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Abstract
Objective. During deep brain stimulation (DBS), it is well understood that extracellular 
cathodic stimulation can cause activation of passing axons. Activation can be predicted 
from the second derivative of the electric potential along an axon, which depends on axonal 
orientation with respect to the stimulation source. We hypothesize that fiber orientation 
influences activation thresholds and that fiber orientations can be selectively targeted with DBS 
waveforms. Approach. We used bioelectric field and multicompartment NEURON models 
to explore preferential activation based on fiber orientation during monopolar or bipolar 
stimulation. Preferential fiber orientation was extracted from the principal eigenvectors and 
eigenvalues of the Hessian matrix of the electric potential. We tested cathodic, anodic, and 
charge-balanced pulses to target neurons based on fiber orientation in general and clinical 
scenarios. Main results. Axons passing the DBS lead have positive second derivatives around 
a cathode, whereas orthogonal axons have positive second derivatives around an anode, as 
indicated by the Hessian. Multicompartment NEURON models confirm that passing fibers are 
activated by cathodic stimulation, and orthogonal fibers are activated by anodic stimulation. 
Additionally, orthogonal axons have lower thresholds compared to passing axons. In a 
clinical scenario, fiber pathways associated with therapeutic benefit can be targeted with 
anodic stimulation at 50% lower stimulation amplitudes. Significance. Fiber orientations can 
be selectively targeted with simple changes to the stimulus waveform. Anodic stimulation 
preferentially activates orthogonal fibers, approaching or leaving the electrode, at lower 
thresholds for similar therapeutic benefit in DBS with decreased power consumption.
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1. Introduction

Nearly two decades after initial approval of deep brain stimu-
lation (DBS), it has grown into an established surgical inter-
vention for movement disorders such as essential tremor, 
Parkinson’s disease, and dystonia (Pizzolato and Mandat 
2012, Wichmann and DeLong 2006) as well as a potential 
treatment option for a number of intractable psychiatric dis-
orders. Effectiveness of DBS varies across patients. Its success 
depends on appropriate surgical target and stimulation param-
eter selection. Although target selection can be challenging, 
computational modeling has been used to help visualize stim-
ulation spread to neural targets like nuclei or fiber tracts to 
improve our understanding of target activation (Butson et al 
2007, Butson et  al 2013, Noecker et  al 2018). The volume 
of tissue activated (VTA) was developed to approximate acti-
vation around a lead through the use of multicompartment 
NEURON models arranged tangentially around the electrode 
(Butson and McIntyre 2005, Butson et al 2007). In an effort to 
save computational time by avoiding NEURON simulations, 
a number of methods approximate activation with ellipsoidal 
fits of the VTA (Mädler and Coenen 2012, Chaturvedi et al 
2013), voltage isosurfaces (Martens et al 2011), electric field 
isolevels (Åström et al 2012), and second difference thresh-
olds (Anderson et al 2018). The spread of activation can help 
determine which regions might correspond to clinical benefits 
or side effects. However, a key feature ignored in the majority 
of analyses is the influence of fiber orientation on activation 
trends. In this paper, we expand upon prior work in Anderson 
et al (2018) by using the Hessian of the electric potential to 
explore the role of orientation in axon activation.

Cathodic stimulation is used in nearly all clinical DBS 
applications (Volkmann et al 2006). Generally, cathodic and 
anodic stimuli result in different sites of action potential ini-
tiation (API). In straight axons perpendicular to a stimulating 
electrode, cathodic activation occurs at the node(s) nearest the 
electrode and anodic activation occurs at nodes farther away 
(McIntyre and Grill 1999, Basser and Roth 2000). Sites of 
API for cathodic and anodic stimulation are noted by arrows 
in figure  1(A). Axons are understood to be more excitable 
during cathodic stimulation, and many studies report larger 
anodic thresholds compared to cathodic thresholds (Ranck 
1975, Basser and Roth 2000, Zhang and Grill 2010). In some 
cases, however, the presence of a local cell body enables lower 
anodic thresholds than cathodic thresholds (McIntyre and 
Grill 1999, 2000, 2002). Nonetheless, modern DBS stimula-
tors programmed in a monopolar configuration are capable of 
only cathodic settings, potentially arising from a previously 
incomplete understanding of extracellular stimulation or a 
vestige of the first DBS technology.

If a monopolar configuration cannot generate a sufficiently 
large therapeutic window (i.e. the difference in thresholds 

between adequate symptom alleviation and side effects), the 
programmer may investigate bipolar configurations with one 
contact as an anode. In clinical practice, these bipolar configu-
rations have been used to avoid side effects (Volkmann et al 
2006, Deli et al 2010). The literature supports this approach 
with the claim that bipolar stimulation activates axons pro-
jecting through a more localized tissue volume (Ranck 1975, 
Basser and Roth 2000, McIntyre et  al 2004, Zhang et  al 
2009). Given that axons with local cell bodies can be activated 
with anodic stimulation at lower voltages, it is possible that 
bipolar stimulation activates a different set of axons within 
that volume.

In this study, we demonstrate that cathodic stimulation 
preferentially activates axon segments passing adjacent to the 
electrode, whereas anodic stimulation preferentially activates 
axon segments approaching or leaving the electrode.

2. Materials and methods

2.1. Finite element model

For this work, we reference methods similar to those of 
Anderson et  al (2018) regarding the finite element method 
(FEM) and the use of the Hessian matrix in approximating 
neural activation. We solved the bioelectric field problem 
in SCIRun 4.7 (Scientific Computing and Imaging (SCI) 
Institute, University of Utah, Salt Lake City, UT) using a FEM 
model. A tetrahedral mesh was generated over a volume of 
100 mm  ×  100 mm  ×  100 mm with the Medtronic 3389 lead 
positioned in the center of the volume. Centered within the 
large volume, a smaller cube sized 20 mm  ×  20 mm  ×  20 mm 
with 0.1 mm grid spacing was solved at a higher mesh resolu-
tion on which the Hessian matrix could be calculated to avoid 
interpolation errors (figure 1(B)). The tetrahedral mesh as a 
whole consisted of ~9 million nodes, and the Poisson equa-
tion was solved with a linear solver to find the electric poten-
tial at each node.

The Medtronic 3389 electrode was chosen as the lead model 
for this study because it is a commonly used clinical electrode. 
The Medtronic 3389 lead consists of four cylindrical contacts, 
each 1.5 mm in height, with conductivity σ  =  1  ×  106 S m−1, 
and separated by a 0.5 mm cylindrical insulator with conduc-
tivity σ  =  1  ×  10−10 S m−1 (Wei and Grill 2005, Miocinovic 
et al 2006). For this study, we used a simplified isotropic con-
ductivity volume with the tissue medium represented by 0.1 
S m−1 isotropic conductivity tensors in order to achieve an 
electrode impedance of approximately 1000 Ω (Butson et al 
2006, Satzer et al 2014).

We solved for the monopolar electric potential with a 
Dirichlet node at  −1 V at the center of the active contact and 
Dirichlet boundary conditions (0 V) to represent a distant 
return anode on the outer bounding box of the computational 
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model. We solved for bipolar contact configurations using two 
point sources of opposite signs, each positioned in the center 
of their respective contacts. For this study, cathodic monopolar 
stimulation was done with contact 1 set to  −1 V, and bipolar 
stimulation was done where contact 1 was set to  −0.5 V and 
contact 2 was  +0.5 V so that the difference between the volt-
ages was one volt for comparison between the monopolar and 
bipolar configurations.

2.2. Hessian matrix

In order to determine preferential fiber orientation patterns, 
we calculated the Hessian matrix of the second spatial par-
tial derivatives of electric potential at each node of the 
20 mm  ×  20 mm  ×  20 mm grid. The Hessian matrix at each 
node can be visualized as an anisotropic 3D tensor (figure 
1(C)). Each eigenvalue of the Hessian matrix represents the 
second derivative of the electric potential along the respec-
tive eigenvector. The second spatial derivative across nodes 
of Ranvier, known as the activating function, can be used to 
approximate activation from an extracellular source (Rattay 
1986, 1999): a larger second derivative corresponds to a higher 
likelihood of axon firing at that node point (figure 1(A)).

Preferential fiber orientation patterns can be represented 
through the eigenvalues and eigenvectors of the Hessian. The 
Hessian tensor has three eigenvalues, which represent the 

second derivatives in the directions governed by the eigen-
vectors. The primary eigenvalue represents the largest second 
derivative, and thereby the primary eigenvector is the pre-
ferred activation orientation of a neuron for cathodic activa-
tion. In contrast, the tertiary eigenvalue represents the lowest 
second derivative—which must be a negative value since the 
Hessian trace is required to be zero according to the Poisson 
equation—and corresponds to a theoretical inhibition of the 
axon along the direction of the tertiary eigenvector. We clas-
sify fiber orientations into three categories of direction as 
defined by a spherical coordinate system: (1) longitudinal, 
(2) latitudinal, and (3) radial/orthogonal relative to the source 
(figure 1(D)). For simplicity, longitudinal and latitudinal 
segments are referred to as passing axon segments, whereas 
orthogonal segments are axons segments approaching or 
leaving the electrode. In this study, we characterized the pref-
erential orientation of activation around cathode, anode, and 
bipolar configurations.

2.3. NEURON model

In order to verify the activation trends predicted by the 
Hessian, we used NEURON 7.4 to run multicompartment 
neuron models for neurons in the orientations of the eigenvec-
tors. The neurons are modeled as 5.7 µm myelinated axons 
with defined compartments representing the nodes of Ranvier, 
paranodal, and internodal sections  according to the MRG 

Figure 1. (A) The electric potential and second derivative plotted along an axon passing tangentially to the electrode. Action potentials 
initiate at points of sufficiently positive second derivatives: the center node closest to the electrode for cathodic stimulation and the distal 
nodes away from the electrode for anodic stimulation. (B) The finite element method (FEM) model consists of a tetrahedral mesh around a 
Medtronic 3389 lead. The Hessian was calculated on a 20  ×  20  ×  20 mm grid with a resolution of 0.1 mm around the lead.  
(C) Normalized Hessian matrices visualized as 3D tensors on a subgrid given contact 1 as a cathode. Each tensor is composed of 
eigenvalues and eigenvectors, which represent second derivatives along principal neuron orientations. (D) A spherical coordinate system 
is used to describe fiber orientations throughout the paper. Orientations can be categorized into longitudinal, latitudinal, and orthogonal 
directions with respect to the electrode. (E) A modified neuron model was used in this paper in order to isolate firing at the location of the 
Hessian tensor. The active neuron is an MRG axon, and the modified neuron is an MRG axon with all compartments being passive except 
the center compartment.
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NEURON model (McIntyre et al 2002, Butson et al 2007). 
Electric potentials are mapped through linear interpolation 
onto each neural segment based on the position of the mod-
eled neuron in space to determine whether extracellular stimu-
lation causes neuron firing.

The Hessian matrix can be used to inform upon whether a 
neuron segment will fire an action potential at any given fiber 
orientation. To test the ability of the Hessian to predict neuron 
firing thresholds, we restricted the site of API to be at the node 
where the Hessian was calculated. To do this, the center node 
of Ranvier of each neuron was placed at a grid point on a 
down-sampled 26  ×  51 grid where the Hessian was calcu-
lated. All NEURON compartments except the center node are 
made passive so that the center node is the only site of API. 
Despite the modified neurons having only one active compart-
ment, the remaining compartments still experience electric 
potential influence and enable axial current contribution, a 
key feature to firing in the cable equation (McNeal 1976). The 
modified neurons have higher threshold amplitudes compared 
to the classic MRG neurons, likely due to the reduced trans-
membrane currents across passive nodes (figure 1(E)).

2.4. Threshold for a variety of conditions

We varied the stimulus waveform applied to the neurons to 
determine how changes in the stimulus waveform might alter 
the preferential activation of neurons based on axon orientation. 
At each grid node, the modified 81-compartment neurons were 
extended in the directions of the primary, secondary, and tertiary 
eigenvectors. Firing thresholds were calculated using a binary 
search algorithm on a down-sampled 26  ×  51 grid for faster 
computational time. Activation thresholds were determined for 
neurons stimulated by unbalanced cathodic and anodic wave-
forms, as well as stimulus regimes where the charge-balancing 
phase was 100%, 50%, 25%, 10%, 5%, and 2.5% of the leading 
phase amplitude, as shown in figure 4(A). The area under the 
charge-balancing phase was maintained, so that given a larger 
amplitude, a shorter width was used. An interphase interval of 
100 µs was used to separate the leading phase from the charge-
balancing phase. The extracellular influence of each phase of 
the waveform was calculated using linear interpolation of the 
FEM electric potential solution onto multicompartment cable 
models centered at each point on the 26  ×  51 downsampled 
grid. The simulations were run over 250 ms at 130 Hz, and a 
neuron was considered to be active if each waveform period 
resulted in an action potential. Exponential fits were used to 
characterize the relationship between threshold of firing and 
distance to the center of the active contact.

2.5. Patient-specific model

In order to demonstrate clinical application of this study, 
we explored preferential activation of fiber orientations in 
a Parkinson’s disease patient with DBS for the subthalamic 
nucleus (STN). For the patient, we acquired preoperative T1-, 
T2-, multishell diffusion-weighted (DW) magnetic resonance 
images (MRIs), and postoperative computed tomography 

(CT). We corrected the DW-MRI acquisitions for distortions 
using HySCO (Ruthotto et al 2012, 2013) and registered all 
imaging modalities to the T1-MRI using ANTS (Avants et al 
2009). We registered the PD25-atlas (Xiao et al 2015) to the 
patient imaging to obtain segmentations of deep brain struc-
tures. To obtain a representation of the internal capsule (IC), 
we processed the DW-MRI data with DSIStudio (http://dsi-
studio.labsolver.org) using the restricted diffusion imaging 
(RDI) algorithm (Yeh et  al 2017) for multishell DW data. 
Based on the fractional anisotropy (FA) visualization, we 
manually segmented the anterior part of the IC and imple-
mented the segmented volume as a region of interest (ROI). 
To obtain tractography of the hyperdirect pathway, we used 
the segmentation of the anterior limb of the IC as a ROI and 
a segmentation of the STN from the PD25 atlas as the seed 
region. We computed 417 tracts for both the IC and the hyper-
direct pathway.

The Medtronic 3389 lead was positioned according to the 
post-operative CT imaging for the DBS patient; however, 
the lead was shifted 1.0 mm in the anterior direction to avoid 
overlap of the lead with the hyperdirect pathway we defined 
using tractography. We wanted to demonstrate a clinically rel-
evant example with a lead location that might represent a typ-
ical lead location; it is typical to see a 2 mm deviation in lead 
placement (Patel et al 2002, Burchiel et al 2013). The influ-
ence of DBS stimulation was tested on the tractography that 
we generated using NEURON simulations. With NEURON 
modeling, we aimed to explore the differences between acti-
vation patterns of anodic stimulation and cathodic stimulation 
on fiber pathways associated with therapeutic benefits and 
side effects.

3. Results

3.1. Preferential fiber orientation

We found that cathodic stimulation and anodic stimulation 
each activate certain fiber orientations selectively as indicated 
by the primary, secondary, and tertiary eigenvector directions. 
The second derivatives along the principal eigenvector direc-
tions are shown in figure 2 for monopolar and bipolar cases. At 
a given location, the primary eigenvector represents the orien-
tation of fibers most likely to fire an action potential, and the 
tertiary eigenvector represents the orientation of fibers in which 
API will be most suppressed. The likelihood that a particular 
fiber orientation will induce firing depends on the sign and 
the magnitude of the respective eigenvalue. Around a cathodic 
source, the positive primary and secondary eigenvalues indicate 
that the preferential directions of activation are in the longitu-
dinal and latitudinal directions around the electrode. During 
monopolar stimulation, the primary and secondary eigenvalues 
have similar median amplitudes, implying that neurons in the 
primary and secondary eigenvector directions are activated at 
similar thresholds. In contrast, orthogonal neurons are inhibited 
because the tertiary eigenvalues are negative. Additionally, the 
eigenvalue magnitudes associated with the orthogonal direc-
tion are approximately twice as large as with the primary and 
secondary directions. The Hessian indicates that monopolar 
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cathodic stimulation promotes activation of axon segments 
passing adjacent to the electrode and selects against orthogonal 
axon segments, leaving or approaching the electrode.

During bipolar stimulation, the same orientation patterns of 
activation hold true around the cathode electrode, with passing 
fibers being preferred over orthogonal fibers. However, the 
recruitment order of neuron orientation reverses around the 
anode. Orthogonal neurons are preferentially activated around 
the anode, whereas the longitudinal and latitudinal neurons 
are inhibited due to the negative second derivatives.

3.2. Recruitment order based on fiber orientation

The Hessian predicts that cathodic stimulation activates 
passing axons and anodic stimulation activates axons leaving 
or approaching the electrode (orthogonal). To explore the 
validity of fiber orientation activation trends informed by the 
Hessian, we used NEURON models to verify the preferen-
tial activation order. For an unbalanced cathodic waveform, as 
predicted, neurons in the primary and secondary eigenvector 
directions fire action potentials, whereas neurons in the ter-
tiary eigenvector directions (orthogonal) do not (figure 3(A)). 
Firing behavior matches the predictions made by the Hessian 
matrix and verifies that the activating function can serve as a 
predictor of neuron activation. Activation thresholds for neu-
rons in any direction are predicted by the respective eigen-
value, with lower firing thresholds appearing when the second 
derivative values are higher.

We applied an unbalanced anodic waveform to the primary, 
secondary, and tertiary eigenvectors calculated from the FEM 

solution (figure 3(B)). The orthogonal neurons associate with 
positive eigenvalues due to the flipped waveform and generate 
action potentials in response to an anodic stimulus. The lon-
gitudinal and latitudinal neurons, which fired with a cathodic 
pulse, do not fire with anodic stimulation. During anodic 
stimulation, orthogonal neurons fire at lower thresholds than 
the passing fibers did under cathodic stimulation. Lower firing 
thresholds for orthogonal neurons are due to the fact that ter-
tiary eigenvalue amplitudes are twice as large as the primary 
and secondary eigenvalue amplitudes.

In response to a biphasic waveform that contains a cathodic 
phase followed by an interphase delay and a charge-balancing 
anodic phase at 10% of the amplitude but 10 times the dura-
tion, neurons in all fiber orientations can fire (figure 3(C)). 
The longitudinal and latitudinal orientations fire due to the 
cathodic phase, and the orthogonal directions fire during the 
anodic phase. A cathode-first waveform with a 10% balancing 
anodic phase does not have a preference of which fiber ori-
entations are activated; the orthogonal orientations fire at 
approximately the same thresholds as the longitudinal and 
latitudinal directions according to the threshold versus axon 
distance plot.

The activation of fiber orientations is more complicated for 
the bipolar stimulation configuration (figure 3(D)); there is 
a greater range in activation thresholds for each eigenvector. 
The primary and tertiary eigenvectors contain a combination 
of highly excitable orthogonal fibers around the anode and 
moderately excitable longitudinal fibers around the cathode, 
as shown in figure 2(B). The secondary eigenvector consists 
entirely of latitudinal, passing fibers, which exhibit different 

Figure 2. (A) Primary, secondary, and tertiary eigenvector orientations for cathodic stimulation at contact 1 of the Medtronic 3389 lead. 
Longitudinal and latitudinal fibers (passing fibers) have positive second derivatives, which correspond to an increased likelihood of 
firing. The orthogonal direction defined by the tertiary eigenvector has negative second derivatives. The median amplitude of the tertiary 
eigenvalues is twice that of the primary and secondary eigenvalues, implying large inhibition of orthogonal fibers. (B) Eigenvector 
directions remain the same around the cathode, but the activation patterns are reversed around the anode. Note: box-whisker plots are 
plotted without outliers for clarity.
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excitability from the cathodic and anodic components of the 
waveform. Ultimately, the second derivatives predict activation 
of the neurons along the respective eigenvector orientations.

3.3. Selective activation of neuron populations based on 
changes in waveform

Modifying the cathodic and anodic portions of the DBS wave-
form can selectively target fiber orientations (figure 4). We learn 
from figure 3 that, in general, cathodic stimulation activates 
adjacent passing fibers, whereas anodic stimulation activates 
fibers leaving or approaching the electrode. However, for safe 
and effective stimulation, stimulus waveforms must be charge 
balanced (Merrill et  al 2005). By varying the cathodic and 
anodic components of a waveform, we can selectively activate 
passing neurons or orthogonal neurons. We tested the ability to 
selectively activate fiber orientations by varying the amplitude 
and duration of the charge balancing in cathode- and anode- 
first waveforms. Strength-duration curves of charge-balancing 
pulse ratios 3 mm away from the active contact center (figure 
4(B)) highlight that axon segments approaching or leaving the 
electrode are highly excitable with anodic stimulation. For 
cathode-first stimulation (figure 4(C)), we found that using 
a charge-balancing amplitude of 2.5% and 5% will prioritize 
firing of longitudinal and latitudinal axons, a 10% balancing 
pulse amplitude will activate all fiber orientations similarly, 
and a 100% balancing pulse amplitude will preferentially 
activate orthogonal fibers. For anode-first stimulation (figure 
4(D)) the orthogonal neurons will be preferentially activated 
regardless of the balancing pulse amplitude. The equation and 
coefficients used for the exponential fits in figures 4(C) and 
(D) can be seen in the Appendix.

For an STN DBS patient, we virtually isolated the IC and 
the hyperdirect pathway (HD) from coregistered T1- and dif-
fusion- weighted MRI data. Activation of the IC is associated 
with side effects while stimulation of the STN and the afferent 
HD pathway is associated with possible therapeutic benefit 
(Tamma et al 2002, Gradinaru et al 2009, Henderson 2012). 
Near the STN, the fiber orientations of the IC and HD tracts 
are different: the IC passes the lead vertically and the HD 
approaches the lead orthogonally.

We demonstrated through a theoretical example that 
anodic stimulation could be used for clinical benefit as well. 
From figure 3, we saw that orthogonal fibers are preferentially 
activated by anodic stimulation, so we tested to see whether 
the HD pathway can be preferentially activated with anodic 
stimulation. We found that the activation threshold of the HD 
pathway was reduced by approximately half in the monop-
olar and bipolar stimulation regimes with anodic stimulation 
(figure 5(B)). The IC also exhibited a decrease in the firing 
threshold for monopolar anodic stimulation, likely attribut-
able to orthogonal components in the vertically oriented IC. 
However, using a bipolar configuration greatly reduced the 
activation of the IC, for both anode- and cathode- first stimu-
lation. We also included IC and HD threshold analysis for a 
symmetrically balanced waveform condition (figure 5(C)); the 
activation thresholds of cathode- and anode- first stimulation 
were nearly identical. The thresholds for activation of the HD 

pathway was reduced to nearly half of the cathode-first 10% 
balanced regime.

4. Discussion

The primary outcome of this simulation study is to demon-
strate the selective activation of passing fibers with cathodic 
stimulation versus selective activation of orthogonal fibers 
with anodic stimulation. The Hessian matrix, a mathematical 
representation of activation, was able to inform us of a previ-
ously unknown biophysical relationship between fiber orien-
tation and axon activation. We verified the activation patterns 
predicted by the Hessian matrix through NEURON models. 
An advantage of the Hessian is that it can efficiently estimate 
neuron activation in any direction, potentially allowing it to 
serve as a more comprehensive activation volume predictor 
than models using a single fiber orientation.

A secondary outcome of this experiment is that orthogonal 
fibers are activated by anodic stimulation at lower thresholds 
than passing fibers given the same amplitude of cathodic stim-
ulation. It might be possible to take advantage of the highly 
excitable nature of the orthogonal neurons in clinical appli-
cation in terms of power consumption. Since every neuron 
around a lead must have segments that approach or leave the 
lead (orthogonal), anodic stimulation could activate nearby 
axons at lower thresholds than cathodic stimulation.

This study offers a mechanistic explanation for the results in 
a number of previous studies in which anodic stimulation was 
investigated. A recent study explored anodic versus cathodic 
stimulation in a clinical setting in 10 Parkinson’s disease 
patients implanted with DBS in the STN (Kirsch et al 2018). 
The study used a conventional stimulus waveform using a 10% 
charge-balancing regime for both cathode-first and anode-first 
stimulation. Kirsch et  al (2018), found that anodic stimula-
tion significantly decreases MDS-UPDRS III motor scores 
when compared to both off stimulation and cathodic stimula-
tion in the suprathreshold stimulation case. It was found that 
anodic therapeutic and side effect thresholds were greater 
than the cathodic case, but the therapeutic window was wider 
for the anodic case. Additionally, bradykinesia metrics were 
significantly improved by anodic stimulation versus cathodic 
stimulation (58.6% versus 39.8%). The authors postulate that 
improvements in clinical response in the anodic case may be 
due to the differential activation of beneficial fibers based on 
fiber orientation by anodic stimulation. Our findings support 
the possible explanation made in Kirsch et al (2018) on the 
differing clinical effects of anodic stimulation.

Another recent study by De Jesus et  al (2018) found 
improved tremor outcomes in DBS in the ventralis intermedius 
nucleus of the thalamus (VIM) for essential tremor by using 
a larger anodic component in the DBS waveform. The study 
compared the use of a square biphasic pulse, with an anodic 
charge-balancing phase magnitude equal to the cathodic 
leading phase magnitude, to the conventional 10% charge-
balancing regime. The square biphasic pulse is identical to the 
symmetrically balanced pulse we ran in figure 4(F) and dem-
onstrated reduced firing threshold of fiber tracts associated 
with clinical benefit. We believe that De Jesus et  al (2018) 
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Figure 3. (A) An unbalanced cathodic pulse causes firing of neurons oriented in the primary and secondary eigenvector directions, which 
represent passing axons (positive second differences, in orange). Neurons in the tertiary eigenvector orientation do not fire, as predicted by 
the eigenvalues (negative second differences, in purple). (B) An unbalanced anodic pulse reverses the fiber orientation recruitment from the 
cathodic pulse. Orthogonal neurons (tertiary eigenvector from the cathodic pulse) fire exclusively, whereas adjacent passing axons do not 
fire. (C) In a 10% charge balancing cathode-first stimulus regime, neurons at all orientations are approximately equally likely to fire due 
to the cathodic and the anodic component of the pulse. (D) Firing thresholds for the bipolar stimulation case, 1–2+  configuration. There 
is a larger range of activation thresholds for neurons along the principal eigenvectors due to the combination of passing and orthogonal 
fiber segments within the primary and tertiary eigenvectors (as shown in, figure 2(B)). The differing firing thresholds on the secondary 
eigenvector is due to the differing influence of the cathodic phase and the anodic phase on latitudinal fibers. Ultimately, the second 
derivatives calculated from the Hessian predict firing for the respective fiber orientation. Note: Distance to contact center is measured  
from nearest active contact.
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found improved tremor response with a square biphasic pulse 
because of the increased activation contribution of the anodic 
phase of the waveform. The anodic phase of the waveform 
would activate the orthogonal population of axons near the 
VIM, which might be a part of the fiber pathways associated 
with clinical benefit.

Our results indicate that anodic stimulation has lower firing 
thresholds in the orthogonal fiber orientations. These results 
could explain lower anodic thresholds in applications of cor-
tical stimulation where fibers are largely orthogonal to the 
surface of the brain (Cornelia et al 1998). In the same study, 
brain stem simulation saw lower thresholds with cathodic 
stimulation than with anodic stimulation. The different acti-
vation thresholds reported in this study may be explained by 
the different orientations of the fibers being targeted. Cortical 
fibers are orthogonal to the electrode source while brainstem 
fibers traveling from the cortex to the spine pass adjacent to 
the electrode source.

A number of computational studies also demonstrate that 
fibers with cell bodies in proximity to the active electrode 
can be activated with lower thresholds using anodic stimula-
tion (McIntyre and Grill 1999, 2000, 2002). Such a finding 
supports the results in our study since a cell body essentially 
serves as a current sink.

For bipolar configurations, around the anode contact, 
orthogonal neurons will be activated first at lower voltages. 
In contrast, the longitudinal and latitudinal neurons do not 
experience firing around the anode. In the future, it might 
be possible to intelligently use complex bipolar configura-
tions, especially coupled with novel directional leads, to acti-
vate neurons within a target and avoid side effect inducing 
regions given knowledge of fiber orientations from diffu-
sion tensor imaging. The different activation patterns based 
on fiber orientation are relevant to approaches estimating the 
VTA. In a monopolar stimulation case, for the conventional 
10% balancing regime for cathode-first stimulation, all fiber 

Figure 4. (A) Cathode- and anode- first stimulus regimes with varying charge-balancing phases of 100%, 50%, 25%, 10%, 5%, and 
2.5% of the leading phase amplitude. (B) Strength duration curve for the charge-balancing phase for passing fibers (blue) or orthogonal 
fibers (red) for neurons 3 mm away from the contact center. (C) Cathode-first stimulation with varying amplitudes of the anodic charge 
balancing phase. Changes to the balancing either select against or in favor of orthogonally oriented fibers (third eigenvector). (D) Anode-
first stimulation with varying amplitudes of the charge-balancing phase. Orthogonal fibers are highly excitable in all anode-first waveform 
scenarios.
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orientations fire at approximately the same thresholds (figure 
3(C)). Standard methods of monopolar VTA estimation for a 
cathode-first, 10% balancing regime likely estimate the VTA 
reasonably well since there is no preferential fiber orientation 
selectivity in that case. However, based on this study, standard 
VTA methods are unlikely to hold up in cases with different 
stimulus waveforms or anodic contacts, such as in bipolar 
stimulation, where there exists differential fiber selectivity.

This study might also explain the existence of virtual cath-
odes in tangential fibers, which are present during anodic 
stimulation at more distal nodes (figure 1(A)). In tangential 
fibers, the nodes where API and the virtual cathode appear are 
partially orthogonal to the lead. This study implies that activa-
tion is not due to a ‘virtual’ cathode, but rather due to outright 
activation of orthogonal segments by the anode. Largely, we 
believe that the excitatory nature of anodic stimulation has 
been misunderstood for decades. In fact, anodic stimulation 
does not counteract a desired stimulation effect (Hofmann 
et  al 2011), but, rather, it preferentially activates neurons 
approaching or leaving the electrode.

4.1. Limitations

The MRG neurons that we used in this study have been modi-
fied to limit API to nodes where the Hessian was calculated 
to verify the predictive power of the Hessian. Since it would 
be an incorrect assumption to map distal API back to a center 
node, we modified the neuron dynamics so that only the 
center node could initiate an action potential. Additionally, in 
the NEURON modeling, we assumed linear fiber orientations 
along each eigenvector, but fiber orientation can vary along a 
neuron. Firing behavior might change based on different axial 
current influence from neighboring nodes, but it is not pos-
sible to take into account all possible neuron pathways in our 
simulations. Given these modifications to the neurons, we saw 
higher firing thresholds than the classic MRG neuron.

Additionally, the Hessian is limited in its approx imation 
because it defines the response of a neuron in a time- 
independent scenario. The activating function can be used to 
predict neural activation, but only through activating func-
tion versus threshold relationships tested at varying pulse 
widths. We tested the 5.7 µm myelinated fiber model, and 
while the activating function relationships will vary for other 
axon diameters, the overall patterns of cathodic and anodic 
stimulation will hold for all fiber types that follow the cable 
equation. The Hessian is limited to activation approximation 
according to neuronal cable theory, which refers to infinitely 
long fibers. Therefore, the presence of a soma or other mor-
phological variations could change the threshold curves. The 
limitations listed above mainly affect the observed voltage 
thresholds, and further characterization of activating function 
threshold values is necessary. However, these limitations do 
not undermine the observed relationship between fiber orien-
tation and activation that the Hessian has revealed. In fact, 
we plan to further explore the prediction of the Hessian not 
only on activation of axons but also on the inhibition of axons 
through network models. Since the primary eigenvalue indi-
cates the first instance of neuron activation in the eigenvector 
orientation, with full characterization of function and firing 
thresholds, the Hessian could be used as a novel volume of 
activation that considers activation in all fiber orientations.

5. Conclusions

From the study, we have determined that cathodic and anodic 
stimulation exclusively activate passing fibers and orthogonal 
fibers, respectively. This study reveals that anodic stimula-
tion directly activates orthogonal axons at lower thresholds 
than the thresholds of passing fibers due to cathodic stimu-
lation. Targeting fiber orientations is possible with simple 
modifications to the anodic and cathodic components of the 
DBS waveform. Fiber orientation selectivity may be useful in 

Figure 5. (A) Visualization of HD and IC tracts with respect to the STN (right) and lead. (B) Firing threshold histograms for HD and IC 
tracts given cathodic and anodic stimulation for 10% balancing. Anodic stimulation reduces threshold voltage of orthogonally oriented 
fibers. As a result, the HD is activated by a smaller voltage with anodic stimulation rather than cathodic stimulation. The orthogonal 
components of the IC are activated at lower thresholds as well, but bipolar stimulation reduces the spread of activation in the IC. (C) Firing 
histograms using symmetrically balanced pulses exhibit lower firing thresholds for both the HD and IC, but bipolar stimulation avoids the 
IC.
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targeting stimulation to therapeutic fibers and avoiding side 
effect-inducing fiber tracts. There may be clinical applications 
of anodic stimulation for therapeutic benefit or widening the 
therapeutic window.
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Appendix

The exponential fits in figures 4(C) and (D) were made fol-
lowing the form shown in equation (A.1), where x is distance 
from the active contact center in mm and Vth is the firing 
threshold in Volts.

Vth = Aekx. (A.1)

The curves for cathode-first 25% and 50% and anode-first 
2.5% and 50% were calculated as listed in table A1, but visu-
alizations of the fits were not shown in figure 4 for clarity.
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