Classification
We evaluated LDNN extensively on many benchmark data including: general binary and multi-class datasets from UCI repository, synthetic datasets such as two-moon and spiral datasets and also popular computer vision datasets such as MNIST, CIFAR10, CIFAR 100 and SVHN.
Binary datasets
| Dataset | Classifier | Av. test err. (%) |
|---|---|---|
| Adults | LDNN | 15.25 |
| MLP | 15.75 | |
| RF | 14.14 | |
| SVM | 15.57 | |
| Wis. Breast Cancer | LDNN | 0.80 |
| MLP | 2.28 | |
| RF | 1.79 | |
| SVM | 1.59 | |
| PIMA Diabetes | LDNN | 17.92 |
| MLP | 22.11 | |
| RF | 20.81 | |
| SVM | 21.57 | |
| Australian | LDNN | 12.93 |
| MLP | 15.65 | |
| RF | 12.95 | |
| SVM | 16.59 | |
| Ionosophere | LDNN | 3.40 |
| MLP | 12.10 | |
| RF | 5.38 | |
| SVM | 4.27 | |
| German Credit | LDNN | 22.58 |
| MLP | 26.96 | |
| RF | 24.28 | |
| SVM | 25.83 | |
| Forest Cov. Type | LDNN | 8.87 |
| MLP | 12.22 | |
| RF | 3.90 | |
| SVM | 6.91 | |
| IJCNN 2001 | LDNN | 1.28 |
| MLP | 2.34 | |
| RF | 2.00 | |
| SVM | 1.41 | |
| COD-RNA | LDNN | 3.36 |
| MLP | 3.68 | |
| RF | 3.37 | |
| SVM | 3.67 | |
| Webspam | LDNN | 1.21 |
| MLP | 2.44 | |
| RF | 1.17 | |
| SVM | 0.78 |
Multi-class datasets
| Dataset | Classifier | Av. test err (%) |
|---|---|---|
| Isolet | LDNN | 4.17 |
| RF | 5.61 | |
| SVM | 3.21 | |
| Landsat | LDNN | 7.98 |
| RF | 9.15 | |
| SVM | 8.15 | |
| Letter | LDNN | 2.32 |
| RF | 3.89 | |
| SVM | 2.35 | |
| Optdigit | LDNN | 2.29 |
| RF | 2.89 | |
| SVM | 1.56 | |
| Pendigit | LDNN | 1.80 |
| RF | 3.64 | |
| SVM | 1.86 | |
| MNIST | LDNN | 1.23 |
| RF | 3.00 | |
| SVM | 1.40 |