
Journal of Neural Engineering

PAPER • OPEN ACCESS

Optimized programming algorithm for cylindrical and directional deep
brain stimulation electrodes
To cite this article: Daria Nesterovich Anderson et al 2018 J. Neural Eng. 15 026005

 

View the article online for updates and enhancements.

This content was downloaded from IP address 155.98.19.70 on 06/02/2018 at 19:46

https://doi.org/10.1088/1741-2552/aaa14b


1 © 2018 IOP Publishing Ltd Printed in the UK

Journal of Neural Engineering

Optimized programming algorithm 
for cylindrical and directional deep 
brain stimulation electrodes

Daria Nesterovich Anderson1,2 , Braxton Osting3 , Johannes Vorwerk2 , 
Alan D Dorval1  and Christopher R Butson1,2,4,5

1 Department of Bioengineering, University of Utah, Salt Lake City, UT, United States of America
2 Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT,  
United States of America
3 Department of Mathematics, University of Utah, Salt Lake City, UT, United States of America
4 Departments of Neurology and Neurosurgery, University of Utah, Salt Lake City, UT,  
United States of America

E-mail: butson@sci.utah.edu

Received 5 June 2017, revised 8 December 2017
Accepted for publication 13 December 2017
Published 24 January 2018

Abstract
Objective. Deep brain stimulation (DBS) is a growing treatment option for movement and 
psychiatric disorders. As DBS technology moves toward directional leads with increased 
numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming 
are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate 
DBS programming in near real-time for a wide range of DBS lead designs. Approach. 
Magnetic resonance imaging and diffusion tensor imaging are used to build finite element 
models that include anisotropic conductivity. The algorithm maximizes activation of target 
tissue and utilizes the Hessian matrix of the electric potential to approximate activation of 
neurons in all directions. We demonstrate our algorithm’s ability in an example programming 
case that targets the subthalamic nucleus (STN) for the treatment of Parkinson’s disease 
for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute 
(two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 
directional contacts). Main results. The optimization algorithm returns patient-specific contact 
configurations in near real-time—less than 10 s for even the most complex leads. When the 
lead was placed centrally in the target STN, the directional leads were able to activate over 
50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead 
was placed 2 mm lateral to the target, the directional leads performed as well as they did in 
the central position, but the Medtronic 3389 activated only 2.9% of the STN. Significance. 
This DBS programming algorithm can be applied to cylindrical electrodes as well as novel 
directional leads that are too complex with modern technology to be manually programmed. 
This algorithm may reduce clinical programming time and encourage the use of directional 
leads, since they activate a larger volume of the target area than cylindrical electrodes in 
central and off-target lead placements.
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1. Introduction

Deep brain stimulation (DBS) has become widely accepted 
as a surgical intervention for movement disorders such as 
Parkinson’s disease (Rodriguez-Oroz et al 2001, 2005), essen-
tial tremor (Benabid et al 1996) and dystonia (Vidailhet et al 
2005, 2007), and is currently being explored for a growing 
number of psychiatric disorders, such as Tourette Syndrome 
(Porta et  al 2009), obsessive–compulsive disorder (OCD) 
(Greenberg et  al 2010) and treatment-resistant depression 
(Mayberg et al 2005). DBS is now being used for a relatively 
large number of applications, but clinical DBS technology 
remains largely unchanged from its initial design, which was 
created nearly four decades ago (Brice and Mclellan 1980). 
In recent years, numerous academic and industry groups 
have explored more complex lead designs with greater num-
bers of contacts and increased field shaping ability (figure 1) 
(Buhlmann et al 2011, Vitek and Starr 2013, Contarino et al 
2014, Pollo et al 2014, Boston Scientific Corportation 2015, 
van Dijkand et  al 2015, Willsie and Dorval 2015a, 2015b,  
St. Jude Medical 2015). As the DBS lead designs are trending 
toward increased complexity, there is an associated need 
to update manually-based DBS programming methods to 
accommodate new technology.

Modern DBS programming consists largely of manual, 
trial-and-error methods in which clinicians adjust settings 
based on patient responses (Rizzone et al 2001, Moro et al 
2002, Volkmann et  al 2002). Manual programming poses 
a substantial time burden on the clinician while potentially 
subjecting the patient to discomfort, and is unlikely to 
yield optimized parameter settings. Implants for the over-
whelming majority of DBS patients involve leads with four 
evenly-spaced cylindrical contacts, which, despite being the 
simplest of lead designs, require approximately 18–32 h of 
clinical programming in the first year post-surgery (Hunka 
et al 2005). Programming time varies depending on the target 
and the programming center, and the number of adjustment 
visits that a patient must make to the programming center can 
range widely, from four to 17 visits in the first year (Ondo and 
Bronte-Stewart 2005). There are over 25 000 possible combi-
nations of programming parameters such as pulse width, fre-
quency, and voltage, and 65 combinations of contact selection 
for a standard four-contact lead such as the Medtronic 3389 
(Kuncel and Grill 2004). The number of theoretically pos-
sible configurations for a lead is exponential in the number of 
contacts, so that with the emergence of increasingly complex 
lead designs, manual programming will soon be infeasible as 
the number of possible parameter combinations increases by 
many orders of magnitude.

A number of factors contribute to positive outcomes for DBS, 
including careful patient selection, accurate lead placement in 

the target area, and the effective programming of DBS (Walter 
and Vitek 2004, Machado et al 2006, Volkmann et al 2006). 
However, once a patient has been given implants, the only 
aspect that can be modified to improve clinical outcomes is the 
programming of the DBS stimulator. Programming becomes 
especially important if the DBS lead does not precisely hit its 
target because stimulation that spreads away from the intended 
target region may lead to psychiatric and motor side effects 
(Volkmann et al 2002, Krack et al 2003, Appleby et al 2007, 
Rossi et al 2016). Even with state-of-the-art surgical techniques, 
it is typical to see a deviation from the target area of 2 mm in 
lead placement (Mobin et al 1999, Patel et al 2002, Burchiel 
et al 2013). Additionally, the brain itself can shift by 2 mm to 
4 mm during surgery, especially after the first lead in bilateral 
DBS surgery has been implanted (Winkler et al 2005, Khan 
et al 2008, Hunsche et al 2009, Walter et al 2009, Pallavaram 
et al 2010). In the case of DBS for Parkinson’s disease (PD) 
patients, for both subthalamic nucleus (STN) and globus pal-
lidus pars interna (GPi) targets, if the distance from the target 
is greater than 3 mm, the electrode does not reach any portion 
of the area physiologically defined as optimal. Unfortunately, 
such placement errors have been reported to occur in over 40% 
of implantations (Guridi et al 2000, Okun et al 2005, Ellis et al 
2008, Rolston et al 2016).

Cylindrical contacts produce nearly spherical regions of 
axonal stimulation, which are distorted based on the level of 
anisotropy in the surrounding tissue. Regardless, such cylin-
drical electrodes are ill-equipped to steer stimulation back into 
a target structure that was missed during surgical implantation. 
The prevalence of lead placement deviation has motivated the 
creation of directional DBS electrodes. With a greater number 
of smaller contacts, directional leads can generate asym-
metric stimulation profiles and steer stimulation back toward 
a missed target. However, the increasing complexity of direc-
tional leads compounds the clinical difficulty and time burden 
associated with their programming.

The objective of this paper is to create an automated 
method for optimal parameter selection that can compute 
patient-specific contact settings and configurations in near 
real-time. The algorithm has the ability to target and avoid 
nuclei and/or fiber targets while limiting charge density to safe 
levels (<30 µC cm−2) as mandated by the U.S. Food and Drug 
Administration (FDA) (McCreery et al 1990, Shannon 1992). 
The algorithm can be used for a variety of lead designs and 
computes contact configurations using pre-computed finite 
element method (FEM) solutions of the electric potential dis-
tribution, taking into account a patient’s lead position, as well 
as the anisotropic tissue conductivities measured from diffu-
sion tensor imaging (DTI). Quick programming results are 
possible through use of the activating function approximation, 
based on the second spatial difference of voltage along an 
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axon, to estimate neuronal activation (McNeal 1976, Rattay 
1986, Warman et  al 1992, McIntyre et  al 2004). To extend 
the activating function approximation to 3D space, we used 
the Hessian of the electric potential: a matrix of all second-
order partial derivatives with respect to space. The methods 
developed in this paper can be used to target either (i) nuclear 
regions in the brain or (ii) fiber tracts. For both objectives, we 
develop a family of constraints that, when enforced, simulta-
neously avoid other regions or fiber tracts that might not be 
desirable to stimulate, based on disease state.

As DBS programming remains a manual process, sifting 
through the parameter space is already a difficult and time-
consuming task for leads with cylindrical electrodes and even 
more complex for directional leads. Our approach to DBS 
parameter optimization can accommodate new directional 
leads and compute contact configurations for these complex 
lead designs in near real-time, thus lowering the barrier of 
programming complexity for novel directional leads. A major 
goal of our automated, patient-specific DBS programming 
algorithm is to reduce programming time for all lead designs 
and to individualize DBS therapy.

2. Materials and methods

We tailored the optimization algorithm to an example patient 
using MRI to locate relevant neural targets and DTI to gen-
erate anisotropic tissue conductivities and tractography. In a 
typical DBS implant patient, MRI data and postoperative CT 
are used to determine lead location, but for this study, we used 

the atlas brain created from patient data as defined in Wakana 
et al (2004) as a model patient to demonstrate the capabilities 
of the optimization algorithm.

2.1. Finite element method (FEM)

We used the finite element method (FEM) in SCIRun 4.7 (SCI 
Institute, University of Utah, Salt Lake City, UT) to solve the 
bioelectric field problem for three lead designs: the Medtronic 
3389, direct STNAcute, and the Medtronic-Sapiens, which 
have 4, 8 and 40 contacts, respectively (figure 1). We chose 
these three lead geometries to explore algorithm performance 
because the Medtronic 3389 is commonly used clinically, and 
the direct STNAcute and Medtronic-Sapiens designs have 
been implanted in human patients (Contarino et al 2014, Pollo 
et al 2014). For each lead design, a tetrahedral mesh was gen-
erated inside a 100  ×  100  ×  100 mm cube, with the lead in 
the middle of the cube. The mesh was generated in SCIRun 
using the interface module to TetGen (Si 2015), in which the 
surfaces of the leads and node locations with 0.1 mm resolu-
tion on a 20  ×  20  ×  20 mm regular grid were pre-defined. The 
resulting tetrahedral FEM mesh consisted of ~ 9 million nodes 
and ~52 million elements. At a resolution of 52 million ele-
ments, we saw convergence of both the solution of the electric 
potential and the related second difference. When we com-
pared the electric potential linearly solved over the mesh of 52 
million elements to a cubically solved mesh of 2.5 million ele-
ments, the electric potential had a relative error of 0.01%. Most 
of the nodes were distributed densely around the electrode 

Figure 1. Review of clinical DBS leads and emerging directional DBS technology. (A) FDA-approved lead designs include the Medtronic 
3387/3389, the eight-contact Abbott Infinity lead and the eight-contact Boston Scientific lead. For both eight-contact leads, the middle two 
electrodes are segmented into three smaller contacts; dimensions can be found above. (B) Additional directional leads that have not yet 
been approved by the FDA, but have been implanted in human patients for testing. Leads include the eight-contact direct STNAcute and the 
40-contact Medtronic-Sapiens lead. (C) Additional lead designs that have not been implanted into human patients include the 16-contact 
segmented lead from Buhlmann et al (2011) and the micro-array based DBS lead, the µDBS, with 1760 contacts, from Willsie and Dorval 
(2015a). (D) Cross-sections of the DBS electrodes. (i) Axisymmetric ring contacts, as seen in the Medtronic 3387/3389 and other cylindrical 
contacts on directional leads. (ii) Axisymmetric ring contacts segmented into three smaller contacts, as found on the Abbott directional lead, 
Boston Scientific directional lead, and the direct STNAcute. (iii) Four contacts per rotation can be found in the Medtronic-Sapiens and the 
segmented lead from Buhlmann et al (2011). (iv) Plus-shaped cross-section found on the µDBS lead, with 32 contacts per rotation.
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boundaries. Isotropic conductivities were used for each lead 
geometry, with electrode contacts set to σ  =  1  ×  106 S m−1 
and the shaft set to σ  =  1  ×  10−10 S m−1 (Wei and Grill 2005, 
Miocinovic et  al 2006, Zhang and Grill 2010). Anisotropic 
conductivities for the surrounding tissue were derived from 
DTI. We solved the Poisson equation (equation (1)) to calcu-
late electric potential (Ve) at every node in the 3D space under 
Dirichlet boundary conditions given conductivity tensors (σ) 
and a single source at the center of each contact (i) (Butson 
and McIntyre 2005, Butson et al 2007a).

∇ · σ∇Ve = −i for x inΩC

∂ΓVe = 0 for x inΓNeu

Ve = Ve,0 for x inΓDir.
 (1)

Here, ΩC is the volume of the FEM mesh and ΓNeu is its 
outer boundary. For voltage-controlled stimulation, Ve,0 
is the stimulation voltage, ΓDir  =  {x0}, i.e. the position 
of the voltage source inside the active contact, and i  =  0. 
For  current-controlled stimulation, ΓDir is an empty set and 
i  =  I0δx0 is a point current source of strength I0 at position 
x0. We solved the forward problem for each individual con-
tact at  −1 V to form a set of bioelectric field solutions for 
each lead. We then took advantage of the system’s linearity 
to approximate all possible combinations of active contacts 
through the principle of superposition.

2.2. Conductivity tensors

We used DTI to improve the accuracy of our FEM model 
by incorporating anisotropic tissue conductivities. The 
use of anisotropic conductivities contributes to the patient 
specificity of the model. As a result, we obtain a non-
symmetric voltage distribution. Additionally, ignoring 
heterogeneity can reduce a model’s predictive ability of 
neural activation (Hyde et al 2012, Howell and McIntyre 
2016). We used the volume-normalized approach to pro-
cess the tensor data following equation (2) (Güllmar et al 
2010, Opitz et  al 2011, Schmidt and van Rienen 2012, 
Rampersad et al 2014).

σaniso = D
diso

3
√

d1d2d3
. (2)

The volume of each anisotropic conductivity tensor, D, was 
derived from DTI data and was scaled to the equivalent 
volume of an isotropic conductivity tensor for the isotropic 
conductivity, diso, to obtain anisotropic conductivity tensors, 
σaniso. Therefore, D was scaled by the ratio of the diso to the 
cubic root of the product of the eigenvalues, dk. The chosen 
isotropic conductivity was 0.2 S m−1, a value commonly used 
for brain tissue conductivity (Ranck 1963, Wei and Grill 2005, 
Zhang and Grill 2010).

Figure 2. Constructing the patient-specific finite element model for a DBS patient for Parkinson’s disease with the STN as the target. (A) 
T1-weighted MRI sagittal and axial slices shown with the segmented STN (green) and thalamus (yellow). (B) A tensor field generated 
from DTI MRI demonstrates anisotropic flow through brain tissue; yellow coloring indicates high anisotropy while black coloring indicates 
isotropy. (C) The FEM model incorporates heterogeneous tissue conductivities from DTI MRI to capture anisotropic voltage spread through 
neighboring brain tissue. (D) Tracts from the IC, containing cortico-motor axons, were generated from a seed region placed laterally from 
the STN. A total of 708 IC trajectories were generated from diffusion tensors shown in panel B and had a minimum fractional anisotropy 
value of 0.15. (E) Multi-compartment cable models were solved for each IC trajectory to quantify activation by optimized settings produced 
by the algorithm. The stimulus waveform consists of a 90 µs cathodic pulse, followed by a 100 µs delay, then a 900 µs anode pulse at 10% 
of the cathodic voltage. An example spike train can be seen for 130 Hz stimulation at  −1 V.
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2.3. Patient imaging data

2.3.1. Segmentation. To apply the optimization algorithm 
on a patient-specific level, the target area must be precisely 
defined for that patient. The target area was segmented from 
the patient atlas MRI (figure 2) (Wakana et al 2004). The cho-
sen target for this study was the STN, a common target for 
DBS treatment of Parkinson’s disease (Limousin et al 1998). 
Using the STN as the neural target makes for an ideal example 
since it shares a boundary with the internal capsule (IC), a 
bundle of white matter tracts that are associated with nega-
tive side effects if stimulated (Ashby et al 1999, Tamma et al 
2002, Krack et al 2003).

2.3.2. Tractography. We generated deterministic tractogra-
phy from DTI tensor data taken from Wakana et  al (2004) 
and used a deterministic streamline algorithm in 3D Slicer 
(Fedorov et al 2012) to determine fiber trajectories of the IC. 
The 708 trajectories were generated from a seed region of size 
5 mm  ×  2 mm  ×  1 mm lateral from the STN, and diffusion 
tensors had a fractional anisotropy value of 0.15 or greater 
(Chaturvedi et al 2010, Makris et al 2016). Additionally, we 
used a stopping track curvature of 0.4, an integration step 
of 0.5 mm, and restricted the minimum and maximum path 
lengths to 15 mm and 400 mm, respectively. We would also 
like to point out that our representation of the IC is only a 
small portion of the whole IC, which is a large white matter 
structure in which critical sensory and motor pathways travel 
to and from the cerebral cortex.

2.4. Neural activation

2.4.1. Activating function approximation. Realistic multi-
compartment cable models are excellent tools with which to 
predict activation of a variety of fiber types with applied intra-
cellular or extracellular stimulation (McIntyre et  al 2002). 
However, generating the solutions of such cable models is 
time-consuming and does not align with our goal of creating 
a real-time optimization algorithm. Conveniently, extracellu-
lar electrical stimulation can be approximated by the second 
spatial derivative of the electric potential along the nodes of 
Ranvier of an axon (Rattay 1986, 1999). The activating func-
tion approximates the depolarizing influence of stimulation 
along an axon, and neural activation can be estimated from 
the second difference threshold corresponding to the start of 
axon firing. Using the second difference threshold to approxi-
mate activation may not fully capture the behavior of neurons, 
and could result in either overestimation or underestimation 
of neuron activation, but we attempted to limit the error in our 
estimates of neural activation by verifying the activating func-
tion threshold with cable models.

We determined the activating function (A.F.) by calculating 
the second spatial difference of extracellular potentials, Ve,n, 
at the nth node of Ranvier. The second difference was taken 
across neighboring nodes of Ranvier, at n  −  1 and n  +  1, 
with an internodal spacing of Δx (equation (3)). We used a 
scaled version of the activating function (S.A.F.) that removes 
the denominator, Δx2, to generalize neural activation in our 

model of optimization (equation (4)) (McIntyre et  al 2004, 
Butson and McIntyre 2006, Martens et al 2011).

A.F. =
Ve,n−1 − 2Ve,n + Ve,n+1

∆x2 (3)

S.A.F. = Ve,n−1 − 2Ve,n + Ve,n+1. (4)

The activating function is able to approximate activation only 
along a 1D fiber. To approximate neural activation in a 3D 
space, we use the Hessian matrix (equation (5)) of second 
spatial partial derivatives of the electric potential. The second 
derivative of the function Ve at location x in the direction of 
the unit vector u(x) can be written using the inner product, as 
in equation (6).

H =




∂2Ve
∂x2

∂2Ve
∂x∂y

∂2Ve
∂x∂z

∂2Ve
∂x∂y

∂2Ve
∂y2

∂2Ve
∂y∂z

∂2Ve
∂x∂z

∂2Ve
∂y∂z

∂2Ve
∂z2


 (5)

∂2Ve

∂x2 = u(x)TH(x) u(x). (6)

The Hessian of the electric potential data was computed on a 
20  ×  20  ×  20 mm cube around the lead with an 0.1 mm reso-
lution. We included the grid points on which we calculated the 
Hessian as nodes in the 3D mesh, so that the electric potential 
could be solved directly at those nodes in the FEM forward 
solution. While the Hessian was calculated at all node points 
on the grid, the optimization algorithm excluded Hessian 
values on nodes that were located within the lead body.

The use of the Hessian matrix enables us to generalize the 
activating function to predict activation along not only fiber 
tracts but also boundaries of nuclei—a novel application of 
the activating function that we discuss further in section 2.6.1. 
We also note that because the Hessian is a linear derivative of 
electric potential, the principle of superposition can be applied 
to the Hessian as well, to approximate neural activation for all 
combinations of contact configurations and settings.

2.4.2. Verifying neural activation using NEURON. To verify 
our approximation of neural activation using the activating 
function, we built multicompartment cable models for each 
IC trajectory in NEURON 7.4. The IC fibers were modeled as  
10 µm diameter, myelinated axons with nodes of Ranvier, 
paranodal, and intermodal sections explicitly defined (McIntyre 
et al 2002, Chaturvedi et al 2010). Electric potentials calculated 
from the FEM model were interpolated onto the multicompart-
ment cable models, to determine whether algorithm-determined 
DBS settings resulted in action potential generation in the IC 
fibers. Transmembrane currents are implicitly calculated by 
NEURON as part of the extracellular mechanism. In the cable 
models, we set frequency and pulse width to 130 Hz and 90 µs 
to simulate typical DBS settings. The biphasic pulse consisted 
of a 90 µs cathodic pulse followed by a 100 µs interpulse inter-
val and a charge-balancing 900 µs anodic pulse at 0.1 of the 
cathodic amplitude (figure 2(E)). In our study we used a 90 µs 
pulse width, as an example of a typically used setting and for a 
more conservative approximation of neural activation.

J. Neural Eng. 15 (2018) 026005
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2.5. Optimization problem

Our algorithm has the ability to accommodate programming 
guidelines that include any combination of the following: (1) 
target nuclei; (2) avoid nuclei; (3) target fiber tracts; (4) avoid 
fiber tracts, and; (5) limit charge density. The  patient-specific 
model used in this study to simulate programming is an example 
DBS patient in which we simulate Parkinson’s disease, with the 
nucleus of interest being the STN. Additionally, we include the 
thalamus as a nucleus of avoidance and the IC as a fiber tract 
of avoidance. In our example patient STN DBS scenario, we do 
not have a fiber tract of interest as it is difficult to generate trac-
tography data for basal ganglia structures with the DTI resolu-
tions that can be achieved with a 1.5 T scanner. This might be 
possible in the future, with higher resolution scans.

For safety purposes, we determined the maximum 
allowable voltages that would keep charge density below  
30 µC cm−2 for each electrode for the frequency of 130 Hz 
and pulse width of 90 µs (McCreery et  al 1990, Shannon 
1992). To establish the maximum allowable voltages, we 
either drew clinical impedance values taken from the litera-
ture if available, or calculated the impedance values from the 
FEM model. To keep the charge density below the maximum  
30 µC cm−2 charge per phase, we used a conservative imped-
ance value of 500 Ω for the Medtronic 3389, calculated the 
direct STNAcute to have an impedance value of 1.5 kΩ, 
and used the reported impedance value of 2.5 kΩ for the 
Medtronic-Sapiens (Butson et al 2006, Contarino et al 2014, 
Pollo et  al 2014). It is important to note that these imped-
ance values are at the lower end of clinical impedance values 
(Satzer et al 2014), so providing more conservative estimates 
for optimal contact amplitudes and configurations, since a 
lower impedance value allows a greater spread of the electric 
potential into the tissue.

We placed leads so that the equivalent center of the most 
distal contact of the Medtronic 3389 was located at the cen-
troid of the STN. An alternate position, in which the lead 
was displaced 2 mm in the lateral direction, was chosen as 
a typical, yet challenging, lead placement in which the lead 
is positioned problematically close to the IC, a fiber tract of 
avoidance in our patient model.

2.6. Optimization algorithm

In DBS, the goal is to increase therapeutic benefit by stimu-
lating a target region while limiting stimulation spread to 
other areas that might be responsible for side effects. Such 
a scenario fits problems that can be solved through linear 
convex optimization by maximizing an objective function, 
neural activation in our case, subject to constraints such as 
limiting stimulation of regions inducing side effects. We use 
the interior point method of linear convex optimization to 
determine ideal contact configurations and contact amplitudes 
based on neural targeting criteria. We use CVX, a package for 
MATLAB for the defining and solving of such convex optim-
ization problems (Grant and Boyd 2008, 2014).

2.6.1. Definitions. We optimize the selection of active con-
tacts in each lead for n individually controllable contacts. The 
algorithm has the ability to target a nucleus, a user-defined 
volume, or fiber tracts by maximizing the activating function 
over the region. Similarly, activation in an area can be avoided 
by keeping the second difference value along the boundary 
of a region below a threshold, α. The threshold, α, which 
we refer to as the sensitivity parameter, represents the scaled 
activating function in units of millivolts (equation (4)). We 
also keep the charge density within the safety limits for each 
electrode. It is important to impose charge density constraints 
since smaller electrode designs generally have higher contact 
impedance values, and certain combinations of settings can 
result in charge density values that exceed 30 µC cm−2 on the 
surface of a contact.

To either target or avoid neural regions, we use a set of 
equations  to manipulate the Hessian matrix, Hi , to generate 
voltage values, ci, for each contact, i, out of n individually 
controllable contacts. To target a nucleus or a user-defined 
region, Ω, we maximize the targeting objective function dΩ 
(equation (7)), the sum of the eigenvalues of Hi  averaged over 
region Ω. This objective function quantifies activation in all 
principal directions to accommodate multiple possible fiber 
orientations within nuclei.

Nucleus/Region Targeting

dΩ(c) =
n∑

i=1

ci
|Ω|

∫
Ω

3∑
k=1

λk (Hi(x))dx. 
(7)

In order to limit activation of a nucleus or user-defined region, 
we limit the maximum eigenvalue as defined in the avoidance 
function, eΩ (equation (8)), below a threshold at each point 
along the boundary of the nucleus or region. The maximum 
eigenvalue corresponds to the maximal second spatial deriva-
tive in the region of interest, so that limiting this value below 
the sensitivity parameter, α, corresponds to a reduction in 
firing throughout the entire region. In order to fully suppress 
firing in the region, the parameter α must be chosen to cor-
respond to the threshold of the first firing of neurons represen-
tative of that region. Selection of the sensitivity parameter is 
explored in section 3.1.

Nucleus/Region Avoidance

eΩ (x, c) = λmax

(
n∑

i=1
ciHi(x)

)
� α for every x inΩ.

 (8)
Finally, we interpret that the functions fv,Ω and gv,Ω measure 
the second difference along a fiber tract in the direction of 
vector v(x). The vectors, v, are derived from tractography 
data and must have a magnitude that corresponds to the dis-
tance between the flanking nodes of each node of Ranvier for 
the fiber tract of interest. For example, the distance between 
flanking nodes for a 10 µm fiber is 2.3 mm (McIntyre et al 
2002). In order to target a fiber tract, one must maximize the 
objective function fv,Ω (equation (9)), and to avoid a given 
fiber tract, one must limit the avoidance function gv,Ω (equa-
tion (10)) below the sensitivity parameter. It’s important to 
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note that in equations (9) and (10), x is a node point on the 
20  ×  20  ×  20 mm grid in the fiber tract region, Ω. The fiber 
tract region is represented as a vector field, in which direc-
tionality vectors from the fiber tracts were interpolated onto 
the grid nodes.

Fiber Targeting

fv,Ω(c) =
n∑

i=1

ci
|Ω|

∫
Ω

v(x)THi(x)v(x)dx. 
(9)

Fiber Avoidance

gv,Ω (x, c) =
n∑

i=1
ci v(x)THi(x)v(x) � α for every x inΩ.

 (10)
If firing occurs at one point along an axon, the entire axon is 
seen as activated because action potentials will rapidly spread 
from the point of action potential generation. In order to prop-
erly constrain such activation in a nucleus or along a fiber 
tract (equations (8) and (10)), the algorithm must check that 
the second difference is below the sensitivity parameter α at 
every point x in the region of interest, Ω. If there is no charge 
present inside the region of interest, it is sufficient to check 
only around the outer boundary, to reduce computation time. 
Node-by-node checking for activation increases computation 
time, but is necessary to avoid regions that may be responsible 
for side effects when stimulated.

2.6.2. STN DBS optimization paradigm. The algorithm fol-
lows the paradigm in which targeting involves maximization 
of either equation  (7) or (9) and region avoidance involves 
keeping the second difference values in equations (8) and (10) 
below a threshold. The optimization algorithm is able to con-
sider any combination of the above equations, including mul-
tiple instances of the same equations for different regions or 
fiber tracts. To demonstrate a potential programming case for 
the optimization model, we used the patient-specific example 
of STN DBS in which we employed equation  (7) for STN 
activation, equation (8) for thalamus avoidance, equation (10) 
for IC avoidance, and a 30 µC cm−2 charge density constraint, 
using the following set of equations:

maximize dΩSTN(c) whereΩSTN is the physical region the STN occupies

subject to 0 � c � cmax where cmax obeys c.d. = 30µC cm−2

eΩThal (x, c) � αThal for every x in the thalamus region,ΩThal

gv,ΩIC (x, c) � αIC for every x in the IC region,ΩIC.
 (11)
We chose these targeting and avoidance constraints to dem-
onstrate the capabilities of the optimization algorithm; we do 
not make claims as to which regions are optimal or suboptimal 
for therapeutic stimulation. More studies will have to be con-
ducted to explore optimal stimulation targets, and we hope 
that our algorithm can eventually be used as a tool in such 
studies, to precisely stimulate or avoid neural targets.

3. Results

We ran our algorithm for three lead designs: the Medtronic 
3389, the direct STNAcute, and the Medtronic-Sapiens 
(figure 1). The atlas brain (Wakana et  al 2004) serves as 

the patient-specific model in which we targeted the STN, 
avoided the thalamus and IC, and limited the charge density 
as an example programming application of the algorithm. 
We assessed algorithm performance in two DBS lead posi-
tions, one in which the DBS lead was centrally placed in the 
STN, and another in which the lead was placed 2 mm laterally 
(figure 3(A)). We included the 2 mm lateral placement case 
to simulate a challenging lead placement adjacent to the IC. 
The distance of 2 mm was chosen to represent typical lead 
positioning deviations that might result in well-characterized 
side effects through stimulation of the IC (Ashby et al 1999, 
Tamma et al 2002, Krack et al 2003).

3.1. Sensitivity threshold parameter

When not considering the many possible combinations of tar-
geting and avoidance criteria for nuclei and fiber tracts, the 
optimization algorithm has two free numerical parameters: 
the maximum programmable contact voltage and the sensi-
tivity parameter, α. The maximum allowable contact voltage 
is determined by voltage values that meet the criterion that 
charge density per phase should be below 30 µC cm−2. 
For this study, those values were calculated to be 10 V for 
the Medtronic 3389, 5 V for the directional contacts of the 
direct STNAcute, and 3.4 V for the Medtronic-Sapiens. The 
maximum allowable voltage decreases in the directional leads 
because smaller-sized contacts have larger impedance values 
and, as a result, voltages must be reduced appropriately to stay 
within the charge density constraints.

The second free parameter in the algorithm is the sensi-
tivity α, which represents a user-input value corresponding 
to the first firing of neuron fibers. This value is analogous to 
the activating function threshold value, which can vary based 
on fiber diameter, distance to fiber, and the orientation of the 
fiber paths (McIntyre et al 2002). A variety of threshold values 
could apply to a patient, based on the neurons of interest, but 
based on values in the literature we estimate this threshold to 
be within a range of 5–30 mV (Rattay 1986, McIntyre et al 
2004, Martens et al 2011).

For the STN DBS case at hand, we determined a reason-
able sensitivity parameter based on the second difference 
value, which corresponded with the initiation of IC firing 
using the Medtronic 3389 for both the STN center and STN 
lateral positions (figure 3(B)). When the second difference 
was greater than 20 mV, the IC capsule fibers began to fire. 
The second difference profile with the directional electrodes is 
more complex since the field can be highly asymmetric along 
a fiber tract. The impact of complex contact configurations on 
the second difference has not been well studied for directional 
electrodes.

We explored how the sensitivity parameter altered the 
output configuration of the algorithm for the Medtronic-
Sapiens lead (figure 3(D)). As the sensitivity parameter was 
lowered, either fewer contacts were turned on or the same 
contacts were turned on at lower amplitudes. As the sensi-
tivity input parameter was adjusted, the size of the stimula-
tion field changed, but the directional shaping of the field was 
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conserved. It can be seen that in the centrally placed case, 
contacts facing all directions on the Medtronic-Sapiens were 
utilized. However, in the lateral case, the contacts (colored 
purple, blue, and green) that face the STN were preferentially 
activated over the orange contacts that face the IC.

3.2. Optimal configurations for cylindrical and directional 
electrodes

We ran the optimization algorithm for the STN DBS patient 
model in the center and lateral positions. For this patient DBS 
model, we maximized activation of the STN by maximizing 
equation (7), which corresponds to the sum of the eigenvalues 
within the STN region. Due to the convexity of the optim-
ization problem, results from each optimization run represent 
unique contact configurations and contact amplitudes based 
on the target and avoidance criteria chosen. The resulting con-
tact configurations and amplitudes are consistent across every 
re-run of the optimization algorithm.

In our optimization paradigm, maximization of STN acti-
vation is constrained by keeping the activating function on the 
IC and the thalamus below the sensitivity threshold, α. In the 
centrally placed DBS lead condition, figure 4(A) shows the 
optimal contact configurations and amplitudes in 2D illustra-
tions. For the center placement, since contacts 0 and 1 of the 
Medtronic 3389 are located inside the STN, the optim ization 
algorithm determined they are most effective in stimulating 
the STN and set contacts 0 and 1 to approximately  −1 V  
each. In the directional leads, the lateral contacts that face 
the IC are minimally used. For the 2 mm lateral placement, 
very little of the STN is activated with the Medtronic 3389; all 
four contacts turn on at minimal voltages since they cannot be 
programmed at greater amplitudes without activating the IC. 
Considering the lateral position for both the direct STNAcute 
and the Medtronic-Sapiens, usage of the lateral contacts is 
avoided, thus steering the stimulation spread back to the STN.

Activation volume was calculated by measuring the 
volume that fell within the 20 mV isosurface of the maximum 

Figure 3. Exploration of the sensitivity parameter, α. (A) Leads were placed centrally and 2 mm laterally of the STN to simulate ideal 
targeting and typical variation in lead positioning. (B) Selection of parameter α by finding the activating function threshold (20 mV) which 
corresponds to firing in the IC using the Medtronic 3389. (C) 3D and 2D visualization of Medtronic-Sapiens with contacts colored to 
represent direction, and shading to represent distal (darker) or proximal (lighter) position on the lead. The colors each represent a contact 
on the Medtronic-Sapiens and, similarly, each line color in part D represents the contact assigned that color in part C. (D) Algorithm-
determined contact configuration and voltage changes based on the sensitivity parameter in both lead positions. (i) In the STN center 
position, contacts in the bottom rows, which are positioned either inside or near the STN, turn on at varying levels depending on the value 
of the sensitivity parameter. Fewer contacts are turned on at lower amplitudes if the sensitivity parameter is lower, thus generating more 
conservative contact settings. (ii) In the lateral case, the lateral contacts, which are facing the IC (colored orange) are kept off or low to 
avoid IC stimulation. The sensitivity parameter changes the contact amplitudes but the configuration pattern used to steer stimulation away 
from the IC is maintained across all parameter values.
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eigenvalue of the Hessian matrix and excluded the lead shaft; 
activation volume comparisons across leads are shown in 
figure 4(B). For the central STN position, the Medtronic 3389 
was able to activate 39.9% of the STN, whereas the directional 
leads, the direct STNAcute and Medtronic-Sapiens, were able 
to activate 62.9% and 57.1%, respectively. When the lead was 
placed into the lateral position, 2 mm closer to the IC, the 
Medtronic 3389 was unable to activate a reasonable amount 
of STN—only 2.9%—without also activating the fibers we 
isolated from the IC. In contrast, the directional leads were 
able to activate a substantial amount of the STN: 39.5% for 
the direct STNAcute and 56.8% for the Medtronic-Sapiens. 
For the Medtronic-Sapiens, the amount of STN activated is 
indistinguishable from the center position, demonstrating that 
judicious contact selection can compensate for lead placement 
deviation.

We evaluated the algorithm-determined settings by 
ramping the amplitudes from 0% to 300% and measuring 
levels of STN activation and IC activation in the NEURON 
models, as shown in figure 4(C). As the values suggested by 

the algorithm were scaled below 100%, the amount of STN 
activation decreased toward zero. As the amplitudes were 
increased past 100%, the amount of STN activation increased 
at the expense of additionally activating IC fibers we isolated 
with tractography. Additionally, when the amplitudes were 
increased past the suggested values, charge density limits 
were exceeded in the directional electrode cases. Through this 
analysis, we determined that the setting produced by the algo-
rithm finds a balance between maximizing target activation, 
complying with charge density limits, and limiting activation 
of undesired regions that might induce side effects.

While the results throughout the paper are for voltage-
controlled stimulation, the algorithm is independent of the 
methods used in the FEM solution calculation, and principally 
independent of using voltage or current control. However, 
showing both voltage and current values may be valuable 
since new directional leads primarily use current-controlled 
stimulation. The algorithm-determined, optimal voltage set-
tings are listed in table 1 along with the corresponding multi-
channel, independent current control results for each contact. 

Figure 4. Validation of algorithm-determined optimal settings. (A) 2D visualizations to show active contacts for the STN center and 
lateral positions; coloring is based on voltage amplitude. (B) Directional leads were able to activate over 50% of the STN compared to 
the Medtronic 3389 for the center placement. The direct STNAcute activated more STN than the Medtronic-Sapiens, potentially due 
to the favorable orientation of the directional contacts; only one column of directional contacts faces the IC. For the lateral placement, 
the Medtronic-Sapiens electrode was able to activate a similar STN volume as in the centrally placed lead case while the other leads 
experienced reduced STN activation, especially for the Medtronic 3389 at 2.9%. (C) Contacts were ramped in amplitude to verify that the 
algorithm produces optimal settings given the constraints used. Lowering the amplitudes results in less STN activation, but increasing the 
amplitudes past optimal elicits IC activation. Data points represented by an ‘x’ notation mean the contact configuration exceeds safe charge 
density limits.
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The relationship between the voltage and current control 
results is dependent of the impedance of each electrode con-
tact. A lower impedance value, as used in this study, will result 
in a larger current draw across the electrode. A low impedance 
model would more likely represent the acute period imme-
diately after implantation, while a higher impedance model 
would represent stimulation observed in the weeks or months 
afterward.

3.3. Targeting constraints

At minimum, one targeting constraint must be used—for 
example, targeting a nucleus of interest—and any additional 
constraints thereafter will be used for increased targeting spec-
ificity. In this section, we investigate how the use of targeting 
constraints alters the results of the optimization algorithm.

The constraints we used for this example patient were: 
targeting the STN, limiting charge density, avoiding the IC, 
and avoiding the thalamus. Figure 5 visualizes and quantifies 
the influence of various targeting constraints on contact con-
figurations, amplitudes, and the activation metrics. It is worth 
noting that when charge density is not controlled, contacts 
will be turned up to the maximum allowable voltage. In the 
absence of avoidance constraints, knowing the target region is 
sufficient for the selection of the contacts that are most useful 
in stimulating the target region. The addition of avoidance 
criteria increases specificity by reducing activation of certain 

areas outside the STN. In cases in which avoidance criteria 
were added, the contact configurations were adjusted to have 
fewer contacts enabled and/or voltage amplitudes on select 
contacts were reduced.

Minor changes to the contact configurations can result in 
drastic changes to field shaping, so smart selection of contacts 
can avoid certain regions altogether while still maintaining 
high levels of STN activation. For example, in the center 
placement case, when charge density is limited and there are 
no other avoidance constraints, STN activation is 68%, but IC 
activation is high at 81%. By adding the IC avoidance criteria, 
the activation volume is reduced by only 10%, but IC acti-
vation is reduced to 0%. Similarly, in the case of the lateral 
placement, activation of the STN is at 60% and IC activation 
is at 27%, but once the targeting constraints are added, 57% 
of the STN is still activated whereas no IC fibers are activated.

3.4. Computational efficiency

We used computational time measured across ten runs of the 
algorithm to quantify its efficiency. The optimization algo-
rithm runs in near real-time, ranging from 0.1 to 10 s based 
on lead complexity and the number of nodes that define tar-
geting regions. The algorithm was run on a personal computer 
with a 4.0 GHz quad-core Intel Core i7, 32 GB of RAM, and  
8 GB of 1867 MHz DDR3 memory. As the number of contacts 
increases, the computational time increases linearly, as seen 

Table 1. Algorithm-determined voltage control and current control optimal settings in units of volts and milliamps, respectively. Each pair 
of values represents voltage control and current control amplitudes for contacts, as shown and arranged in figure 4(A). C0–C3 indicates 
contacts labeled from the distal end to the proximal end in the Medtronic 3389 lead. R0–R3 and R0–R9 indicate rows of contacts for the 
direct STNAcute and Medtronic-Sapiens leads, respectively. In the direct STNAcute, R0 and R1 each have three columns, which represent 
the directional electrodes, while R2 and R3 have only one column, which represents the cylindrical contacts. Impedance values for the 
electrodes are approximately 500 Ω for the cylindrical electrodes, 1.5 kΩ for the direct STNAcute directional electrodes, and 2.5 kΩ for the 
Medtronic-Sapiens electrodes.

Voltage source (V)/Current source (mA)

Medtronic 3389 direct STNAcute Medtronic-Sapiens

STN Center Placement

C3 0.02/0.04 R3       0.0 R9       0.0       0.0    0.0      0.0
R8 1.03/0.42       0.0    0.0      0.0

C2      0.0 R2       0.0 R7       0.0       0.0    0.0      0.0
R6       0.0       0.0    0.0 3.4/1.41

C1 1.12/2.12 R1 5/3.37 1.37/0.92 0.39/0.26 R5       0.0       0.0 3.4/1.41      0.0
R4 1.09/0.46       0.0 3.4/1.22      0.0

C0 1.29/2.38 R0 5/3.28 5/3.32       0.0 R3 3.4/1.29 3.4/1.4 3.4/1.26      0.0
R2       0.0 3.4/1.38 3.4/1.43      0.0
R1 3.4/1.19 3.4/1.4 3.4/1.41      0.0
R0       0.0 3.4/1.36 3.4/1.42 2.4/0.98

2 mm Lateral Placement

C3 0.22/0.41 R3 0.21/0.4 R9 0.05/0.02 3.4/1.14    0.0 0.29/0.11
R8 0.05/0.02 0.84/0.34    0.0 0.27/0.11

C2 0.28/0.52 R2 0.24/0.45 R7       0.0       0.0    0.0 0.22/0.08
R6       0.0 3.4/1.38 3.4/1.41 0.5/0.21

C1 0.03/0.06 R1 3.16/2.13 1.05/0.7       0.0 R5 0.01/0 3.4/1.17    0.0      0.0
R4       0.0 3.4/1.39 3.4/1.41 0.23/0.1

C0 0.3/0.56 R0      0.0 3.77/2.5       0.0 R3 2.64/1 3.4/1.4    0.0      0.0
R2       0.0 3.4/1.38 3.4/1.43      0.0
R1 3.4/1.19 3.4/1.4    0.0      0.0
R0 1.25/0.5       0.0    0.0      0.0
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in figure 6. Additionally, each avoidance constraint adds com-
plexity to the algorithm proportional to the number of nodes 
over a region where the activating function must be checked 
to be below the sensitivity parameter. A longer computation 
time is needed for thalamus avoidance than for IC avoidance 
because the thalamus segmentation we used has about 44 000 
nodes compared to fewer than 7000 nodes for the IC. This 
computation time can be reduced by decreasing the number of 
points that belong to a region of avoidance while still main-
taining the shape of the region.

Computation time was approximately 0.1–0.2 s without 
any avoidance constraints. In most cases computation time 
was below 1 s, with the exception of the Medtronic-Sapiens 
case in which the thalamus was used as a constraint. Across 
all conditions tested, the algorithm computed an optimal 
 contact configuration quickly and without the need for high-
computing resources, demonstrating the feasibility of running 
this algorithm on a personal computing device.

However, it is important to note that preliminary work is 
necessary to build the FEM model, including the generation 
of MRI, CT, and DTI scans for the patient as well as the pro-
cessing required to segment nuclei, generate anisotropic con-
ductivities, identify lead placement, generate tractography, and 
build the finite element mesh. The construction of a patient-
specific finite element model takes several hours and manual 
interventions may be required. While many of the necessary 
steps can be performed automatically (e.g. image registration 
and FEM computations) or semi-automatically (image seg-
mentation, tractography, mesh generation), supervision and 
manual corrections are still necessary. Thus, it is important to 
keep in mind that for the algorithm to return patient-specific 
contact settings, a patient-specific model must first be built, 

and the time that must be taken to build the model will vary, 
depending on the complexity of the model. Our hope is that 
generic models can be developed that can offer quick results 
for most patients, together with more complex models for 
challenging programming scenarios.

4. Discussion

The success of DBS as a surgical therapy, and the emergence 
of novel DBS lead designs with increased numbers of con-
tacts, call for improved programming techniques that do not 
rely on manual programming. Our optimization model of DBS 
programming was applied to an STN DBS example patient 
and three lead designs: the Medtronic 3389 and two direc-
tional leads, the direct STNAcute and the Medtronic-Sapiens. 
We achieved our goal of creating an automated procedure 
for selecting contacts and their amplitudes so as to maximize 
activation of a target while obeying a variety of user-defined 
targeting constraints.

4.1. Targeting using directional electrodes versus cylindrical 
electrodes

An interesting result from our exploration of the optimization 
algorithm was the difference in targeting ability by each of 
the leads in the example scenario of targeting the STN for 
Parkinson’s disease. Even when the lead was placed centrally 
within the STN, both directional leads activated more STN 
volume (60%) than the Medtronic 3389 (40%). Thus, even 
for properly located leads, the directional leads activated an 
STN volume 50% greater than that activated by the Medtronic 
3389. This increase in activation can be attributed to the fact 

Figure 5. Contact configuration and voltages for the Medtronic-Sapiens using different targeting constraints. (A) Algorithm-determined 
settings for the STN center placement are similar in that distal contacts are active in all directions. The upper row shows contact 
configurations that do not account for charge density limits, so contacts are activated up to  −10 V, and thus fewer contacts are needed. 
When avoiding the IC tracts we generated, the laterally facing contacts are not used. (B) The contacts that face away from the IC are 
preferentially activated in the 2 mm lateral placement case. When charge density limits are considered, there is only a 3% reduction in STN 
activation when bringing the number of modeled IC fibers activated from 27% to 0%.
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that, even with the portion of the IC we modeled being located 
3 mm away, directional leads can still be used to avoid IC acti-
vation in the case of central lead placement. The ability of 
directional electrodes to steer stimulation is largely due to the 
selection of sources on the portion of the lead that faces away 
from non-target regions. The presence of the shaft creates an 
insulating barrier that limits electric potential spreading to 
areas behind the lead shaft.

A more generally accepted benefit of directional leads 
is apparent when the electrodes are not centrally placed 
in the target. We used an example case where the lead was 
moved 2 mm lateral of the STN center, and thus closer to the 
IC—a region associated with side effects when stimulated 
(Ashby et al 1999, Tamma et al 2002, Krack et al 2003). The 
Medtronic 3389 lead was unable to directionally steer stimu-
lation and could thus activate a mere 2.9% of STN without 
exciting regions inducing side effects. In contrast, the direct 
STNAcute and the Medtronic-Sapiens achieved 39.9% and 
56.8% activation of the STN, respectively. Thus, the direc-
tional leads could activate as much target tissue when they 
were 2 mm off-center as the cylindrical contacts could acti-
vate when they were precisely on target. The use of direc-
tional leads might help mitigate negative outcomes resulting 
from imperfect lead placement, if the contacts could be pro-
grammed appropriately.

The amount of STN activation will vary based on the radial 
orientation of the contacts in directional leads. Each directional 
electrode has a radial resolution, so changes to the radial ori-
entation of the contacts may either slightly improve or hinder 
targeting. The directional contacts on the direct STNAcute 
have a radial resolution of 60 degrees; the staggered arrange-
ment of contacts on the Medtronic-Sapiens gives the electrodes 
22.5 degrees of resolution (Martens et  al 2011, Pollo et  al 
2014, Rossi et al 2016). For the center placement, the direct 
STNAcute activated more STN volume because it was placed 
radially to maximize STN activation, since only one column of 
directional contacts faced the IC. A 60-degree rotation of the 
direct STNAcute might decrease the amount of STN activated 
and bring the amount of STN activation down to the level of 
the Medtronic-Sapiens for the center placement case.

4.2. Approaches to DBS programming

Historically, DBS programming has been performed pri-
marily through manual approaches that involve trial-and-error 
testing of settings. Clinicians who carry out programming 
operate using established protocols, and program within a 
range of recommended settings that have resulted in positive 
clinical outcomes in the past. For novel disorders, program-
ming might rely more on straightforward programming strat-
egies to fully explore the options of pulse width, frequency, 
and voltage combinations. For more established DBS treat-
ments, such as in STN DBS for Parkinson’s disease, the rec-
ommended protocols begin with commonly successful pulse 
width and frequency values, with voltage initially being the 
only free parameter that a clinician manipulates. Clinicians 
step up the voltage and observe whether or not there is a 

therapeutic benefit. Depending on the patient response, the 
clinician can further increase the voltage to maximize thera-
peutic benefit, or decrease voltage if the patient shows side 
effects. If the patient experiences only limited clinical ben-
efit, the pulse width and frequency can then be modified 
in the effort to improve clinical outcomes (Volkmann et  al 
2006). The process of trial-and-error programming is time-
consuming, ranging from 18 to 32 h across numerous post-
operative visits in the first year (Hunka et al 2005). Another 
challenge to trial-and-error programming is that, once a 
setting is changed, the patient’s symptoms do not change 
instantly (often referred to as the wash-in time). Depending 
on the patient, tremor, bradykinesia, and rigidity can take sec-
onds or several minutes to stabilize after a DBS setting is 
switched (Krack et al 2002, Temperli et al 2003). This leads 
to great difficulty in assessing whether clinician-determined 
settings are indeed effective in the treating symptoms of 
during the appointment window, and often requires multiple 
programming appointments.

The purpose of automated DBS programming algorithms is 
to provide a starting point for clinicians, in order to reduce the 
time burden and improve the accuracy of DBS programming. 
Such algorithms are based on the computational modeling of 
target structures and optimizing the spread of activation to 
target regions. Previous work has highlighted the use of the 
volume of tissue activated (VTA) as predictions of activation 
with NEURON models (Butson et al 2007a). The goal of the 
VTA is to visualize an activation volume for a set of DBS 
stimulation parameters. The VTA is built around NEURON 
models, which consider the nonlinear firing dynamics and 
temporal influences of pulse duration and frequency, to char-
acterize and visualize activation. However, using a NEURON 
model approach does not allow for fast optimization because 

Figure 6. Summary of computation times required for all lead 
designs, given different targeting constraints—typically 0.1–10 s. 
Running the algorithm for the Medtronic-Sapiens is the slowest 
because it has the largest number of contacts to optimize. The 
thalamus avoidance criteria substantially increase computation time 
because there are 44 000 thalamus nodes at which the algorithm 
must limit second difference values below the sensitivity threshold.
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the individual multicompartment cable models are slow to 
compute.

A number of software programs have been created to visu-
ally guide clinicians to reach therapeutic settings based on the 
representation of VTA spread in target and non-target areas 
(Frankemolle et  al 2010, Butson et  al 2013, Pourfar et  al 
2015). In order to visualize the VTA quickly, a database of all 
possible VTA shapes must be created for different amplitudes, 
pulse widths, and impedance values. To work around the com-
putational burden, groups have approximated the VTA with 
generic spheres known as a volume of activated tissue (VAT), 
in which the radius of the sphere is determined by a set of fit 
parameters (Mädler and Coenen 2012). The VAT, and now the 
VTA, are used in Lead-DBS software to visualize stimulation 
spread in DBS (Horn and Kühn 2015). Another technique has 
been developed to reduce computation time in estimating the 
VTA, using the radius information from pre-computed VTAs 
as the training set in an artificial neural network (Chaturvedi 
et al 2013). The use of the artificial neural network technique 
has been implemented in the StimVision clinical software 
tool to facilitate tractography-based DBS targeting (Noecker 
et  al 2017). The algorithms discussed above can quickly 
estimate activation volumes to help manual programming 
efforts, but they do not generate optimal contact configura-
tions and amplitudes based on patient-specific data. While 
the above approaches still rely on the manual determination 
of optimal settings, in the future these software packages 
could utilize these VTA approximations to produce optimal 
settings. One software package, StimExplorer, already pro-
vides recommendations of DBS parameters calculated from 
a pre-computed database of VTAs so that settings produce 
maximal volume inside a target while limiting stimulation 
outside the target (McIntyre et al 2006, Butson et al 2007a). 
However, this approach relies heavily on the pre-computation 
of NEURON models for all voltage, pulse width, and imped-
ance combinations.

To avoid pre-computation of NEURON models, the acti-
vating function is useful for approximating neuron firing. 
With this metric, one can use linear convex optimization, 
which was first introduced by Xiao et al (2016), for neural tar-
geting with directional DBS leads. The methods used in Xiao 
et al (2016) consider a few approaches in which the difference 
between the activating function and the maximal activating 
function for each contact is minimized. While using the linear 
convex optimization method is a quick way to compute set-
tings for multiple electrodes contacts, it relies on the calcul-
ation of the maximal activating function specific to a set of 
pre-defined fiber pathways. We expanded on this method by 
using manipulations of the Hessian matrix to approximate 
activation of nuclei in all directions, beyond a pre-defined 
neuron pathway. We additionally outlined a method using 
the Hessian for target avoidance, whether the target is a fiber 
tract or a nucleus. Other algorithms use particle swarm optim-
ization machine learning to identify contact parameters to 
maximize target activation, minimize side activation of side 
effect regions, and minimize power consumption (Peña et al 
2017). Unlike with linear optim ization methods, the solu-
tion of the particle swarm algorithm is able to minimize and 

maximize constraints simultaneously and, through the use of a 
Pareto front, to generate multiple contact configurations with 
varying levels of prioritization in targeting regions of interest, 
avoiding regions inducing side effect, and limiting power 
consumption. This offers flexibility by offering multiple solu-
tions in the same run. However, by using the machine learning 
approach, re-runs of the same criteria might not converge on 
the same results and have a run time in the order of several 
minutes.

Our approach used the second difference as an estimate 
of activation, so as to avoid the necessity of pre-computation 
with NEURON models. The only pre-computation that is 
required is of the voltage FEM solutions for each contact, 
which can be linearly combined to a multitude of possible 
parameter combinations. Using the second difference allows 
our algorithm to include a number of features, such as flex-
ibility with targeting criteria, patient specificity, and the gen-
eration and adjustability of results based on patient sensitivity 
in real-time.

4.3. Flexible targeting of nuclei, regions of interest,  
and fiber tracts

In this study, DBS for Parkinson’s disease, in which the target 
is the STN, was used to demonstrate the algorithm’s perfor-
mance. Targeting structures consisted of segmentations of the 
STN and thalamus and tractography of the IC from the atlas 
brain model. However, we emphasize that this algorithm can 
be applied to other DBS scenarios as well, such as for the 
globus pallidus pars interna (GPi) which is a target for DBS 
for Parkinson’s disease (Anderson et al 2005), as well other 
disorders such as essential tremor and dystonia (Benabid et al 
1996, Vidailhet et al 2005). While most movement disorders 
have nuclear targets, the algorithm can also accommodate 
programming for other disease states with fiber tracts as tar-
gets. These include: the fornix bundle for Alzheimer’s disease 
(Laxton et  al 2010, Laxton and Lozano 2013); the subcal-
losal cingulate (SCC) white matter, the inferior thalamic 
peduncle, the medial forebrain bundle, or the anterior limb of 
the IC for treatment-resistant depression (Jiménez et al 2005, 
Mayberg et al 2005, Malone et al 2009, Bewernick et al 2010, 
Schlaepfer et al 2013); and the medial dorsal tegmental tract 
(DTTM) for traumatic brain injury (Baker et al 2016).

We have enabled our algorithm to allow for any combi-
nation of targeting and avoidance constraints, whether the 
targets are a single nucleus, multiple nuclei, a user-defined 
region determined by a clinician, or fiber tracts. The flexibility 
in choosing targets and constraints allows the algorithm to be 
applied indiscriminately to a variety of neurological indica-
tions if the computational model is first constructed for them. 
If future clinical studies isolate regions of stimulation that 
correspond to positive outcome measures, we can use those 
regions as targets instead of nucleus boundaries. Additionally, 
because the algorithm is quick to compute, an adjustment of 
targeting parameters may be made in real-time, thus giving 
a clinician the option to toggle targeting constraints to see 
which might produce a better result for the patient. Quick 
targeting adjustments might not only enable better patient 
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treatment, but could also be used as a research tool to investi-
gate the influence of stimulation of specific regions on clinical 
outcome scores.

4.4. Patient specificity

The algorithm is based on a patient-specific FEM model gen-
erated from MRI and DTI patient data. Because the response 
to DBS might vary from patient to patient, the algorithm 
accommodates the unique qualities of a patient’s brain morph-
ology, nuclei size and shape, fiber tracts, tissue anisotropy, 
and lead placement (Deuschl et al 2003, Tarsy et al 2003, York 
et al 2009). Incorporating these elements allows for patient-
specific DBS settings tailored to optimize neuronal activation.

The level of patient specificity can be adjusted based on 
the patient information available. For example, many patients 
do not receive DTI scans because scans are expensive and 
time-consuming. As a result, it might not be possible to gen-
erate anisotropic tissue conductivities or tractography data for 
those patients. One possible solution would be to register an 
anisotropic atlas brain to the patient brain. However, as the 
complexity of the model grows, more time must be dedi-
cated to building the patient-specific model. Alternatively, 
it might be more desirable to simplify the FEM model, for 
example, by using isotropic tissue conductivities to develop 
robust yet generic models for quick application to patients. 
Simplification of the FEM model has been shown to reduce 
the accuracy of simulated electric potential spread, especially 
in the case of using isotropic conductivities (Chaturvedi et al 
2010, Howell and McIntyre 2016). Understandably, in simpli-
fying the patient model, there is a trade-off between speed in 
generating an optimal solution and accuracy of the solution.

4.5. Adjustability of optimized contact configurations  
and amplitudes

Because a number of assumptions underlie any computa-
tional model, it is possible that our model does not capture all 
qualities of patients and their responses to DBS stimulation. 
Therefore, we included the sensitivity parameter that allows 
for adjustments to contact configuration and amplitudes while 
conserving the shape of the stimulation fields. The sensitivity 
parameter should be viewed as a sliding scale that can be 
adjusted in real-time during programming. For safety pur-
poses, it should start low and be ramped up as tolerated by 
the patient. For example, some patients may be more sensi-
tive to stimulation than our model predicts, and side effects 
could arise earlier than expected; changes in sensitivity to 
stimulation could be the result of imperfect segmentation of 
nucleus geometries or poor estimation of activation thresholds 
of nearby fiber tracts. A decrease in the sensitivity parameter 
will result in more conservative contact settings, by reducing 
the amplitudes of the contacts being used and/or reducing the 
number of active contacts.

The sensitivity parameter is based on the activating func-
tion approximation and represents the threshold of firing. This 
threshold value can be selected based on literature values. 

The value varies depending on axon diameter and position, 
but commonly falls in the range of 5–30 mV (Rattay 1986, 
McIntyre et al 2004, Martens et al 2011). For the fibers we 
modeled as part of the IC, and given our stimulation param-
eters, we found the threshold to be 20 mV for our specific 
fiber type and orientation. In the future, it would be useful 
for studies to fully characterize the relationship between acti-
vating function and NEURON models, to serve as guidance 
for the sensitivity parameter selection. Some studies have 
already created guides to match activating function thresholds 
with NEURON models for a wide range of fiber diameters 
(Peterson et al 2011). However, such studies have looked only 
at axon activation due to stimulation fields produced by cylin-
drical electrodes in a single orientation. The second difference 
relationship is more complex when considering directional 
electrodes and asymmetric fields, and would become even 
more complex when looking at bipolar stimulation fields. 
Further experimental studies are needed to characterize the 
relation between second difference values and axon firing in 
the context of directional leads.

4.6. Real-time optimization results

The algorithm is able to perform in near real-time, taking only 
a few seconds to generate contact configurations that maxi-
mize target activation while obeying the imposed constraints. 
The time of computation largely depends on the number of 
contacts and linear elements that make up the nucleus and 
fiber regions. In the case of nucleus or fiber tract avoidance, 
the algorithm must conduct a pointwise check at each loca-
tion to verify that the second difference is below the sensi-
tivity threshold; a second difference value below threshold 
implies that the neurons in that region were not activated. As 
the number of points to check for the threshold crossings of 
the sensitivity parameters increases, the time to compute an 
optimal solution increases linearly. The algorithm’s approach 
to targeting any given region is to maximize the second differ-
ence averaged across that region; the implementation of aver-
aging over a region enables faster computation times.

In the example case we studied, the Medtronic-Sapiens 
was the slowest to compute in all conditions, due to its greater 
number of contacts. Additionally, the thalamus segmentation 
we used had about 44 000 boundary points and thus resulted in 
longer computation times when the thalamus was considered 
as a region of avoidance. In the future, the number of points on 
nucleus regions could be reduced while still maintaining the 
important features of the thalamus, to improve computation 
time. The contribution of nuclear regions and fiber tracts on 
computational time should be taken into consideration when 
setting up the patient-specific model to retain its near real-
time capabilities.

4.7. Limitations

The contact configurations and amplitudes are generated 
based on regions defined in the computational model. With 
any computational model, a number of assumptions must be 
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made. Errors in the segmentations of nuclei regions or the trac-
tography data can alter the results of the DBS programming 
algorithm, and the settings may not fully avoid regions when 
applied to the patient for this reason. To combat such devia-
tions, we added the sensitivity parameter to accommodate the 
differences that might exist between the computational model 
and the patient’s brain. Additionally, the algorithm is able to 
produce only amplitude settings and does not optimize fre-
quency or pulse width. Changes in the frequency and pulse 
width values can be compensated for through modification 
of the sensitivity parameter. The manner in which changing 
those DBS settings affects activation sensitivity could be esti-
mated from the literature or simulated with time-dependent 
multicompartment cable models in NEURON. Ultimately, 
more experimental research is needed, and we encourage 
future studies to characterize second difference thresholds for 
cylindrical and directional electrodes alike.

Another limitation is that the FEM solutions for each con-
tact must be computed in advance of running the programming 
algorithm. Pre-computing allows for the use of anisotropic con-
ductivities—enabling patient-specific programming—without 
reducing the efficiency of the algorithm. Pre-computing also 
allows quick access to spatial voltage data for each contact, 
and through this strategy, we are able to compute contact con-
figurations in near real-time. The full FEM solutions are pre-
computed, but only the data in a 20 mm  ×  20 mm  ×  20 mm 
region surrounding the lead is stored. Neural targets that 
fall outside this area cannot be considered by the algorithm 
because no stored voltage or Hessian solutions exist for those 
regions. However, nothing inherent to the algorithm limits 
us to saving data on a 20 mm  ×  20 mm  ×  20 mm grid. So, as 
computational power grows in the near future, the algorithm 
could optimize stimulation at the scale of the whole brain, for 
example, for both bilateral DBS leads at the same time. For the 
time being, this limitation has minimal impact on program-
ming configurations because it is unlikely that substantial 
stimulation will reach areas 10 mm away from the electrode.

The Medtronic 3387/3389 leads have approximately 
25 000 parameter combinations and 65 active electrode 
combinations (Kuncel and Grill 2004); it is unreasonable 
to assume that clinicians are able to sift through the entire 
parameter space and manually determine optimal contacts. 
Because the number of parameter combinations exponen-
tially increases with the addition of more contacts, manual 
programming becomes even more challenging. The goal of 
the optimization algorithm is not necessarily to produce an 
absolute setting, but rather to explore the parameter space 
quickly and provide guidance to programming clinicians for 
more efficient programming procedures. The settings pro-
duced by the algorithm should serve as a starting point for 
programming clinicians. The clinicians can then make adjust-
ments to algorithm-determined settings, either through modi-
fications on the algorithm parameters or via slight manual 
manipulations as they see fit. Such a programming structure 
allows for interactive programming that may expedite DBS 
programming, allow clinicians to see more DBS patients, 
enable the use of complex lead designs, and achieve near-
optimal settings tailored to the patient.

5. Conclusions

We demonstrated that the optimization model for DBS pro-
gramming we created offers a quick and robust solution to 
manual programming challenges for commonly used cylin-
drical electrodes and novel directional electrodes. The algo-
rithm accommodates a range of lead and programming 
complexity, incorporates various levels of targeting and avoid-
ance constraints, and abides by FDA-imposed charge den-
sity limits. Future work will involve applying the algorithm 
to patients who have been implanted with either cylindrical 
leads or directional leads to validate algorithm-chosen set-
tings, and determining its impact on clinical DBS program-
ming efficiency.
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