylor & Francis, 2019.

ABSTRACT

Deep brain stimulation (DBS) is an established treatment for movement disorders such as Parkinson’s disease or essential tremor. Currently, the selection of optimal stimulation settings is performed by iteratively adjusting the stimulation parameters and is a time consuming procedure that requires multiple clinic visits of several hours. Recently, computational models to predict and visualize the effect of DBS have been developed with the goal to simplify and accelerate this procedure by providing visual guidance and such models have been made available also on mobile devices. However, currently available visualization software still either lacks mobility, i.e. it is running on desktop computers and no easily available in clinical praxis, or flexibility, as the simulations that are visualized on mobile devices have to be precomputed. The goal of the pipeline presented in this paper is to close this gap: Using Duality, a newly developed software for the interactive visualization of simulation results, we implemented a pipeline that allows to compute DBS simulations in near-real time and instantaneously visualize the result on a tablet computer. We carry out a performance analysis and present the results of a case study in which the pipeline was applied.


2018


D. N. Anderson, B. Osting, J. Vorwerk, A. D Dorval, C. R Butson. “Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes,” In Journal of Neural Engineering, Vol. 15, No. 2, pp. 026005. 2018.

ABSTRACT

Objective. Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. Approach. Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). Main results. The optimization algorithm returns patient-specific contact configurations in near real-time—less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. Significance. This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.



D. N. Anderson, G. Duffley, J. Vorwerk, A. Dorval, C. R. Butson. “Anodic Stimulation Misunderstood: Preferential Activation of Fiber Orientations with Anodic Waveforms in Deep Brain Stimulation,” In Journal of Neural Engineering, IOP Publishing, Oct, 2018.
DOI: 10.1088/1741-2552/aae590

ABSTRACT

Objective: During deep brain stimulation (DBS), it is well understood that extracellular cathodic stimulation can cause activation of passing axons. Activation can be predicted from the second derivative of the electric potential along an axon, which depends on axonal orientation with respect to the stimulation source. We hypothesize that fiber orientation influences activation thresholds and that fiber orientations can be selectively targeted with DBS waveforms. Approach: We used bioelectric field and multicompartment NEURON models to explore preferential activation based on fiber orientation during monopolar or bipolar stimulation. Preferential fiber orientation was extracted from the principal eigenvectors and eigenvalues of the Hessian matrix of the electric potential. We tested cathodic, anodic, and charge-balanced pulses to target neurons based on fiber orientation in general and clinical scenarios. Main Results: Axons passing the DBS lead have positive second derivatives around a cathode, whereas orthogonal axons have positive second derivatives around an anode, as indicated by the Hessian. Multicompartment NEURON models confirm that passing fibers are activated by cathodic stimulation, and orthogonal fibers are activated by anodic stimulation. Additionally, orthogonal axons have lower thresholds compared to passing axons. In a clinical scenario, fiber pathways associated with therapeutic benefit can be targeted with anodic stimulation at 50% lower stimulation amplitudes. Significance: Fiber orientations can be selectively targeted with simple changes to the stimulus waveform. Anodic stimulation preferentially activates orthogonal fibers, approaching or leaving the electrode, at lower thresholds for similar therapeutic benefit in DBS with decreased power consumption.



T. M. Athawale, K. A. Johnson, C. R. Butson, C. R. Johnson. “A statistical framework for quantification and visualisation of positional uncertainty in deep brain stimulation electrodes,” In Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Taylor & Francis, pp. 1-12. 2018.
DOI: doi:10.1080/21681163.2018.1523750

ABSTRACT

Deep brain stimulation (DBS) is an established therapy for treating patients with movement disorders such as Parkinson's disease. Patient-specific computational modelling and visualisation have been shown to play a key role in surgical and therapeutic decisions for DBS. The computational models use brain imaging, such as magnetic resonance (MR) and computed tomography (CT), to determine the DBS electrode positions within the patient's head. The finite resolution of brain imaging, however, introduces uncertainty in electrode positions. The DBS stimulation settings for optimal patient response are sensitive to the relative positioning of DBS electrodes to a specific neural substrate (white/grey matter). In our contribution, we study positional uncertainty in the DBS electrodes for imaging with finite resolution. In a three-step approach, we first derive a closed-form mathematical model characterising the geometry of the DBS electrodes. Second, we devise a statistical framework for quantifying the uncertainty in the positional attributes of the DBS electrodes, namely the direction of longitudinal axis and the contact-centre positions at subvoxel levels. The statistical framework leverages the analytical model derived in step one and a Bayesian probabilistic model for uncertainty quantification. Finally, the uncertainty in contact-centre positions is interactively visualised through volume rendering and isosurfacing techniques. We demonstrate the efficacy of our contribution through experiments on synthetic and real datasets. We show that the spatial variations in true electrode positions are significant for finite resolution imaging, and interactive visualisation can be instrumental in exploring probabilistic positional variations in the DBS lead.



B. Kundu, A. A. Brock, D. J. Englot, C. R. Butson, J. D. Rolston. “Deep brain stimulation for the treatment of disorders of consciousness and cognition in traumatic brain injury patients: a review,” In Neurosurgical Focus, Vol. 45, No. 2, Journal of Neurosurgery Publishing Group (JNSPG), pp. E14. Aug, 2018.
DOI: 10.3171/2018.5.focus18168

ABSTRACT

Traumatic brain injury (TBI) is a looming epidemic, growing most rapidly in the elderly population. Some of the most devastating sequelae of TBI are related to depressed levels of consciousness (e.g., coma, minimally conscious state) or deficits in executive function. To date, pharmacological and rehabilitative therapies to treat these sequelae are limited. Deep brain stimulation (DBS) has been used to treat a number of pathologies, including Parkinson disease, essential tremor, and epilepsy. Animal and clinical research shows that targets addressing depressed levels of consciousness include components of the ascending reticular activating system and areas of the thalamus. Targets for improving executive function are more varied and include areas that modulate attention and memory, such as the frontal and prefrontal cortex, fornix, nucleus accumbens, internal capsule, thalamus, and some brainstem nuclei. The authors review the literature addressing the use of DBS to treat higher-order cognitive dysfunction and disorders of consciousness in TBI patients, while also offering suggestions on directions for future research.


2016


J.L. Baker, J. Ryou, X.F. Wei, C.R. Butson, N.D. Schiff, K.P. Purpura. “Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates,” In Journal of Neurophysiology, Vol. 116, No. 5, American Physiological Society, pp. 2383--2404. Aug, 2016.
DOI: 10.1152/jn.01129.2015

ABSTRACT

The central thalamus (CT) is a key component of the brain-wide network underlying arousal regulation and sensory-motor integration during wakefulness in the mammalian brain. Dysfunction of the CT, typically a result of severe brain injury (SBI), leads to long-lasting impairments in arousal regulation and subsequent deficits in cognition. Central thalamic deep brain stimulation (CT-DBS) is proposed as a therapy to reestablish and maintain arousal regulation to improve cognition in select SBI patients. However, a mechanistic understanding of CT-DBS and an optimal method of implementing this promising therapy are unknown. Here we demonstrate in two healthy nonhuman primates (NHPs), Macaca mulatta, that location-specific CT-DBS improves performance in visuomotor tasks and is associated with physiological effects consistent with enhancement of endogenous arousal. Specifically, CT-DBS within the lateral wing of the central lateral nucleus and the surrounding medial dorsal thalamic tegmental tract (DTTm) produces a rapid and robust modulation of performance and arousal, as measured by neuronal activity in the frontal cortex and striatum. Notably, the most robust and reliable behavioral and physiological responses resulted when we implemented a novel method of CT-DBS that orients and shapes the electric field within the DTTm using spatially separated DBS leads. Collectively, our results demonstrate that selective activation within the DTTm of the CT robustly regulates endogenous arousal and enhances cognitive performance in the intact NHP; these findings provide insights into the mechanism of CT-DBS and further support the development of CT-DBS as a therapy for reestablishing arousal regulation to support cognition in SBI patients.