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Abstract. Objective: We performed a retrospective analysis of an optimization

algorithm for the computation of patient-specific multipolar stimulation configurations

employing multiple independent current/voltage sources. We evaluated whether the

obtained stimulation configurations align with clinical data and whether the optimized

stimulation configurations have the potential to lead to an equal or better stimulation

of the target region as manual programming, while reducing the time required for

programming sessions. Methods: For three patients (five electrodes) diagnosed with

essential tremor, we derived optimized multipolar stimulation configurations using an

approach that is suitable for the application in clinical practice. To evaluate the

automatically derived stimulation settings, we compared them to the results of the

monopolar review. Results: We observe a good agreement between the findings of the

monopolar review and the optimized stimulation configurations, with the algorithm

assigning the maximal voltage in the optimized multipolar pattern to the contact

that was found to lead to the best therapeutic effect in the clinical monopolar

review in all cases. Additionally, our simulation results predict that the optimized

stimulation settings lead to the activation of an equal or larger volume fraction of

the target compared to the manually determined settings in all cases. Conclusions:

Our results demonstrate the feasibility of an automatic determination of optimal DBS

configurations and motivate a further evaluation of the applied optimization algorithm.

Keywords : neuromodulation, essential tremor, computational modeling, thalamus,

ventral intermediate nucleus
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A retrospective evaluation of automated optimization of DBS parameters 2

1. Introduction

Deep brain stimulation (DBS) has been established as a treatment for movement

disorders, such as Parkinson’s disease and essential tremor (Deuschl et al.; 2006; Weaver

et al.; 2009), and is currently being evaluated as a treatment for a variety of other

neurological disorders. Depending on a patient’s diagnosis and symptoms, DBS leads5

are implanted in specific anatomical targets in the brain during stereotactic surgery. For

the patients in our study, the ventrointermediate nucleus (VIM) was chosen as target,

which is a common choice to treat essential tremor (Benabid et al.; 1991; Ondo et al.;

1998; Koller et al.; 2001).

A few weeks after implantation of the DBS lead, an initial programming session10

is performed. During this session, a comprehensive monopolar review is performed

in an attempt to find optimal monopolar stimulation settings for the specific patient.

Parameters that can be varied are active lead contact(s), stimulation voltage, pulse

width, and pulse frequency. For each contact of the DBS lead, the voltage thresholds at

which therapeutic or side effects occur for cathodic-phase-first charge-balanced pulses15

(hereafter referred to as cathodic stimulation) are determined. This monopolar review

may require several hours of programming time (Hunka et al.; 2005; Ondo and Bronte-

Stewart; 2005). If the treatment results are not satisfactory, an exploration of alternative

stimulation configurations, such as bipolar or anodic stimulation, may be performed

(Deli et al.; 2011; Volkmann et al.; 2006; Kirsch et al.; 2018; Soh et al.; 2019). For most20

patients, multiple follow-up programming sessions are necessary to refine the stimulation

parameters, leading to a significant time effort for both patients and their caregivers.

The time expended for the manual programming of DBS patients is expected to grow

exponentially with the emerging use of DBS leads that have an increased number of

contacts than the previously standard quadripolar leads in combination with implanted25

pulse generators (IPG) that offer multiple independent current sources. Such stimulation

setups are promising better treatment outcomes due to their improved field-shaping

abilities (Buhlmann et al.; 2011; Vitek et al.; 2017; Contarino et al.; 2014; Pollo et al.;

2014; Van Dijk et al.; 2015; Willsie and Dorval; 2015).

To decrease programming times and to fully capitalize on the possibilities of these30

novel lead models, different research groups have presented algorithms for an automatic

determination of optimal DBS parameters, such as stimulation pattern, strength, etc.

(Cubo et al.; 2015, 2016, 2018; Xiao et al.; 2016; Peña et al.; 2017; Anderson et al.;

2018). Whereas these algorithms have been positively evaluated in simulation studies,

few data exist evaluating the computationally predicted stimulation settings against35

clinical data.

In this study, we evaluate for the first time automatically optimized configurations

for multipolar cathodic stimulation against patient data, applying an optimization

algorithm that does not rely on any preselection of contacts. These stimulation

configurations make use of multiple independent current/voltage sources, i.e., multiple40

contacts are concurrently stimulating as cathodes at different voltages, and the IPG is
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A retrospective evaluation of automated optimization of DBS parameters 3

used as return electrode. We apply the algorithm proposed by Anderson et al. (2018),

who evaluated it for leads with both cylindrical and segmented contacts in a simulation

study, and compare the determined stimulation patterns to the results of the monopolar

review for multiple patients with VIM DBS for essential tremor.45

We expanded this optimization algorithm to additionally enforce the efficiency

of the stimulation, so that activation of contacts that do not stimulate the target

region efficiently is suppressed. To constrain the results of the optimization algorithm

to settings that do not cause side effects in practice, we ensured that the optimized

stimulation settings did not exceed the side-effect thresholds obtained during the50

monopolar review. The iterative procedure applied in this study to maximize the

stimulation strength while avoiding stimulation settings that cause side effects can

similarly be applied in clinical practice, and can potentially replace the time-consuming

determination of therapeutic and side-effect thresholds for each contact during the

monopolar review.55

We performed our study for patients implanted with quadrupolar leads. The main

goal of this study is a first, general evaluation of the applied optimization algorithm with

regard to the future application for newly available leads with eight or more segmented

contacts and IPGs providing multiple independent voltage/current sources (Steigerwald

et al.; 2016; Timmermann et al.; 2016; Amon and Alesch; 2017). The IPGs implanted60

with quadripolar leads do not yet support multiple independent voltage/current sources,

so that the optimization results obtained in this study can currently not be directly

applied in practice. Instead, we compare the optimization results to those of the

monopolar review. We find that the optimization algorithm assigns the highest voltage

to the contact that was found to lead to the best therapeutic effect in all cases. We65

further evaluate the predicted target activation and predicted power consumption and

find that the increase in predicted target activation exceeds the change in predicted

power consumption by more than 50 percentage points in four of five cases.

2. Material and methods

2.1. Patient cohort and imaging70

We obtained data from three DBS patients who were diagnosed with essential tremor.

All patients gave written informed consent and all procedures were approved by the

independent research board (IRB) of the University of Utah (#44402). Patient details

are listed in Table 1. All patients were implanted with Medtronic 3387 leads. For the

evaluation of the optimization results, we refer to these patients as PXY, where X is75

the patient ID between 1 and 3, and Y the stimulation site, i.e., either L for left or R

for right.

For all patients, preoperative MP2RAGE T1-weighted (T1w-) scans (voxel size =

1 x 1 x 1 mm, FOV = 255 x 255 x 176 mm) were acquired on a 3 T MR scanner

(MAGNETOM Prisma 3.0 T, Siemens Healthcare, Erlangen, Germany). Additionally,80
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A retrospective evaluation of automated optimization of DBS parameters 4

Table 1: Patient overview. tlead indicates the time between the initial programming

session and lead placement, tIPG the time between the initial programming session and

IPG placement (w = weeks, d = days).

Sex Age Hemisphere ET impairment (off medication) tlead tIPG

P1 W 53 Bilateral upper extremities 2 w 3 d

P2 M 64 Left upper extremities, disability of right hand 5.5 w 3.5 w

P3 M 71 Bilateral upper extremities, progressive 5.5 w 5.5 w

multi-shell diffusion spectrum (DS-) MRI scans with 64 directions for each b-value

(voxel size 1.49 x 1.49 x 1.5 mm, FOV = 250 x 250 x 139.5 mm, b-values = 700,

2000, 3000 s/mm2) and volumes with flat diffusion gradient (b = 0 s/mm2) for both

regular and inverted phase encoding direction were acquired. The DSI volumes were

corrected for eddy currents, head motions, and susceptibility artifacts using ACID85

(http://www.diffusiontools.com; Mohammadi et al. 2010; Ruthotto et al. 2012) and

resampled to an isotropic voxel size of 1 x 1 x 1 mm.

Computed tomography (CT) images were acquired (voxel size = 0.75 x 0.75 x 1 mm)

on an AIRO Mobile CT system (Brainlab AG, Feldkirchen, Germany) to reconstruct

the lead positions.90

2.2. DBS programming notes

During each initial programming session, we recorded the voltages, pulse widths, and

frequencies at which therapeutic benefit, i.e., no tremor was observed, or side effects

occurred for each contact (Table 2). We noted the contact used in the patient’s

primary program that was determined to provide the best therapeutic effect during the95

monopolar review. In some cases, the treating neurologist provided the patient with an

alternative program that could be selected using the patient’s personal programmer.

Such second-line, alternative contacts were also noted. We further evaluated the

observed side effects to identify the brain region whose stimulation caused them. The

observed side effects were tingling or pain of arm, leg, trunk, or face (assigned to Vc),100

speech changes or difficulties (assigned to IC), and induced ataxia (unclear, possibly

cerebello-rubrospinal fibers; Reich et al. 2016).

Given that only (mono- and multipolar) cathodic stimulation with the IPG as the

return electrode was considered in both the monopolar review and the computation of

optimized stimulation settings, we indicate only the contact and the absolute value of105

the voltage.

2.3. Selection of target and avoidance regions for the optimization algorithm

To apply the optimization algorithm, target regions for which the stimulation is

maximized and regions of avoidance for which the stimulation is kept below a certain

threshold to minimize side effects have to be selected. In the definition of the algorithm,110
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A retrospective evaluation of automated optimization of DBS parameters 5

Table 2: Results of monopolar review. Side-effect thresholds, therapeutic thresholds,

pulse width (PW), frequency (FRQ). “SE region” indicates the brain region that was

associated with the observed side effects, and “?” marks side effects that could not

clearly be assigned to one region (see Section 2.3). “o” marks the contact used in the

patient’s primary program, which was determined to provide the best therapeutic effect

during the monopolar review. “x” marks the contact used in the patient’s alternative

program.

Patient # C0 C1 C2 C3 PW [µs] FRQ [Hz]

P1R Side effect [V] 0.6 0.8 0.8 3.0 60 185

SE region Vc Vc Vc Vc

Therapeutic [V] - - - 2.5

Clinically used o

P1L Side effect [V] 0.5 1.0 1.6 1.8 60 185

SE region Vc Vc Vc Vc

Therapeutic [V] - 0.8 1.5 1.6

Clinically used x o

P2L Side effect [V] 0.8 1.8 1.8 1.6 90 180

SE region Vc Vc, ? Vc Vc

Therapeutic [V] 0.7 1.5 - -

Clinically used o

P3R Side effect [V] 0.5 0.5 1.8 2.3 60 180

SE region Vc Vc Vc Vc

Therapeutic [V] - - 1.5 1.6

Clinically used o x

P3L Side effect [V] 0.7 2.8 3.4 4.0 60 180

SE region Vc IC, Vc IC, Vc IC

Therapeutic [V] - 2.0 3.0 3.8

Clinically used o x

we refer to this threshold as the sensitivity threshold. We chose the VIM as the target

region and the ventralis caudalis (Vc) and the internal capsule (IC) as avoidance regions

(see, e.g., Figure 1, Krauth et al. 2010; Bakay 2009, Figure 11.2), because stimulation

of Vc or IC can lead to parasthesias or dysarthria and motor contractions, respectively

(Papavassiliou et al.; 2004).115

2.4. Atlas registration and fiber tractography

Preoperative imaging of each patient was used to obtain individual segmentations of the

target and avoidance regions VIM, Vc, and IC:

The T1w-MRIs were nonlinearly registered to the “MNI ICBM 152 non-linear 6th

Generation Average Brain” (MNI-ICBM152, Grabner et al. 2006) using ANTs (Avants120

et al.; 2009). For this average brain, surface segmentations of the posteroventral part of

the ventrolateral nucleus (VLpv) and the ventral posterolateral nucleus (VPL), which
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A retrospective evaluation of automated optimization of DBS parameters 6

A

M

S

Figure 1: Surface visualization of lead placement relative to thalamus (gray) and IC

(gray lines) for P1R. Selected subregions of the thalamus are highlighted (Vc/VPL -

red, VIM/VLpv - yellow, Vop/VLa - green).

correspond to VIM and Vc, respectively, in Jones nomenclature (see, e.g., Bakay 2009,

Figure 11.2), were obtained from the Morel atlas (Krauth et al.; 2010), which is aligned

with the MNI-ICBM152 average brain. Individual surface segmentations of VLpv and125

VPL aligned with the patient’s T1w-MRI were obtained by transforming the surface

segmentations from the MNI-ICBM152 average brain to the patient’s MRI using the

nonlinear transform computed in the registration.

Individual tractography of the IC was performed using DSIStudio

(dsi-studio.labsolver.org) for each patient and hemisphere (Jiang et al.; 2006). A seed130

region to generate IC tractography, corresponding to the posterior limb of the IC, was

manually segmented based on the fractional anisotropy and fiber orientation (see large

solid arrow in Jellison et al. 2004, Figure 11.2). We restricted our segmentation to the

posterior limb of the IC, since this seed region resulted in fiber tracts that directly

passed the stimulation site. Additionally segmenting the anterior limb of the internal135

capsule resulted in additional fibers more distant to the lead contacts, which therefore

did not affect the optimization result, but led to a higher computational effort. To en-

sure that only superior-inferior fibers, which represent the IC, were included, we added

a transversal plane inferior to the thalamus as a region of interest (ROI).

2.5. Finite element simulation of DBS140

We used the finite element method (FEM) to solve the bioelectric field problem of DBS

for the Medtronic 3387 lead (Butson and McIntyre; 2005b). We obtained surface meshes

of skin, skull, cerebrospinal fluid (CSF), gray matter, and white matter using SimNIBS

2.1 (http://www.simnibs.de). We localized the lead positions based on the postoperative
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A retrospective evaluation of automated optimization of DBS parameters 7

Table 3: Tissue conductivities

Tissue Value [S/m] Reference

Skin 0.43 Haueisen et al. (1997); Ramon et al. (2004)

Skull 0.01 Dannhauer et al. (2011)

CSF 1.79 Baumann et al. (1997)

GM 0.33 Haueisen et al. (1997); Ramon et al. (2004)

WM 0.14 Haueisen et al. (1997); Ramon et al. (2004)

Encapsulation 0.10 Grill and Mortimer (1994)

CT images and generated a triangular surface mesh of the Medtronic 3387 lead with145

a 0.5 mm thick encapsulation layer (Haberler et al.; 2000). Based on these surface

meshes, a tetrahedral volume mesh was generated using TetGen (Si; 2015). This mesh

incorporated the nodes at which we evaluated the electric potential u as mesh vertices.

These nodes are distributed on a regular grid with a size of 20 x 20 x 30 mm and an

internode distance of 0.2 mm around the center of the lead. This predefined grid defines150

the volume Ω on which we perform the optimization, but we removed the nodes inside

the lead and the encapsulating tissue. The resulting tetrahedral meshes consisted of

about 2.3 million nodes and 13.7 million elements.

We chose the conductivities for the different tissue compartments according to

Table 3. For the white matter compartment, we calculated DTI tensors based on the155

DSI recordings using DTIFIT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and scaled each

tensor following the “direct approach with volume constraint” to obtain anisotropic

conductivity tensors (Tuch et al.; 2001; Güllmar et al.; 2010). We solved the bioelectric

field problem with a linear FEM using SCIRun 5 (http://www.sci.utah.edu/cibc-

software/scirun.html). We clipped the elements inside the lead and modeled active160

contacts by imposing a Dirichlet boundary condition set to the stimulation voltage at

the contact surface and a homogeneous Neumann boundary condition at the insulating

lead shaft. We modeled the return electrode by imposing a Dirichlet boundary condition

of 0 V where the mesh was cut off in the patient’s neck, as we did not consider bipolar

stimulation in this study. The passive contacts were modeled as linked nodes, i.e.,165

considered floating.

Due to the linearity of the problem, it is sufficient to solve the bioelectric field

problem for a unit voltage of −1 V at each contact while all other contacts are floating.

For each solution of the electric potential, we computed the Hessian matrix H, which

is needed for the optimization algorithm described in Section 2.6, at each node of Ω.170

The voltage distributions uc and Hessian matrices Hc for general stimulation voltages

c = (c0, c1, c2, c3) follow by linear combination, where the ci indicate the voltage applied

at contact i.
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A retrospective evaluation of automated optimization of DBS parameters 8

2.6. Optimization algorithm

To obtain multipolar stimulation configurations, we applied a modification of the175

optimization algorithm presented by Anderson et al. (2018). The algorithm relies on the

activating function as a predictor for neuronal activation (McNeal; 1976; Rattay; 1986;

Warman et al.; 1992; McIntyre et al.; 2004). To easily obtain the activating function,

we numerically calculated the Hessian matrix of partial second derivatives of the electric

potential uc:180

Huc(x)i,j =
∂uc(x)

∂xi∂xj
for x ∈ Ω, i, j = 1, 2, 3. (1)

The algorithm presented by Anderson et al. (2018) achieves target stimulation by

maximizing the sum of the mean of the three eigenvalues of the Hessian taken over

all positions in the target region; in avoidance regions the maximal eigenvalue of the

Hessian is kept below a threshold α (see also Section 2.7). For the targeting or avoidance

of fiber tracts, the second spatial derivative in the direction of the fiber tract, which185

can be computed as vtHv for a direction v, is considered instead of the eigenvalues. To

limit the power output, the maximal charge density at each contact is limited.

Varying the approach of Anderson et al. (2018), we used the value of the second

derivative of the electric field in a direction perpendicular to the shaft of the DBS

electrode to estimate activation of both the target and avoidance regions (Butson and190

McIntyre; 2005a). This choice corresponds to the assumption of an axon orientation

perpendicular to the electrode shaft, as also usually chosen for the multicompartment

axon models that are used to compute the volume of tissue activated (VTA) (Butson

and McIntyre; 2005a; Butson et al.; 2007; Åström et al.; 2015). Based on the Hessian

matrix, the activation at a position x with a corresponding direction np perpendicular195

to the electrode shaft can be computed as

ap(x, c) = nt
p(x)Huc(x)np(x) for x ∈ Ω. (2)

Accordingly, the objective function to measure activation of the target region,

ΩVIM ⊂ Ω, is defined as

f(c) =

∫
ΩVIM

ap(x, c) dx . (3)

We introduced an additional penalty term to the optimization functional to favor

stimulation settings with a higher efficiency by penalizing the stimulation of brain tissue200

outside the target region ΩVIM, also referred to as stimulation spill (Cubo et al.; 2016).

This term quadratically penalizes stimulation of the volume Ω− ΩVIM:

g(c) =

∫
Ω−ΩVIM

ap(x, c)2 dx . (4)
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A retrospective evaluation of automated optimization of DBS parameters 9

The linear weighting of ap in f , which we aim to maximize, ensures that the mean

of the stimulation over the whole target region is maximized and that the value of f is

not dominated by a few, large outliers of ap, which could result in a strong stimulation205

of only small parts of the target volume. The quadratic weighting of ap in g, which we

aim to minimize, avoids strong outliers in the stimulation of the nontarget volume.

Stimulation of Vc and IC is avoided by adding constraints to the optimization

problem. For the avoidance of the Vc, we kept the value of ap below the threshold α

in the region ΩVc. For the avoidance of the IC, we make use of the fiber orientations210

obtained from tractography. We denote the fiber orientation at position x by nf (x) and

define af according to (2) with np replaced by nf . As for the avoidance of the Vc, af is

kept below α to avoid stimulation of the IC.

With these constraints, our optimization problem can be formulated as the

constrained optimization problem:215

Find max
c
f(c)− λg(c)

subject to 0 ≤ ci ≤ cmax for all i = 0, . . . , 4,

ap(x, c) ≤ α for x ∈ ΩVc,

af (x, c) ≤ α for x ∈ ΩIC.

(5)

The optimization problem admits a unique solution (a proof can be derived following

Wagner et al. 2016), resulting in a (multipolar) stimulation pattern c = (c0, c1, c2, c3),

with ci being the stimulation voltage at contact i.

The algorithm has been evaluated only for the optimization of (multipolar) cathodic

stimulation thus far (Anderson et al.; 2018), i.e., all active contacts are concurrently220

stimulating at different voltages as cathodes, and the IPG serves as the return electrode.

In practice, the IPG has to provide independent current/voltage sources for each contact

to implement such stimulation patterns. To achieve cathodic stimulation, we enforce

0 ≤ ci in (5), as we set ci = −1 V in our FEM simulation. cmax allows us to define

a general maximal stimulation voltage for safety reasons or, if necessary, also for a225

single contact, e.g., due to known side effects. This parameter was not employed in our

study. The parameter λ determines how much weight is given to the efficiency of the

stimulation in the optimization. We used λ = 0.003 in this study.

In the implementation of the algorithm, the integrals in the expressions for f and g

turn into summations over all (grid) points of Ω. We solved this constrained optimization230

problem using the Python package cvxopt (cvxopt.org).

2.7. Empirical determination of the sensitivity threshold α

In theory, the threshold α represents the value of the activating function above which

neuron firing occurs as a result of the stimulation, i.e., the firing threshold (Anderson

et al.; 2018). Approximate values for this threshold have been derived in simulations235

of multicompartment neuron models (McIntyre et al.; 2002; Butson and McIntyre;
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A retrospective evaluation of automated optimization of DBS parameters 10

2005a; Chaturvedi et al.; 2010; Anderson et al.; 2018). However, the computation of

these thresholds depends on parameters that are not accessible in practice and are

often computed under simplified model assumptions, i.e., the axons are assumed to be

perfectly straight and perpendicular to the electrode shaft. Furthermore, it is unclear240

how to link these thresholds to the occurrence of side effects in a computational model.

For example, for a representation of the IC through fiber tracts as prepared in Section

2.4, do side effects occur when the firing threshold is exceeded for a single tract, for a

certain volume fraction of the tracts, or for all tracts?

Therefore, we do not interpret α as a fixed firing threshold, but treat it as a patient-245

specific sensitivity threshold that has to be derived empirically. Algorithm 1 is an

example algorithm to determine α.

Algorithm 1 Empirical determination of the sensitivity threshold α

α = 0

repeat

• α = α + ∆α

• Solve optimization (5) to obtain stimulation configuration c

• Program patient IPG with stimulation configuration c

• Observe therapeutic and side effects

if Improvement of therapeutic effects and no side effects then

cth = c

end if

until Side effects observed

Program patient IPG with stimulation configuration cth

By applying Algorithm 1, the clinical DBS programming decreases to individually

adjusting the single parameter α, instead of determining therapeutic and side-effect

thresholds for each contact. The step width ∆α can be individually determined by250

the clinician based on the increase of the stimulation voltages c with increasing α,

and a first review of a subset of possible configurations can be performed ahead of the

programming session. The choice of stimulation frequency and pulse width remains up

to the physician. As the firing threshold of axons changes with frequency and pulse width

(Butson and McIntyre; 2005a; Anderson, Anderson, Pulst, Butson and Dorval; 2019), a255

change of these parameters during a programming session might require adjustements

of α.

In our retrospective analysis, it was not possible to observe therapeutic and side

effects. Instead, we made use of the thresholds that were obtained during the monopolar

review (see Section 2.2, Table 2). To obtain optimized stimulation configurations, we260

incrementally increased the sensitivity threshold α in steps of 0.1 mV/mm2 following

Algorithm 1 until either the therapeutic or the side-effect threshold was exceeded at one

contact. If only a therapeutic threshold was exceeded, the resulting configuration was

adopted. If a side-effect threshold was exceeded, α was reduced to the previous value,
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A retrospective evaluation of automated optimization of DBS parameters 11

Table 4: Optimization results (boldfaced type marks clinically selected contact for

comparison).

Patient # α [mV/mm2] C0 [V] C1 [V] C2 [V] C3 [V]

P1R 26 0.03 0.17 0.78 1.86

P1L 102 0.20 0.00 1.50 0.18

P2L 74 0.70 0.96 0.44 0.14

P3R 22 0.00 0.41 1.47 0.49

P3L 38 0.69 1.96 1.43 0.28

 0

 10

 20

 30

 40

 50

P1R P1L P2L P3R P3L

T
a
rg

e
t 
A

c
ti
v
a
ti
o
n
 %

Subject ID

Optimization Clinic

(a)

 0

 10

 20

 30

 40

 50

 60

 70

P1R P1L P2L P3R P3L

P
o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 [

µ
W

]

Subject ID

Optimization Clinic

(b)

Figure 2: a) Target activation, measured in % of ΩVIM for which ap is above the

sensitivity α, for the result of the optimization algorithm (purple) and clinically chosen

stimulation setting (orange). b) Predicted power consumption for the result of the

optimization algorithm and clinically chosen setting.

and the configuration for which all contact voltages fell below the side-effect thresholds265

was adopted (Table 4).

3. Results

The optimized stimulation settings obtained following the description in Section 2.7 are

shown in Table 4. Most importantly, the optimization algorithm assigns the highest

voltage to the contact that was found to drive the best therapeutic effect during the270

monopolar review in all cases. In the three cases where an alternative therapeutic

contact was determined (P1L, P3R, P3L), the optimization algorithm assigned the

second highest voltage to these contacts, and for P2L the second highest voltage was

assigned to the second contact for which a therapeutic threshold was found. For P1R,

a therapeutic threshold was found for only one contact.275

To quantitatively compare the optimization results and those of the monopolar
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A retrospective evaluation of automated optimization of DBS parameters 12

Table 5: Change in predicted target activation and predicted power consumption for

optimized stimulation settings in comparison to monopolar stimulation with the best

therapeutic effect.

Patient # Target activation Power consumption

P1R 31.9% -34.4%

P1L 2.6% 2.7%

P2L 45.9% -27.9%

P3R 65.9% 14.0%

P3L 146.2% 60.9%

review, we computed the predicted target activation and the predicted power

consumption. The predicted target activation is a common measure to evaluate the

performance of optimization algorithms, and is calculated as the volume fraction of

the target region for which the stimulation exceeds a predefined threshold (Anderson280

et al.; 2018; Peña et al.; 2017; Cubo et al.; 2018). The predicted target coverage is

a computational tool to simulate and compare the efficiency of different stimulation

patterns; it does not necessarily correspond to the target activation in practice. We

visualize the percentage of the target volume ΩVIM for which ap is larger than the

sensitivity threshold α in Figure 2a, where for each patient and hemisphere the285

individually determined values for α are used (Table 4).

We computed the predicted power consumption following Fakhar et al. (2013)

P =
3∑

i=0

IiVi =
∑
i

V 2
i

Zi

PW · FRQ, (6)

where Ii, Vi, and Zi are current, voltage, and impedance at contact i, respectively,

and PW and FRQ are pulsewidth and frequency. Since we did not have measured

impedance values available for each contact, we instead relied on impedance values290

obtained from the FEM simulations to calculate the predicted power consumption,

which is sufficient for our goal of comparing the predicted power consumption of the

optimized and the clinically found stimulation settings. The obtained impedance values

ranged from 1095 Ω to 1131 Ω, which is within the commonly observed range (Butson

and McIntyre; 2005b).295

Figure 2a and Table 5 show that the optimization result leads to a predicted

target activation that is at least equal to the activation of the clinically determined

configurations in all cases. For all cases except P1L, the predicted target activation

could be clearly improved by at least about 32% (P1R) using the algorithm-derived

configurations that employ two or more contacts concurrently. Comparing the changes300

in predicted target activation with the changes in predicted power consumption (Figure

2b, Table 5), we find that in all of these four cases the improvements in target activation

outmatch the change in predicted power consumption by at least 50 percentage points.

For P1R and P2L, we find improvements in predicted target stimulation of more than
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A retrospective evaluation of automated optimization of DBS parameters 13

32% and a simultaneous reduction of the predicted power consumption of more than305

28%. This result is achieved by concurrently stimulating at multiple contacts with

voltages lower than for the clinically determined monopolar setting. For P3R and

P3L, we find improvements in predicted target stimulation of more than 66%, but a

simultaneous increase of the predicted power consumption of more than 28%. This

result is achieved by concurrently stimulating at multiple contacts, where the voltage at310

the contact that was found to provide the best therapeutic effect during the monopolar

review in the optimized multipolar stimulation pattern is nearly equal to the voltage

that was clinically determined.

Next, we analyze two cases in more detail. We chose P1R exemplaric for the four

cases in which multiple contacts are activated concurrently, and we chose P1L as the315

only case in which only a single contact gets assigned a significant voltage.

3.1. Analysis of P1R

0

[mV/mm2]

26

-26

-13

13

(a)

-1.9

-0.6

-2.5

-1.2

(b)

Figure 3: P1R - Visualization of VIM (green), ap and af mapped on Vc and IC (left

colorbar in mV/mm2) and stimulation voltage mapped on lead contacts (right colorbar

in V), respectively, for a) optimization result and b) monopolar stimulation with 2.5 V

at C3.

For P1R, Figure 3 shows that both C2 and C3 are inside the VIM (green), thus

similarly contributing to the target stimulation. However, C2 is closer to the Vc than

C3, whereas the IC is relatively distant from both of these contacts. C0 and C1 are both320

(mostly) outside the VIM, thereby stimulating the VIM less efficiently than C2 and C3.

Accordingly, C2 and C3 are are the only active contacts in the multipolar configuration

obtained from the optimization, with a higher voltage assigned to C3, which stimulates

the Vc less.
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A retrospective evaluation of automated optimization of DBS parameters 14

3.2. Analysis of P1L325
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Figure 4: P1L - Visualization of VIM (green), ap and af mapped on Vc and IC (left

colorbar in mV/mm2) and stimulation voltage mapped on lead contacts (right colorbar

in V), respectively, for a) optimization result, b) monopolar stimulation with 1.5 V at

C2.

For P1L, we find that C2 is fully contained in the lateral part of the VIM, whereas

C1 is found to be inside both the target and avoidance region. C0 lies inferior to the VIM

partially inside the avoidance region, and C3 lies superior to the VIM. Thus, C1 and C2

would lead to the best target stimulation, but C1 also leads to a strong stimulation of the

Vc. All contacts lead to only a low stimulation of the IC. These considerations explain330

why the optimization algorithm leads to a nearly exclusive activation of C2 – the other

contacts are either in the avoidance region (C0, C1) and/or do not stimulate the VIM

efficiently (C0, C3). Already the slight activation of C0 in the optimized stimulation

setting leads to noticeable stimulation of the Vc.

4. Discussion335

In this study, we performed a retrospective evaluation of an algorithm for the automated

optimization of DBS configurations that utilize independent current/voltage sources for

each contact, as they are available in novel IPGs (Amon and Alesch; 2017; Timmermann

et al.; 2016). The computed stimulation configurations are in good agreement with

the results of the monopolar review; in all cases, the optimization algorithm assigned340

the strongest stimulation voltage to the contact that was clinically selected, and the

predicted target activation achieved by the optimization algorithm was at least equal to

the clinically determined settings; in four of five cases, the predicted target activation

was improved.
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A retrospective evaluation of automated optimization of DBS parameters 15

4.1. Impact345

The results obtained in this study are an important demonstration of the capabilities

of the applied optimization algorithm, and they encourage its further evaluation for an

application in clinical practice. Our results indicate that Vc and IC are appropriate

avoidance regions for the automated optimization of VIM stimulation.

To date, most clinicians explore the space of possible stimulation parameters350

by first evaluating each contact individually in a monopolar review and then using

clinical intuition and heuristics to refine their results. This method, since it relies

on intuition, is challenging to teach and not guaranteed to find an optimal result.

As novel electrodes with an increased number of contacts and IPGs with multiple

independent current/voltage sources continue to proliferate, the parameter space for355

DBS programming grows exponentially, and manual exploration of the parameter space

becomes even more complicated and time consuming. Our proposed semiautomated

method improves upon this manual process by replacing the review of stimulation

voltage or current on each electrode contact by the review of a single parameter, the

sensitivity threshold α. This reduction of the parameter space is achieved by applying an360

optimization algorithm that utilizes individual representations of target and avoidance

regions obtained from the pre- and postoperative imaging data, which are functionally

ignored during a monopolar review. The necessity of iteratively determining α (vs.

directly computing stimulation settings based on a fixed threshold) arises from our

inability to perfectly map models of stimulated tissue to perception (i.e., side effects) at365

the level of each individual patient, although this limitation may ultimately recede as

our modeling and imaging methods improve (see also Section 2.7).

The approach we chose in this study to obtain the sensitivity threshold α (Algorithm

1) could be directly applied in clinical practice: The clinician starts to program the

patient with a multipolar stimulation configuration that was determined using a low370

value of α. Subsequently, α gets incrementally increased, and the patient programming

is updated with a new optimization result. This step is repeated until side effects occur,

where the initial value of α and the step width ∆α are determined by the clinician based

on the stimulation voltages proposed by the optimization. Finally, the configuration that

achieved the best therapeutic effects with the lowest stimulation amplitudes and without375

side effects is selected. Our simulation results predict that the stimulation configurations

obtained from this procedure might lead to equivalent, if not better, target activation

compared to the results achieved with a classical monopolar review. In future studies,

it has to be determined whether this equivalent/better predicted target activation also

leads to equivalent/better therapeutic outcomes.380

4.2. Related work

Different algorithms for the automated optimization of DBS configurations, which

mainly differ in the formulation of the objective function (i.e., (5) in our case), have been

proposed. The algorithm applied in this study is based on the work of Anderson et al.
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A retrospective evaluation of automated optimization of DBS parameters 16

(2018), and the objective function we employed is comparable to the one proposed by385

Wagner et al. (2016) for transcranial direct current stimulation (tDCS). Through the

addition of the functional g as defined in (4), we were able to modify this algorithm to

simultaneously maximize stimulation of the target region, minimize stimulation of other

brain regions, and stay below the side-effect threshold in the avoidance regions.

Similar to our approach, Peña et al. (2017) defined an objective function based on390

a modified activating function (MAF), which is a smoothed activating function. They

defined an objective function with three objectives: maximize the volume of the target

region that is stimulated above a fixed MAF threshold (MAFT), minimize the volume

of the avoidance region that is stimulated above the same MAFT, and minimize power

consumption. The weighting factors between these objectives were chosen based on395

a subjective ranking of the importance of the objectives. Compared to our objective

function, the stimulation of the avoidance region is not as strictly enforced in this

approach. Whereas our approach directly enforces this avoidance through a constraint

in the optimization problem (5), a stimulation above threshold in the avoidance region is

penalized in the approach of Peña et al. (2017), but not strictly excluded. For example,400

if the threshold is at the same time exceeded for a large volume of the target region

and a clearly smaller volume of the avoidance region, a configuration might still be

considered optimal. The limitation of power consumption serves a similar purpose as

our functional g, enforcing the efficiency of the stimulation.

Instead of using the activating function as a measure of stimulation, Cubo et al.405

(2018) proposed an optimization algorithm based on the electric field strength. For a

given contact configuration and a fixed electric field threshold, this approach penalizes

understimulation in the target region quadratically, whereas overstimulation is penalized

linearly. Stimulation of avoidance regions exceeding the threshold is prevented by

constraining the optimization problem, similarly to (5). Cubo et al. (2018) concluded410

that, in order to achieve meaningful optimization results, the brain volumes to be

avoided should be exactly specified and the efficiency of the stimulation should be

considered in the optimization. Furthermore, in line with our considerations in Section

2.7, Cubo et al. (2018) concluded that “the threshold values [. . . ] to decide which brain

volumes are stimulated [. . . ] appear to be patient specific.”415

Whereas the studies by Peña et al. (2017); Anderson et al. (2018) and Cubo

et al. (2018) did not investigate whether an optimization algorithm could identify the

clinically selected contact, Cubo et al. (2016) were able to predict the clinically selected

contact in about 50% of 65 evaluated cases for a four contact lead (similar to the one

used in our study). For each contact, Cubo et al. (2016) performed a one-parameter420

optimization using a “geometric approach”, which determines the stimulation amplitude

that maximizes the overlap between activated tissue and target region while minimizing

the amount of activated tissue outside the target region. The contact for which the best

optimization results was achieved was adopted and compared to the clinically selected

contact. Including a contact neighboring this adopted contact and performing a two-425

contact optimization, Cubo et al. (2016) found a further improvement of the stimulation
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A retrospective evaluation of automated optimization of DBS parameters 17

in about 40% of the cases. A limitation of the “geometric approach” applied by Cubo

et al. (2016) is that it does not constrain the stimulation of avoidance regions, as is

the case for the optimization algorithms applied in the studies by Peña et al. (2017);

Anderson et al. (2018); Cubo et al. (2018) and also in this study. Furthermore, Cubo430

et al. (2016) used a simplified head model (“electrode in a box”), which might further

limit the accuracy of the optimization algorithm. Thus, a more complex optimization

approach in combination with a more detailed head model might help to increase the

accuracy rate, as the results of our study also indicate, although, admittedly, for a much

smaller sample size.435

The study designs to evaluate the different proposed optimization approaches and

the parameters to judge the optimization results differ vastly between the discussed

studies by Anderson et al. (2018); Peña et al. (2017); Cubo et al. (2016), and Cubo et al.

(2018). It is therefore not possible to make any conclusions about which of the proposed

algorithms would lead to the best results in practice based on the current knowledge.440

A comparison of different optimization approaches in a simulation or patient study has

yet to be performed. Such a study is not only important to compare the strengths

and weaknesses of the different optimization approaches, but merging the evidence from

multiple algorithms might also help to increase the trust of clinicians in the results of

optimization algorithms.445

The proposed algorithms focus on optimizing the stimulation voltages for optimal

target activation, but they do not directly take into account stimulation pulse width and

frequency, which can also have a significant influence on the stimulation effects (Reich

et al.; 2015; Brocker et al.; 2017; Anderson, Anderson, Pulst, Butson and Dorval; 2019).

For now, the choice of pulse width and frequency remains the responsibility of the450

clinician.

In our approach, the balance between optimal stimulation of the target and power

efficient stimulation can be regulated through the choice of the parameter λ. To keep the

application of the optimization algorithm simple, it is important that λ does not have

to be individually adjusted for each patient. In our study, we kept λ fixed at a value of455

0.003 for all patients and leads. This choice of λ led to optimization results in which the

highest voltage was assigned to the contact that was found to lead to the best therapeutic

effect in the monopolar review for all patients and leads. Furthermore, the optimized

stimulation patterns were predicted to be more efficient than the monopolar stimulation

in four of five cases, as the increase in predicted target activation exceeded the variation460

in predicted power consumption by more than 50 percentage points. However, the choice

of λ depends on many implicit parameters of the modeling pipeline, so that this value

of λ is for now valid only for the specific modeling pipeline described in Sections 2.5 and

2.6. In future studies, generally applicable values of λ should be derived in larger patient

groups, and separate patient groups should be used to determine λ and to evaluate the465

optimization results to avoid any bias.

Alternatively, to directly obtain numerous optimization results for varying

weighting parameters, Peña et al. (2017) performed a particle swarm optimization and
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A retrospective evaluation of automated optimization of DBS parameters 18

computed a Pareto front. It has to be determined in future studies whether users prefer

to obtain a single optimization result for a fixed parameter or numerous optimization470

results to choose from.

With regard to the sensitivity threshold, values in a range from 5 - 40 mV/mm2

as thresholds for axon activation have been reported (Rattay; 1986; McIntyre et al.;

2004; Butson and McIntyre; 2005a; Martens et al.; 2011). For P1R, P3R, and P3L,

the empirically determined sensitivity thresholds (see Table 4) are within this range,475

whereas this range is exceeded for P1L and P2L. The variation of α between 20 and

over 100 mV/mm2 underlines the importance of individually determining α to achieve

a proper stimulation.

4.3. Limitations

Our results are a first indication that automatically optimized stimulation settings for480

multipolar stimulation can lead to meaningful results in comparison to clinical data,

while at the same time improving the predicted target coverage. However, with three

patients and five evaluated leads, the sample size of this study is small, and further

research is needed to validate the results of this study.

Besides the comparison of the results of the optimization algorithm to those of485

the monopolar review, we evaluated predicted target activation and predicted power

consumption to determine the possible improvements in stimulation. These simulation-

based measures can give first hints regarding possible improvements in stimulation

through the use of optimized stimulation settings, but they cannot replace a direct

evaluation of the optimized stimulation settings in patients. An evaluation in patients490

has to be a main goal of future studies.

The retrospective study design limits the identification of stimulation settings that

possibly cause side effects. For P3L, our approach to determine the sensitivity threshold

α led to an optimization result that assigned high stimulation voltages to multiple

contacts, which led to a major increase in predicted target activation (+146.2%, Table495

5) and in predicted power consumption (+60.9%). In practice, despite being below the

side-effect threshold for monopolar stimulation for each single contact, stimulation with

the optimized configuration might nevertheless lead to side effects. Stimulation in the

avoidance regions resulting from multipolar stimulation is the sum of the stimulation

from each contact; stimulation with multiple contacts at relatively high voltages in the500

multipolar setting could lead to a higher stimulation of the avoidance regions than in

the monopolar settings for which the side-effect thresholds were determined. This larger

amount of stimulation of the avoidance regions through multipolar stimulation settings

could not be taken into account in our retrospective study design, where we relied on

the side-effect thresholds derived from monopolar stimulation as the stopping criterion505

for Algorithm 1.

Applying Algorithm 1 for P3L in practice, we would expect to find a smaller value

for α, since therapeutic and side effects would already be observed before the voltages of
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A retrospective evaluation of automated optimization of DBS parameters 19

the single contacts exceed the thresholds that were observed in the monopolar review.

As a result, the theoretically computed improvement of the target activation through510

the optimized stimulation settings could be reduced, but even at a reduced value of α

an improved target activation can be expected.

Whereas the motivation for an automatic determination of optimal DBS settings is

the emerging use of leads with segmented contacts in combination with IPGs providing

multiple independent current/voltage sources in clinical practice, the data utilized in this515

study were obtained for quadripolar leads with cylindrical contacts. The IPGs used for

such leads commonly do not offer multiple independent voltage/current sources, which

would be necessary to implement the optimized multipolar stimulation configurations in

practice. However, the results of the optimization could be used to guide the clinician

in the selection of the relevant contacts during a monopolar review, as the optimization520

algorithm assigns the highest voltage to the contact that was found to lead to the

best therapeutic effect in all cases. Also, the use of double monopolar configurations,

with multiple contacts stimulating at the same voltage, might be considered given the

optimization results for P1R, P2L, P3R, or P3L.

The optimization problem (5) is less complex to solve for a quadripolar lead525

instead of a lead with eight or more possibly segmented contacts. Nevertheless, our

study is a first demonstration of the feasibility of applying the optimization algorithm

in practice. Furthermore, the relatively simple programming of the quadripolar lead

used for the patients in this study enabled the clinicians to select close-to-optimal

stimulation settings in the monopolar review, helping us to obtain a reliable reference530

for the evaluation of the optimization results. An equally detailed monopolar review is

commonly not performed for leads with segmented contacts due to the time burden for

patients.

The reliability of the optimization algorithm depends on the accuracy of the

underlying model, i.e., the representations of target and avoidance regions as well as535

the simulations of the bioelectric fields. In our study, representations of VIM and Vc

were obtained by nonlinearly registering highly accurate thalamus segmentations of the

Morel atlas (Krauth et al.; 2010) to the individual patient MRIs (see Section 2.3).

Individual representations of the IC were obtained based on the patient’s DSI, which

was processed with high accuracy (see Section 2.1). We manually inspected the quality540

of the underlying nonlinear registration of the Morel atlas to the patient MRIs and the

segmentation of the IC for each patient and found no notable deviations. However, given

the low MRI contrast within the thalamus, deviations in the segmentation of VIM and

Vc cannot be ruled out and could affect the accuracy of the optimization algorithm.

Future studies should investigate how possible inaccuracies in the representation of545

target and avoidance regions affect the results of the optimization algorithm. At the

same time, researchers also need to investigate whether the complex head models

used in this study can be simplified without significantly affecting the accuracy of

the optimization, e.g., by using simplified volume conductor models that include fewer

conductive compartments or by relying on representations of the IC obtained from a550
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brain atlas instead of individual segmentations (Horn et al.; 2017).

Besides geometric inaccuracies, uncertainties in the parameters underlying the

individual volume conductor models, e.g., the tissue conductivities, can influence

the results of the optimization algorithm. Most conductivity uncertainties affect

the impedance of all contacts almost equally, e.g., when an encapsulating tissue555

compartment with constant conductivity is assumed (Butson and McIntyre; 2005b;

Schmidt et al.; 2013; Cubo and Medvedev; 2018). Our proposed algorithm is robust

against these kinds of uncertainties, because simultaneous changes of the impedance for

all contacts lead only to a variation of the sensitivity threshold α, which is in any case

determined individually (see Section 2.7, Algorithm 1). Recently, Cubo and Medvedev560

(2018) have presented an approach for the online estimation of tissue conductivities in

DBS to decrease the conductivity uncertainties in volume conductor modeling, which

could be applied in future studies.

Differences in contact impedances that are not accounted for in the computational

model would vary the voltages assigned to the affected contacts in the optimized565

stimulation configuration. To properly model such impedance differences, more detailed

volume conductor models than those commonly used nowadays might be necessary.

The conductivities of most compartments, such as gray matter, white matter, or

CSF, were shown to have a small influence on the contact impedance (Butson

et al.; 2006). The conductivities of these compartments are often assumed to be570

homogeneous (Schmidt et al.; 2013; Cubo et al.; 2016; Cubo and Medvedev; 2018), but

even modeling anisotropic white matter conductivities, the contact impedances in our

simulations varied only between 1095 Ω to 1131 Ω. Given the strong influence of the

encapsulating tissue conductivity on the contact impedance (Butson and McIntyre;

2005b), it might therefore be necessary to assign different conductivity values to different575

segments of the encapsulating tissue to properly model impedance differences.

Accurate impedance values are also important when considering current-controlled

stimulation, as provided by most state-of-the-art IPGs. The application of the

optimization algorithm for current-controlled stimulation is straightforward using Ohm’s

law, but requires knowledge of the different contact impedances.580

To minimize computation times, the optimization algorithm used in this study,

as well as the algorithms proposed by Peña et al. (2017) and Cubo et al. (2018),

approximate stimulation effects. It was shown that such approximations, whether

based on the activating function or on the electric field strength, can properly predict

activation spread for monopolar cathodic stimulation when compared to computations585

of multicompartment neuron models (Åström et al.; 2015; Butson and McIntyre; 2005a).

Furthermore, Peña et al. (2017) found good agreement between the activation predicted

by the MAF and multicompartment neuron models. A central issue in this regard is

the selection of the threshold values for the activating function, as these may depend

on multiple parameters (Butson and McIntyre; 2005a). In this study, we circumvented590

this problem by iteratively determining the sensitivity threshold α (see Section 2.7).

Besides the effects of model simplifications (approximation of neuron activation
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through activating function), the effects of numerical inaccuracies also have to be taken

into account. The numerical method that was used, i.e., a linear first-order FEM, was

shown to achieve high numerical accuracies for bioelectric field simulations. We took595

great care in the creation of the mesh and chose a resolution that guarantees an accurate

solution of the bioelectric field problem. To maximize the accuracy of the simulation at

the points at which the voltage was evaluated, we included all these points in our finite

element mesh. In future studies, especially when including novel leads with segmented

contacts that lead to more complex electric field patterns, the use of current-preserving600

FEM approaches should be considered to avoid numerical errors (Engwer et al.; 2017;

Vorwerk et al.; 2017). The use of the MAF instead of the activating function as proposed

by Peña et al. (2017) also might alleviate numerical inaccuracies.

5. Outlook

The results of this retrospective study are an important demonstration of the605

applicability of the optimization algorithm to automatically determine DBS settings

exploiting multipolar settings with multiple independent current/voltage sources in

clinical practice. Whereas the results of this study demonstrate that the chosen target

and avoidance regions for VIM DBS lead to meaningful optimization results, similar

studies have to be performed to determine the correct/necessary regions for other DBS610

targets, such as the subthalamic nucleus or the globus pallidus internus, and for different

lead models, especially those including segmented contacts.

In future studies, the optimization algorithm should be applied during patient

programming to evaluate whether the optimized settings lead to better treatment

outcomes. The basic approach for an application in practice is laid out in Section615

2.7. The results of this study are promising with regard to the simplification of the

programming of novel DBS leads with more than four contacts. Furthermore, given that

recent simulation studies have demonstrated the possible benefit of anodic stimulation

(Anderson, Duffley, Vorwerk, Dorval and Butson; 2019), the optimization algorithm

should also be evaluated without being restricted to cathodic stimulation in both620

computational and patient studies.
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Daniels, C., Deutschländer, A., Dillmann, U., Eisner, W. et al. (2006). A randomized

trial of deep-brain stimulation for parkinson’s disease, New England Journal of

Medicine 355(9): 896–908.705

Engwer, C., Vorwerk, J., Ludewig, J. and Wolters, C. H. (2017). A discontinuous

galerkin method to solve the eeg forward problem using the subtraction approach,

SIAM Journal on Scientific Computing 39(1): B138–B164.

Page 23 of 27 AUTHOR SUBMITTED MANUSCRIPT - JNE-102661.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



REFERENCES 24

Fakhar, K., Hastings, E., Butson, C. R., Foote, K. D., Zeilman, P. and Okun, M. S.

(2013). Management of deep brain stimulator battery failure: battery estimators,710

charge density, and importance of clinical symptoms, PloS one 8(3): e58665.

Grabner, G., Janke, A. L., Budge, M. M., Smith, D., Pruessner, J. and Collins, D. L.

(2006). Symmetric atlasing and model based segmentation: an application to the

hippocampus in older adults, International Conference on Medical Image Computing

and Computer-Assisted Intervention, Springer, pp. 58–66.715

Grill, W. M. and Mortimer, J. T. (1994). Electrical properties of implant encapsulation

tissue, Annals of biomedical engineering 22(1): 23–33.
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